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Abstract

We propose a new and efficient method for 3D object lo-
calization and fine-grained 3D pose estimation from a sin-
gle 2D image. Our approach follows the classical paradigm
of matching a 3D model to the 2D observations. Our first
contribution is a 3D object model composed of a set of 3D
edge primitives learned from 2D object blueprints, which
can be viewed as a 3D generalization of HOG features.
This model is used to define a matching cost obtained by ap-
plying a rigid-body transformation to the 3D object model,
projecting it onto the image plane, and matching the pro-
jected model to HOG features extracted from the input im-
age. Our second contribution is a very efficient branch-and-
bound algorithm for finding the 3D pose that maximizes the
matching score. For this, 3D integral images of quantized
HOGs are employed to evaluate in constant time the maxi-
mum attainable matching scores of individual model prim-
itives. We applied our method to three different datasets of
cars and achieved promising results with testing times as
low as less than half a second.

1. Introduction

View-invariant object detection and fine resolution 3D

pose estimation are fundamental problems in computer vi-

sion. However, the fact that objects often appear in cluttered

scenes, occlude each other, and exhibit immense variabil-

ity in their appearance, shape and pose, makes both prob-

lems incredibly challenging. Since the early days, the com-

puter vision community advocated that a 3D representation

of objects was key to properly addressing these challenges

[19, 4, 1, 15, 3]. The main reasons are that 3D object models

are independent of the viewpoint and bear global 3D shape

information that can disambiguate local 2D detections.

Depending on the level of detail in both the 3D object

representation and the accommodated viewpoints, recent

approaches can be roughly divided into three main fami-

lies. Methods in the first family combine multiple single-

view 2D detectors into 3D [22, 25], whereas approaches

in the second family extend these ideas to viewpoint anno-

tated data to better handle large pose variations [20, 21, 24].

In general, these methods follow the intuition that 2D fea-

tures and regions can be effectively used to describe cer-

tain views, whose combination can lead to a global decision

about the object pose and class label. On the other hand,

methods in the third family try to build explicit 3D repre-

sentations of objects, for a detailed 3D inference from 2D

input [26, 14, 2, 16, 11, 10]. In such approaches, object

models have more expressive power, but this comes at the

expense of additional challenges. First, acquiring a generic

3D model for an object category remains an active research

problem on its own. Second, entertaining such models with

the huge pose space remains a computational bottleneck,

especially, when inference is done from a single 2D image.

Paper contributions. In this paper, we address these chal-
lenges by making the following two important contribu-

tions: (i) For representing objects, we propose to learn ex-

plicit 3D wireframe models from object blueprints, which

are vis-a-vis complementary and orthographic sketches of

the object in a few canonical views, and (ii) for estimating

a fine grained 3D pose, we layout a very efficient optimiza-

tion scheme using a Branch and Bound (BB) algorithm.

The precision in pose estimation is intimately coupled

with the precision in the 3D object representation. On the

one hand, such a representation can be readily obtained via

off-the-shelf CAD models (e.g., [18]). This would save

efforts on training, but would require access to dedicated

CAD scans for every other category of interest. On the

other hand, object models can be learned generically from

actual images (e.g., [20]), which is easily generalizable to
different classes. However, the quality of the learned mod-

els is prone to accurate manual annotation, background sub-

traction, correspondence matching and 3D reconstruction.

Alternatively, methods can benefit from both ends, where

CADs are used for guiding the learning process (e.g., [14]).
In that spectrum, we opt for a promising alternative, which,

to the best of our knowledge, has not been tested for the

subject matter. In particular, we propose an efficient model

construction scheme from object blueprints, which, in the

absence of a CAD model, can be produced more easily than

a whole 3D scan, can be found fairly abundantly on the web

for most of the commercial object categories, can be seam-

lessly triangulated to a volumetric shape without the need of
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correspondence matching, and can provide models as pre-

cise and detailed as CADs. Reconstructed and averaged

from several blueprint exemplars of the target category, our

object representation is eventually a set of 3D edge prim-

itives at significant boundaries of the object’s texture and

geometry, combined also with local surface normals, so as

to handle pose dependent self occlusions.

