
  
 
 

 
Abstract 

 
Reasoning about 3D scene structure is an important 

component of visual scene understanding. Often, 
reasoning proceeds from low-level cues without resorting 
to full 3D reconstruction. However, existing geometric 
cues may require multiple viewpoints, supervised training, 
constraints on scene structure or information from 
auxiliary sensors. To address these limitations, this paper 
demonstrates how geometric context for a single static 
camera can be recovered from the location and shape of 
moving foreground targets. In particular, we propose 
methods to compute the likelihood of a static occlusion 
boundary and floor region at each pixel. Importantly, 
these cues do not require supervised training, or prior 
knowledge of camera geometry or scene structure. 
Finally, we show how the proposed geometric cues can be 
used to infer an ordinal depth map and demonstrate its use 
in compositing with correct occlusion handling. 
 

1. Introduction 
The connection between 3D structure and image 

understanding is an important and long running theme in 
computer vision, largely motivated by models of human 
perception from computational neuroscience, including 
Marr’s 2.5D sketch [16]. Geometric cues, whether arising 
from direct 3D reconstruction or low-level geometric 
reasoning, have been utilized in a range of visual tasks 
including tracking [11], object detection [8] and visual 
saliency prediction [13]. Conventional geometric methods 
for recovering scene structure require multiple images 
with varying viewpoint, focus, lighting or other intrinsic or 
extrinsic parameters. However, practical applications such 
as surveillance and monitoring are dominated by static 
cameras in uncontrolled environments, typically with 
wide-baseline or non-overlapping views. In these 
instances, structure recovery must rely on less robust 
single-view geometric cues. 

Since single-view scene reconstruction is inherently 
under-constrained, existing methods for recovering scene 
structure must incorporate prior knowledge. For example, 

the early blocks world experiments interpreted line 
drawings based on known 3D polyhedral shapes [18]. 
Other recent approaches adopt the Manhattan world 
assumption [4] as a constraint on urban and indoor scenes 
with orthogonal planes. Similarly, assuming a planar 
ground and pin-hole camera enables recovery of metric 
ground plane properties [1]. Several authors have adopted 
supervised machine learning to learn the mapping between 
low-level image features and 3D geometry [9, 21]. 

Without the above assumptions of planar structures, 
known camera model or supervised training data, what can 
we infer about scene geometry from a single static 
camera? The answer draws on an alternative line of 
research that treats moving targets as exploratory 
“probes”. As shown in Figure 1, regions in a static scene 
fall into three classes: those that occlude foreground 
targets, are occluded by foreground targets, and support 
foreground targets (i.e. floor regions that contain target 
“footprints”). These classes are not mutually exclusive, i.e. 
complex scenes may contain regions that are both 
occluders and occludees. Static occlusion boundaries 
between occluding and occluded regions correspond to 
depth discontinuities and provide a strong cue for 3D 
scene structure by inducing a depth ordering on 
neighbouring regions. Similarly, floor regions induce a 
depth ordering since they do not occlude other regions. 
Thus, segmenting an image into these classes of regions 
results in an ordinal depth map. 

Based on the above observations, this paper introduces 
two methods for single-camera geometry estimation based 
on observations of moving targets. The first method 
generates a static occlusion boundary likelihood map 
which indicates the likelihood that each pixel occurs on a 
boundary between occluding and occluded regions. This 
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Figure 1: Scene geometry from moving targets: (left) video
frame; (right) occluding (green), occluded (blue) and supporting
(red) segments, and occlusion boundary (black). 
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method assumes that static occlusions lead to a consistent 
change in the shape of partially occluded foreground 
targets, which otherwise move non-uniformly. The second 
method generates a floor likelihood map, which indicates 
the likelihood that each pixel occurs in a target support 
region. This method assumes that the floor has a unique 
appearance compared to non-floor regions. Importantly, 
these methods are applicable to many scenes of practical 
interest and impose less restrictive assumptions than the 
single-view scene geometry methods described above. 