Given this 3D wireframe model, and an input image, we

pose the 3D object localization and pose estimation problem

as one of matching the edges of the projected 3D model

under varying poses, to those of the image summarized by

HOG features. Arguably a more difficult challenge remains

in the computational aspect of the problem, especially due

to the sheer volume of pose hypotheses to be searched, and

due to local extrema. To address this challenge, we propose

a very fast global optimization using a BB algorithm, which

rapidly converges to the pose that maximizes the matching

score between the projected 3D model and the input image.

Related work. 3D modeling for view-invariant inference
from 2D images has a long tradition in computer vision,

which dates back to simple representations like polyhedral

shapes [19] and generalized cylinders [4]. Nonetheless, the

resurgence of more advanced 3D methods that are espe-

cially targeted at joint category and viewpoint classification

and pose estimation is fairly recent.

In that context, related work can be grouped into differ-

ent themes depending on the kind of object representation

and the method of inference. In the first theme, models are

trained extensively from viewpoint dependent part appear-

ances. For instance, the line of work in [20, 21, 23] decom-

poses objects into planar part appearances that are related

by homographies or affine transformations. Alternatively,

[14] proposes to use unsupervised training to acquire sepa-

rate models for both the 2D appearance and 3D geometry,

and combine them at a later stage for probabilistic pose es-

timation. Another group of work employs a voting-based

approach for inference. For example, [2] presents an im-

plicit shape model based on a constellation of features, their

locations, and their appearance in multiple views, and uses

this model in conjunction with a probabilistic voting proce-

dure to estimate the object pose. Similarly, [8] proposes a

nonparametric model and a voting architecture in the pose

space for viewpoint estimation. There are also approaches

that, rather than dealing with the complex appearance, try to

match image discontinuities to geometric cues and salient

boundaries of objects under varying pose. In this theme, the

line of work in [11, 10] uses 2D and 3D primitives that are

stick-like elements, whose projections are represented with

Gabor-like filters. With a similar objective, [17] revisits

a viewer-centered framework to learn 2D view-dependent

shape templates from salient contours in training images,

which are grouped using bag-of-boundaries features. Alter-

natively, the pose estimation problem has also been treated

from a purely discriminative perspective. For example, [9]

proposes to use a mixture of holistic templates that are

discriminatively trained and associated to canonical view-

points. Again, to be used for the discriminative learning of

viewpoints, [18] formulates a 3D deformable part model as

an extension of [6] and uses CAD data for training.

Our work departs from existing literature in two signif-

icant aspects: First, we use blueprints to acquire explicit

wireframe models of objects, hence we do not use dataset-

specific training. Second, we propose a very efficient BB

algorithm for fine grained pose estimation and localization

over the huge space of hypotheses. Although, bounding

techniques have already been studied for 2D object detec-

tion [13, 12], with existing 3D extensions that use additional

depth data [7], to the best of our knowledge, our work is the

first to layout a BB algorithm for inferring 3D object poses

from a single 2D image.

Paper organization. The paper is organized as follows: In
Section 2, we explain our 3D object representation that is

obtained from blueprint exemplars. Then, in Section 3, we

mathematically state the localization (detection) and fine-

grained pose estimation problem, followed by Section 4,

where we layout our BB algorithm for inference. Finally,

in Section 5, we discuss our experimental evaluation and

give our conclusions in Section 6.

2. 3D Object Model
Our approach for view invariant object detection and 3D

continuous pose estimation relies on an explicit 3D object

class model and the agreement of its pose-varying camera

projection with the 2D input image. In this section, we lay-

out our 3D model and its construction from blueprints.

Our object representation is composed of oriented prim-

itives that encode the 3D shape and a coarse appearance in-

formation in terms of edges at the boundaries of object faces

and at the discontinuities of object texture. In particular, our

3D model is defined as a set ofM object primitives

M = {(pm, em,nm
1 ,nm

2 )}Mm=1, (1)

where each primitive is specified by four vectors in R3: (i)

a 3D location p, (ii) a 3D edge direction e, and (iii) two
normal vectors n1 and n2, all given with respect to some

canonical object coordinate system (OCS).

The unit edge and normal vectors describe the local geo-

metric and crude appearance properties of the object. That

is, given primitive (p, e,n1,n2), the edge vector e is along
the local 3D discontinuity of color or surface reflectance.

On the other hand, unit normal vectors n1 and n2 en-

code the two planar surfaces intersecting at an edge pass-

ing through p. As will be discussed later, edge vectors will
be projected and matched to intensity discontinuities on the

2D image for validating a pose, whereas surface normals

539539



Blueprints

3D Reconstructions

Summarized 3D Model

Figure 1: Model construction from blueprints: 2D

blueprints (top) are registered to 3D raw models (middle),

and then summarized to final model (bottom) with cluster

centers found by k-means. Solid black line segments in the

final model are salient 3D edges em at pm, whereas thin

black vectors indicate the two normals nm
1 and n

m
2 of the in-

tersecting shape faces, which are found after a second round

of spherical k-means.

will determine the primitive visibility and self occlusions,

based on their orientation relative to the camera. By using

two normals we will ensure the visibility of shape edges at

intersecting object faces from very different views.

2.1. Model Learning from Blueprints

As illustrated in Figure 1-top, a blueprint is a set of edge

sketches of the object, which are captured from a few com-

plementary and canonical views (typically frontal, back,

side etc.), each obtained by orthographic projection. These

are binary images with intensity values set to one, wherever

there is a texture or shape edge, and zero elsewhere. In par-

ticular, let I front, Iback, I left, I right, I top and Ibottom be the re-
spective 2D sketches from frontal, back, left, right, top and

bottom views, which are aligned with each other in terms

of scale and projected axes of the OCS. Thanks to shared

axes and scales in blueprints, one does not need a corre-

spondence matching for reconstruction: An orthographic

ray emanating from one view is identified as a unique row

or column in other views, providing the missing depth infor-

mation as the location of object boundary in that particular

row or column. Moreover, since the “on” pixels from each

blueprint sketch already correspond to discontinuities in ob-

ject’s shape or texture, their triangulation directly provides a

3D sketch such as the one shown in Figure 1-middle, from

which the desired primitives for our 3D object model (1)

can easily be extracted.

In order to explicitly describe the 3D reconstruction from

blueprint images, we first fix the OCS such that the corre-

sponding x-axis spans from the object’s back to front, the

y-axis from its right to left, and the z-axis from its bottom
to top. Accordingly, we reparametrize the 2D pixel coor-

dinates of edges in each individual view with this common

OCS. Below, we give the details of reconstruction for the

edge pixels found in the frontal sketch I front. Reconstruc-
tions from other views follows analogously, where source

view pixel coordinates and signs of the OCS axes are ad-

justed accordingly.

Reconstructing 3D locations. Let p = (px, py, pz)
� be

a 3D point on the object, that is visible as an edge in

the frontal view I front with the corresponding horizontal-
vertical pixel coordinate (py, pz). Then, using the left and
top views I left and I top, where pixel locations are respec-
tively read off in terms of their xz- and xy- coordinates in
the OCS, the component px of p, which is missing from
I front, is simply obtained by

px = min
{
max{qx : I left(qx, pz) = 1},
max{qx : I top(qx, py) = 1}} (2)

Here, the inner max terms pick the “front-most” edge pix-
els from I left and I top, within their pthz and pthy rows, respec-
tively. Note that, I right and Ibottom could be equivalently
used, for which the max-operations would return the same
values. The outer min-operation is to account for cavities
in the object shape, which may be available in only one of

the argument views.

Reconstructing 3D orientations. Let e and n be the re-
spective 3D edge and surface normal on the object shape at

point p, which is reconstructed via (2) by back-projecting
from I front to I left and I top. Since the missing component
px is found at the 2D object boundary in either I left or I top,
the surface normal n will be along the local image gradient
in the particular argument view used for p’s reconstruction.
That is, we set

n =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1 0
0 0
0 1

)
∇I leftσ (px,pz)

‖∇I leftσ (px,pz)‖ , if
max{qx:I left(qx,pz)=1}
<max{qx:I top(qx,py)=1}

(
1 0
0 1
0 0

)
∇I topσ (px,py)

‖∇I topσ (px,py)‖ , otherwise

(3)

where I leftσ and I topσ are the smoothed versions of I left and
I top by a Gaussian kernel with noise scale σ. The 3× 2ma-
trices that pre-multiply the normalized gradients are used to
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set the missing component to zero. Recall that our object

model defined in (1), requires two normal vectors that char-

acterize the 3D geometry at intersecting object faces. These

are indeed locations, where the reconstruction in (3) locally

fluctuates between the two cases involved, yielding locally

varying normal vectors. Using an additional cluster analysis

step, we will group those later into two distinct directions to

be consistent with our object model in (1).