The remainder of this paper is organized as follows. 
Section 2 discusses related work on single-view structure 
recovery from moving foreground targets. Section 3 
provides an overview of the proposed methods. Technical 
details for recovering the occlusion likelihood map and 
floor likelihood map are described in Sections 4 and 5 
respectively. Section 6 presents a quantitative evaluation 
of the proposed cues and a comparison with competing 
methods. Finally, Section 7 presents an MRF-based model 
for recovering an ordinal depth map from the detected 
occlusion boundaries and floor regions. 

2. Related Work 
The recovery of single-view scene structure from the 

interactions of moving targets with static background has 
been previously explored by several authors. Most of these 
methods are based on analysing the location and shape of 
foreground regions detected using statistical background 
models such as described in [12]. 

Brostow and Essa [3] proposed a method to assign 
ordinal depth to a static image segmentation based on 
foreground occlusions, by ‘pushing’ occluded regions to 
lower layers and ‘popping’ occluding regions to higher 
layers. However, this approach is sensitive to the initial 
segmentation and target path. Schödl and Essa [22] later 
proposed a more robust minimum description length 
optimization for depth layer assignment based on the 
assumption that persistent edges of foreground targets 
coincide with occlusion boundaries. However, this 
approach tends to over-segment the scene, especially in 
the presence of stationary targets. 

Based on similar ideas, Guan et al. [7] build a simple 
three-layer model that segments scenes into static 
background, moving targets and static foreground 
occlusions. Evidence for occlusions follows from two 
assumptions: occlusions result in persistent foreground 
edges perpendicular to the direction of motion, and 
occlusion edges never appear inside foreground regions. 
The simple three-layer model approach is restricted to 
relatively simple scenes, e.g. scenes in which a person 
walks behind but never in front of an occluding object. 
Jackson et al. [10] additionally assume foreground targets 
change rapidly in area during occlusion. Both approaches 
do not require static occlusion boundaries to coincide with 

intensity edges, and have the advantage of avoiding over-
segmentation. However, neither method detects horizontal 
occlusion boundaries parallel to target motion. Our 
proposed methods avoid the limitations of [22] and [7] by 
directly estimating occlusion boundaries rather than 
ordinal depth segments. Ordinal depth may still be 
recovered by combining occlusion boundaries with floor 
segments (see Section 7). 

Several authors have previously exploited moving 
targets to segment floor regions. Rother et al. [19] 
analyses moving people to recover camera calibration, 
floor segmentation and ground plane parameters in a static 
scene. The floor segmentation approach models floor 
appearance based on seed pixels underneath detected 
target footprints. The floor segment is constructed as a 
connected region of pixels within a threshold colour 
distance from the seeds. Bovyrin and Rodyushkin [2] 
proposed a similar model to detect floor regions by 
iteratively growing a floor region around seed pixels. Both 
approaches work well in simple scenes with homogeneous 
floor appearance and sufficiently distributed footprints. 
However, neither approach considers the impact of 
partially occluded targets with no visible footprint, or 
occlusions that divide the floor into disconnected 
segments. Our method employs occlusion reasoning and a 
floor appearance model based on superpixel statistics to 
overcome these limitations. 

Finally, the recent work of Fouhey et al. [6] moves 
beyond simple foreground shape analysis by detecting 
human actions to probe “sittable” and “walkable” surfaces 
of a scene, which are subsequently used to infer single-
view 3D structure. This approach nevertheless relies 
heavily on single-view human pose estimation, which 
remains an open and challenging research problem. 

3. System Overview 
Figure 2 outlines the proposed framework for single-

view geometry from foreground targets. The algorithm 
takes video from a single static camera as input, and 

Figure 2: Proposed framework for scene geometry estimation.