Once the normal n is computed, the 3D edge e at p is
found directly by using the facts that (i) it should be orthog-

onal to n, and (ii) its projection on the source view I front
should be consistent with the 2D edge observed there, i.e.
it should be orthogonal to the local image gradient in I front.
Thus, we obtain the 3D edge as the cross-product

e = n×
[(

0 0
1 0
0 1

) ∇I frontσ (py, pz)

‖∇I frontσ (py, pz)‖
]

(4)

where again I frontσ is the smoothed version of I front. In our
experiments, we take σ = 1 pixel.
Building a model from multiple exemplars. We perform
the above reconstruction steps for each edge pixel from each

of the individual views, and repeat this for several different

blueprint examples of the category of interest. This process

accumulates a large crowd of points and edges in R
3. To

summarize them and obtain an average object model, we

apply k-means clustering and use the cluster centers as our

final 3D representation. For this clustering step, we use the

similarity measure |e�1 e2| exp{−‖p1−p2‖22
2λ2 } between any

two point-vector pairs (p1, e1) and (p2, e2), where λ is
a scale parameter for real-world distances between recon-

structed points. In our experiments, we take λ = 10cm.
The centroids are then computed as follows: For points

pi assigned to a cluster, we take their Euclidean average,

whereas for vectors ei, we first sum their outer-products

E =
∑

i eie
�
i , and then compute the eigenvector of E as-

sociated to its largest eigenvalue. This will give the aver-

age orientation of the vectors being grouped, but without

letting those with opposite signs cancel each other. At con-

vergence of this k-means step, we discard clusters, whose

cardinality is less than 75% of the average cluster cardi-

nality, in order to remove outliers from the final represen-

tation. As a result, the set {pm, em}Mm=1 of surviving M
centroids will constitute the location and edge orientation

attributes of our 3D object model (1). Finally, within each

clusterm = 1, . . . ,M , the normal vectors associated to the

constituent points are further grouped under two distinct di-

rections, which are found using another round of spherical

k-means. This time, absolute dot products are used to com-

pute vector similarity, and averaging is done the same way it

is done for edge vectors, i.e., by using the top eigenvectors
of summed outer-products. This procedure will provide the

two normals (nm
1 ,nm

2 ) assigned to each clusterm, complet-
ing our object model. Note that, when the cluster center pm

is roughly located at the intersection of two different faces

of the mean shape, then the corresponding cluster normals

nm
1 and nm

2 will be necessarily different, due to variance of

constituent normal directions within the cluster. As men-

tioned earlier, this will ensure the primitive visibility under

widely differing views, which we will make explicit later.

Figure 1-bottom shows one blueprint model for the “car”

category extracted from the blueprints in Figure 1-top. Note

that, the final representation is quite regular, since blueprints

are inherently precise and consistent with each other.

3. 3D Object Localization and Pose Estimation

In this section, we formulate the problem of view-

invariant object localization and 3D pose estimation from

a single 2D image I. Given a wireframe modelM com-

posed of 3D edge primitives, this problem can be expressed

as finding the transformation θ that maximizes the match
between the perspective projection of θ ◦ M and the 2D

edge pattern observed on I. In our case, we quantify the
matching score by feature strengths of I at locations and
orientations where θ ◦M gets projected (as in the ordinary

2D template matching, which uses dot products). This re-

quires features that are coarse enough to be robust against

shape variations in the target object category, but also local

enough to reveal a fine resolution pose. In what follows, we

describe the features we use, our pose parameterization, and

the proposed matching score.