547547



  
 
 

determines the likelihood of a static occlusion boundary 
and a floor region at each pixel. Associated with the 
occlusion likelihood is a per-pixel orientation map that 
encodes the relative depth of regions neighbouring a 
discontinuity. The method makes no assumptions about 
scene geometry or target motion except that sufficient 
targets are observed to reveal the major structures. 

As shown in Figure 2, the first step is to detect and track 
foreground targets in each video frame. Our current 
implementation uses the SAMMI change detector [23], 
although any method that produces a per-pixel foreground 
mask is suitable1. Foreground regions are naïvely tracked 
assuming Brownian motion and greedy nearest neighbour 
association based on centroid location and size ratio. This 
processing step results in a set of foreground regions and 
their temporal associations over the video sequence. 

The processing pipelines for recovering occlusion 
likelihood (blue blocks in Figure 2) and floor likelihood 
(green blocks in Figure 2) are largely independent except 
where the occlusion likelihood is used to reason about 
occluded targets during footprint detection. The following 
sections detail these pipelines in turn. 

4. Static Occlusion Boundary Likelihood 
Static occlusion boundary detection is based on the 

following three premises:  
1. Static occlusion boundaries occur at edges of 

individual foreground targets, known as silhouette 
boundary pixels;  

2. Static occlusion boundaries do not occur inside any 
detected foreground target that is behind the same 
occluder; and  

3. Silhouette boundary pixels that lie on static occlusion 
boundaries have persistent location and orientation 
across different detections. 

These concepts are illustrated in Figure 3. Figure 3(a) 
shows silhouette boundary pixels (magenta) of a partially 
occluded detection. Premise (1) states that a subset of the 
silhouette boundary pixels lies on the occlusion boundary, 
and premise (3) states that this subset has a persistent 
location and shape across multiple detected targets, since 

 
1 SAMMI actually produces a foreground label per 8×8 DCT block, 

so occlusion likelihood maps are generated for 8×8 subsampled images. 

it is defined by the occlusion rather than the target. To 
identify this subset, Figure 3(b) shows an overlapping 
detection behind the same occluder. The superposition of 
both detections is shown in Figure 3(c). Pixel locations 
from the first target that are interior to the second target 
(shown in red) violate premise (2) and are discarded. The 
remaining boundary pixels shown in white are persistent 
across the two detections. Accumulating evidence for 
these persistent locations across all overlapping detected 
targets provides evidence for static occlusion boundaries. 

4.1. Persistent Silhouette Boundary Detection 
This section provides an algorithmic implementation of 

the concepts outlined above. Let � � ���� represent the set 
of all detected foreground regions in all frames of a video 
sequence. Detection �� is divided into boundary pixels 
�� � ��	� (i.e. pixels that are 8-connected to a background 
pixel) and interior pixels �
� � ��
�� such that �� � �� � �
�. 
The set �
� of detections that overlap �� is 

�
� � ���� ��� � ��� � ���������� ����� � �� � ��, � !
where � is a minimum overlap ratio threshold. Provided � 
is sufficiently high, �
� will generally include overlapping 
targets behind the same occluder as ��. Then, the set of 
non-interior silhouette boundary pixels "� # ��  for 
detection �� is 

"� � ��$%� &%!� $% ' ��� ($% ) �
�(� �� ' �
��, �*!
where $% is the pixel location and &% is the quantized 
boundary orientation, determined as a tangent orientation 
to the boundary of �� (see Figure 4). The directed tangent 
is defined with detected target �� on the counter-clockwise 
side. Boundary orientation thus encodes the relative depth 
of neighbouring regions, with the closer region (the 
occluder) on the clockwise side. Our current 
implementation quantizes &% into eight orientation bins. 

The likelihood of persistence +��$%! at each pixel 
location $% ' "� is measured as the proportion of 
overlapping targets that have a boundary at this location: 

+��$%! � ,
�-
.� /-0'-
./12'304�$%� �	!, �5!

where 4�6�6! is the Kronecker delta. Finally, the total 
likelihood of persistence +�$� &! for each discrete image 
location $ and quantized orientation & is accumulated over 

Figure 3: Example of persistent silhouette boundary pixel detection: (a) first occluded target;
(b) overlapping target behind the same occlusion; (c) superimposed silhouette boundaries. 

    (a)    (b)   (c)
Figure 4: Persistent silhouette 
pixel orientation. 

548548



  
 

 

all foreground detections as  
+�$� &! � /�/�78�98!':.+��$%! 6 4�$� $%! 6
;�&� &%!. �<!

4.2. Motion Envelopes 
Inferring occlusions directly from foreground regions 

faces two challenges. Firstly, stationary targets (sitting, 
standing, etc.) can generate high occlusion likelihood 
where no occlusion exists, since static silhouette 
boundaries cannot be distinguished from persistent 
occlusion boundaries. Secondly, equation (1) involves => 
set intersections where = is the number of detected 
targets, which can quickly become intractable. Our 
solution is to track a smaller set of motion envelopes, and 
apply persistent silhouette boundary detection to motion 
envelopes rather than raw detections.  

Let � � ��?� @ �  �A � B� represent detections of a 
target tracked over B frames. We wish to segment � into a 
set of = (C B) non-overlapping sub-intervals ��D ���?� E� F @ F ���, � �  �A � =. The motion envelope G� in 
each sub-interval is then the union of foreground regions 

G� � H?IJ.
1. �?. �K!

Importantly, the motion envelopes defined above 
preserve the property that static occlusion boundaries 
coincide with persistent silhouette boundary pixels; as 
shown in Figure 5, the shape of the occlusion boundary is 
preserved in the boundary of G�. However, this property is 
potentially lost when a target moves from behind to in 
front of an occluder. We avoid this problem by choosing 
spatially compact sub-intervals. While many boundary 
criteria exist, we choose E� and �� to yield a small overlap 
between �J.  and �1. (blue shaded area in Figure 5(a)):  

��J. � �1.� C L�MN(���J.�� ��1.�! �O!
where L is the maximum overlap ratio threshold. In 
general, the number of regions in ��D varies with target 
motion, e.g. many detections may be combined into a 
single motion envelope while a target is stationary. Motion 
envelopes thus summarize target motion, reducing 
complexity and increasing robustness. 

4.3. Likelihood Estimation 
Finally, the static occlusion likelihood and orientation 

maps are computed from accumulated persistence +�$� &!: 
+�$! � ���9+�$� &!
P�$! � �QR(���9+�$� &!S �T!

The likelihood and orientation in equation (7) are only 
valid at pixel locations where more than one non-interior 
silhouette boundary was observed. This constraint is 
represented as a confidence mask: 

U�$! � /�/78':.4�$� $%!. �V!

5. Floor Likelihood Estimation 
Our proposed floor likelihood estimation method 

detects regions that support moving targets, i.e. regions 
likely to contain target footprints. This has two significant 
challenges: floor regions are often piecewise planar rather 
than globally planar, and targets typically walk on a small 
subset of the visible floor region. Existing footprint-based 
floor detection methods which make assumptions about 
geometry (e.g. planar ground) or connectivity (e.g. region 
growing) are therefore likely to find only part of the floor. 

To overcome these limitations, we instead assume that 
the floor has a unique appearance compared to non-floor 
regions. This appearance is modelled using a non-
parametric, multi-modal colour distribution over super-
pixel regions containing footprints. These superpixels are 
the result of an over-segmentation of the background 
image into coherent regions with uniform colour or 
texture. An important step is to detect and filter out 
partially occluded targets to avoid corrupting the model 
with false footprints. The non-parametric, multi-modal 
colour distribution model is used to assign a floor 
likelihood value to each superpixel in the view, regardless 
of whether the superpixel contains footprints. This 
approach is especially suited to finding floors with 
coloured patterns (e.g. tiled floors), and disconnected 
regions due to occlusions, since it does not require targets 
to traverse all areas of the floor. Details of the algorithm 
are provided below. 