3.1. Image Features

In this paper, we use a variant of HOG features [5],

which are obtained with four main modifications. First, we

define the orientation bins using unsigned edge orientations

rather than gradient orientations, since our 3D model also

has 3D edges with unsigned orientations. Second, we ac-

cumulate edges with weights set to their gradient magni-

tudes as usual, but do not locally normalize the extracted

histogram as it is originally suggested. Instead, we pass

all entries through a sigmoid function to achieve a dynamic

range of [0, 1], which also provides a compression effect
like gamma-correction. Third, within each spatial bin, we

center the values at the corresponding discrete orientations

using their local average, and set the ones that become neg-

ative to zero. In this way (i) entries of locally dominant

and globally strong edge orientations are favored, empha-

sizing the foreground object, and (ii) flat regions and clut-

tered regions with dispersed edges get suppressed. Finally,

we quantize the resulting histogram to L uniformly spaced
levels in [0, 1], which will be exploited during inference for
fast bound computation thanks to integral images. To draw

the distinction, we henceforth call our features as quantized-

HOG or qHOG in short.
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3.2. Pose Parametrization

We consider pose θ as a transformation from the OCS

to a camera centered world coordinate system (WCS), with

6 degrees of freedom. We assume a spherical imaging sur-

face, and let θ � (a, b, c, d, e, f), where rotation parameters
a, b and c define, resepctively, the azimuth, elevation and
tilt angles of the camera relative to object; d specifies the
depth measured from the camera center to the object center;

and (e, f) stand for the 2D translation of object’s projection
on the input image I relative to image center.
3.3. Objective Function

Let H(i, j, k) denote the three dimensional qHOG his-
togram of input image I, where (i, j) ∈ {1, . . . , I} ×
{1, . . . , J} indexes the spatial grid of location bins, and
k ∈ {1, . . . ,K} gives the unsigned orientation bin. Then,
given object modelM in (1), we formulate the pose esti-

mation problem from I, as finding the maximizer of

Q(θ) =
M∑

m=1

V(pm,nm
1 ,nm

2 |θ)

×H(
i(pm|θ), j(pm|θ), k(pm, em|θ)), (5)

where, under pose θ, V(pm,nm
1 ,nm

2 |θ) ∈ {0, 1} speci-
fies the binary visibility of the mth primitive, as a func-

tion of its location and surface normals in the OCS; and

indices
(
i(pm|θ), j(pm|θ), k(pm, em|θ)) give its camera

projected qHOG bin, again written in terms of its 3D lo-

cation and edge orientation in the OCS.

The objective function Q counts the scores over visible

primitives only, where an individual score is simply taken as

the qHOG response at the projected location and orientation

of the corresponding primitive. Thus, Q can be interpreted
as the dot product between two qHOG arrays, namely H
itself, and the one that would be obtained from the 2D edge

image of the modelM captured under the pose θ.

4. Inference by a Branch & Bound Algorithm
In this section we describe our approach for maximizing

the objective function Q in (5). Doing this in a greedy or

exhaustive fashion is intractable due the prohibitively large

space of poses and the issue of local maxima. Bounding

schemes, on the other hand, can provide a feasible and

global approach with guarantees for optimality, provided

one can efficiently compute tight bounds on Q.
At a high level, BB algorithms recursively partition the

search space and compute bounds on the objective over each

partition element. Sorting these subsets in a priority queue

by their evaluated bounds, the search is directed to more vi-

able candidates, which are subdivided further until the finest

resolution is reached at convergence. We employ the same

bounding idea in our 3D pose estimation problem, where we

tackle a very large search space with 6 degrees of freedom.

Specifically, for any range Θ of poses, we need to compute

a sufficiently tight upper bound on the objective Q. Given
its form in (5), this can be achieved for each model primi-

tive separately, by upper-bounding both the corresponding

visibility and qHOG components, and then summing their

products over all primitives. This requires one to know pos-

sible visibility states of each primitive as well as their pos-

sible locations and orientations in the feature domain, as a

function of Θ. The complex dependence of those quantities
on the pose (due to the induced transformation on points

and edges, combined with the camera projection) neces-

sitates a multi-level analysis. In particular, for achieving

an upper bound on Q, we need to evaluate sequentially (i)
bounds on pose-transformed 3D primitive locations and ori-

entations in the scene, (ii) bounds on their camera-projected

2D locations and orientations in the feature domain, which

can be deduced by projecting bounds found in (i), (iii) up-

per bounds on primitive visibility, and (iv) upper bounds on

qHOG scores within the subsets of the feature domain as de-

termined in (ii). It is important to note that the only part that

uses information from the test image is the last step evalu-

ated on qHOG features. Thus, for a given 3D object model

M and a-priori fixed hierarchy of nested pose partitions,

steps (i), (ii) and (iii) can be precomputed and stored before

doing inference (see Figure 2 for an illustration). Further-

more, in that offline stage, the corresponding bounds can be

made arbitrarily tight at the expense of additional computa-

tional cost, and also, they can be evaluated with an arbitrary

choice of pose parametrization.