5.1. Visible Footprint Detection 
For simplicity, our current implementation assumes that 

the camera is in the upright orientation and the lowest 
point on the target is the footprint (generally, this 
assumption can be avoided by estimating the vertical 
direction as described in [15]). However, due to noise 
from shadows and reflections, edges of foreground regions 
may not coincide with silhouette edges of the target. Thus, 
a simple refinement step shown in Figure 6 is adopted to 
localize the true footprint. The refinement starts at the 
lowest point on a foreground mask closest to the central 
vertical axis of the target (yellow cross in Figure 6(b)) and 

Figure 5: Motion envelope construction: (a) foreground 
detections; (b) resulting motion envelope (union of foregrounds).

  (a)  (b)
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takes the strongest intensity edge above this point as the 
true footprint (white cross). 

The assumption that the detected footprint touches the 
floor may be violated when the target is partially occluded, 
which occurs frequently in cluttered scenes. Detection and 
removal of partially occluded targets is therefore critical to 
ensure the estimated floor model remains free of non-floor 
pixels. Observing that partial occlusions typically generate 
false footprints on occlusion boundaries, occlusions can be 
detected by testing whether the occlusion boundary 
likelihood at putative footprint locations exceeds an 
empirical threshold. While it is conceivable that a partial 
occlusion creates a false footprint away from an occlusion 
boundary, this occurs rarely in practice. Figure 6(c) shows 
the result of footprint filtering over all detected targets in a 
video sequence, based on the observed occlusion 
likelihood map (see Section 4). False footprints along 
occlusion boundaries, most notably along the top of the 
shelves, are detected and rejected with high precision. 

5.2. Floor Appearance Mixture Model 
The underlying assumption in the floor appearance 

model is that the statistics of the entire floor are captured 
in a few representative superpixels, which are selected 
based on the presence of footprints. The superpixel 
segmentation is computed on a background frame free of 
foreground targets so that the pixel statistics capture only 
the static scene content. Any good superpixel algorithm is 
suitable for this purpose; Section 6 demonstrates 
experimental results for both watershed superpixels [14] 
and geodesic superpixels [17]. 

The presence of a footprint within a superpixel is a 
strong indicator that the superpixel represents a floor 
region. However, numerous sources of noise, including 
spurious foreground targets due to camera jitter, 
reflections, shadows, and incorrect filtering of occluded 
targets, lead to false footprint detections. Robustness to 
noise is strengthened by selecting only superpixels that 
contain = (empirically chosen) or more footprints. Figure 
7 illustrates a geodesic superpixel segmentation, along 
with the representative floor superpixels (outlined in 
yellow) selected based on the footprints in Figure 6(c). 

Each selected superpixel is assumed to capture a 
different aspect of the floor’s appearance (e.g. different 

coloured tiles), and contributes a unique mode to a non-
parametric multi-modal mixture model. Some modes may 
be identical, e.g. in large homogeneous floor regions. 
While further processing could be applied to cluster 
identical modes, this is not necessary in practice. 

Supposing W superpixels are selected, the k-th mode, 
X �  �A � W, is modelled as a triplet of normalized colour 
histograms corresponding to the marginal distributions of 
pixel values in YCrCb space. The histogram for the c-th 
channel, Y �  �A �5, is Z[�	 � \][�	�1^, where _1][�	�1 �
 , and � �  �A � � ranges over the � histogram bins. The 
overall floor appearance is the set of histograms for all 
channels of every mode, Z � \Z[�	^. 

5.3. Likelihood Estimation 
Intuitively, any superpixel sufficiently similar to at least 

one of the superpixels containing N or more footprints is 
also likely to be floor. For the j-th superpixel, the 
corresponding similarity metric is the minimum distance, 
à�, between the normalized colour histogram triplet b[�� of 

the j-th superpixel and all modes in the floor model: 
à� � �MN	 /[I,c `�b[��� Z[�	!, �d!

where `�6! is the earth mover’s distance [20]. While à� 
can be interpreted directly as a likelihood, for convenience 
we map it to the range ef� g by the likelihood function +�: 

+� � h�i jk� �̀ lm �>n, � f!
where l is an empirically chosen scaling factor encoding 
the expected noise and variation in floor appearance. The 
value +� is proportional to the conditional probability of 
observing à� given that the j-th superpixel is a floor 
region. Finally, the floor likelihood map is constructed by 

Figure 6: Footprint detection and filtering: (a) detected foreground (yellow); (b) initial footprint (yellow cross) and refined footprint 
(white cross) at intensity edge; (c) detection of occluded footprints (blue) and visible footprints (yellow) based on occlusion likelihood. 

   (a)   (b)   (c) 
 

Figure 7: Selected superpixels (yellow) for floor model.

550550



  

assigning +� to all pixels in the j-th supe

6. Experimental Results 
The proposed geometric cues were 
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[19] and [2] for an outdoor scene from [5]. This result 
highlights the advantage of the proposed method in 
finding all floor areas consistent with the appearance 
model, despite targets walking in only a relative narrow 
part of the scene. 

Figure 10 shows the precision-recall curves for 
occlusion boundary and floor region detection, based on 
varying a detection threshold in the range [0, 1] for the 
likelihood maps shown in Figure 8. At each threshold, the 
recall was computed as the ratio of the number of true 
positive boundary/floor pixels (with likelihood exceeding 
the threshold) to the total number of ground truth 
boundary/floor pixels, and the precision was computed as 
the ratio of true positive boundary/floor pixels to the total 
number of detected boundary/floor pixels. At the equal 
error rate operating point (where the false detection rate 
equals the false rejection rate), our occlusion boundary 
detection method achieves a precision and recall of 0.64. 
By comparison, the COBI result shown in row 4 of Figure 
8 achieves a recall of 0.28 and precision of 0.30. Similarly, 
our floor detection method achieves a precision and recall 
of 0.91 for superpixel based segmentation, and 0.94 for 
watershed based segmentation at the equal error operating 
point. By comparison, region growing achieves a recall of 
0.81 and precision of 0.99, while fast marching achieves a 
recall of 0.60 and precision of 0.58. 

7. Application: Video Compositing 
Video compositing is the process of inserting synthetic 

objects into a real scene, and is a common task in 
applications such as augmented or mixed reality. In typical 
cluttered environments, the principal challenge is to ensure 
inserted objects respect scene occlusions. This can be 
achieved by decomposing the scene into partially 
transparent, depth ordered layers, such that opaque pixels 
in higher layers occlude those in lower layers. Synthetic 
content with correct occlusion handling can then be added 
by inserting new objects between the existing scene layers. 
We now show that a depth ordered layered representation 
suitable for compositing can be recovered from the 
proposed occlusion boundary and the floor likelihood 
cues. 

Layer extraction may be posed as an optimal depth label 
assignment on a superpixel segmentation of the scene, 
which we solve using an MRF-based approach. An 

underlying assumption is that superpixel boundaries align 
with floor region boundaries and static occlusion 
boundaries. Let o � �`p� A � `q� represent the set of 
decreasing depth labels that can be assigned to 
superpixels. Now, a label assignment is desired that 
satisfies depth order constraints on superpixels separated 
by an occlusion boundary, and assigns greatest depth `p to 
floor regions with high likelihood. 

The MRF is constructed with a node per superpixel and 
an edge joining neighbouring superpixels. Let r� represent 
the set of pixels in the i-th superpixel, and s� represent the 
assigned depth label. Then, the unitary node potentials 
tu�vvw�s�! penalize labels inconsistent with the average 
floor likelihood in r� according to 

txyzz{�s�! � | k /$'r�+xyzz{�$!}�r��� �x(s� � `f
/$'r�+xyzz{�$!}�r��� �x(s� � `f �  !

where +u�vvw�$! is the floor likelihood at image location $. 
To determine the pairwise node potentials, tv[[�s�� s�!, 

we first determine whether an occlusion boundary exists 
between regions ~� and ~�. A simple decision rule involves 
thresholding the occlusion boundary likelihood map and 
counting the number of high-likelihood occlusion pixels 
that occur on the boundary between ~� and ~�. If this 
number exceeds an empirically chosen threshold, the 
superpixels are assumed to lie at different depths. The 
relative depth of ~� and ~� may be determined from the 
average orientation of high-likelihood occlusion pixels on 
the boundary between ~� and ~� (see Section 4.1). Finally, 
the pairwise potential tv[[�s�� s�! is constructed to 
penalize depth labels that violate the observed depth order. 
For example, if ~� is determined to be closer than ~�, the 
pairwise potential tv[[�s�� s�� is constructed as 

tzYY�s�� s�! � ��zYY� �x(s� � s�
f� z@]�{��~�. � *!

For superpixels that are not separated by an occlusion 
boundary, the pairwise potential enforces a smoothness 
constraint, given by 

tv[[�s�� s�! � |��%vv?�� M�(s� � s�
f� z@]�{��~�. � 5!

In equations (12) and (13), �v[[  and ��%vv?�(are 
empirically chosen to balance the contribution of each 
potential function. Figure 11(b) shows the optimal label 
assignment (five depth layers encoded by increasing 

Figure 11: Video compositing: (a) superpixel segmentation; (b) optimal depth order assignment found by MRF; (c) synthetic targets; 
(d) synthetic targets composited into scene with correct occlusion handling. 

     (a)   (b)  (c)   (d)
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intensity) found by solving the above MRF for the 
convenience store scenario using the floor and occlusion 
likelihood results shown in the second column of Figure 8. 

Given the recovered depth layers, synthetic targets can 
now be inserted into the scene based on standard 
compositing techniques. Figure 11(c) shows three 
synthetic targets to be inserted just behind layers 4, 5 and 
2 (from top to bottom). The composited result shown in 
Figure 11(d) is visually pleasing since all partial 
occlusions are faithfully reproduced. 

8. Conclusions 
This paper has demonstrated that static 3D scene 

structure can be recovered by analysing only the location 
and shape of moving targets in images of a video sequence 
from a static camera. Two cues related to ordinal depth 
were proposed: per-pixel static occlusion boundary 
likelihood and floor region likelihood. The proposed 
methods were shown to outperform similar methods in the 
literature. Furthermore, the ability to infer a pixel-wise 
ordinal depth map from these cues was described and 
demonstrated in a compositing application. 

The proposed geometric cues are obtained in the 
absence of supervised training or prior information about 
camera calibration or scene geometry. Furthermore, these 
methods do not require occlusion boundaries to coincide 
with intensity boundaries, or require the floor appearance 
to be homogeneous or even smooth. The main 
assumptions are that sufficient foreground targets with 
varying shape and motion are present in the scene to 
reveal static geometry, and the appearance of the floor 
differs from non-floor regions. 

While we expect the proposed methods to perform well 
in general based on our evaluation, there exist special 
cases which violate our assumptions. . Floor detection 
relies heavily on accurate footprints, which can be 
corrupted by shadows and reflections, especially on 
polished floors. This problem may be solved by detecting 
foreground targets using pedestrian classification instead 
of change detection. The requirement that the floor has a 
different appearance from other regions is generally 
reasonable, but will fail in specific scenarios or alternative 
sensing modalities such as thermal IR. For occlusion 
detection, persistent boundary pixels can arise away from 
occlusion boundaries in certain scenarios. This occurs in 
particular for combinations of repetitive or rigid motion of 
similar objects, such as trains, industrial robots or people 
standing in a queue. Aside from these specific scenarios, 
the described methods are effective in environments 
populated with free-ranging targets with varying shape, 
which applies to a wide range of practical applications.  
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