4.1. Bounding Mechanism

The core part of the BB algorithm is the bound com-

putation. As mentioned above, for a given range Θ of

poses, this process involves analysis at four levels, rang-

ing from 3D point locations to their projections, visibili-

ties and qHOG scores. In particular, our aim is to find

sufficiently tight upper bounds on the objective function

Q in (5), over a given 6-dimensional subspace of poses

Θ = A×B×C×D×E×F , whereA = [a, a],B = [b, b],
C = [c, c], D = [d, d], E = [e, e] and F = [f, f ] are inter-
vals over each of the pose components. In what follows, we

will discuss the details of our bounding scheme for a single

primitive (p, e,n1,n2) that gets transformed by poses in Θ
and gets projected to camera.

(i) Bounds on 3D locations and orientations. We treat

this step as finding 3D bounding boxes around the sets

Sp = {θ ◦ p : θ ∈ Θ} and Se = {θ ◦ e : θ ∈ Θ}. Since
the 2D translation (e, f) on the image has no effect here,
we consider rotation and depth parameters (a, b, c, d) ∈
A × B × C × D, only. Accordingly, we have θ ◦ p =
R(a, b, c)p+ t(d) and θ ◦ e = R(a, b, c)e, whereR and t
denote 3D rotation and translation, respectively.
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E

F

camera center

Figure 2: Bounding mechanism for pose transformed primi-

tive locations and their projections. The 3D grid in the scene

describes the subvolume of R3 covered by a point p, when
it gets transformed by azimuth angles, elevation angles and

depths, from respective intervals A, B andD (camera tilt is

omitted for illustration purposes). The surrounding cuboid

gives the corresponding 3D bounds, which after camera

projection, yields the purple bounding rectangle of HOG-

location bins. The translation intervals E and F on the im-

age give the final orange box bounding p’s locations in the
feature domain. Bounds on the pose-transformed and pro-

jected orientations of an edge e at p are found by repeating
this process for p and p+e and checking the extreme phases
of 2D vectors between the resulting 2D location bounds.

Since Se defines a spherical patch with radius ‖e‖, its
bounds can be easily found either at the extreme rotations

induced by (a, a, b, b, c, c), or when it intersects the planes
of the WCS. In that latter case, the bounds can be triv-

ially obtained from the extrema of the arc of intersection.

For locations, 3D bounds on the corresponding set Sp are
found in the same way, except now by also extending their

z-dimension with extreme depths d and d (see Figure 2).

(ii) Bounds on projected locations and orientations. In
this step, we bound the spatial and angular sub-array of the

discrete qHOG domain that is swept by the camera projec-

tions of point-edge pairs {θ ◦ (p, e) : θ ∈ Θ}. For that, we
project the bounds of the previous step found for 3D loca-

tions and orientations. To be specific, let {p̂s}8s=1 be the set

of eight corners bounding Sp and let {(̂is, ĵs)}8s=1 be their

camera projections. Then, the 2D bounding box around the

latter, further extended by the extreme 2D translations (e, f)

and (e, f) on the image, gives bounds
(
i(p|Θ), j(p|Θ)

)
and

(
i(p|Θ), j(p|Θ)

)
on projected qHOG-locations (or-

ange rectangle in Figure 2).

For computing bounds on orientations, we follow a sim-

ilar procedure. Let {êt}8t=1 be the set of eight corners

bounding Se. This time, we consider 64 additional points
{p̂st = p̂s + êt}8s,t=1, which are found by translating each

êt by each p̂s. In this way, we cover all extreme arrange-

ments of θ ◦p and θ ◦ (p+ e) in R3. Then, letting (̂ist, ĵst)
denote the camera projection of p̂st, bounds k(p, e|Θ) and
k(p, e|Θ) on qHOG-orientation, are obtained from extreme

phases of 2D vectors {(̂ist − îs, ĵst − ĵs)}8s,t=1.

(iii) Upper bound on visibility. We consider a primitive to
be visible, if at least one of its associated surface normals

faces towards the camera, i.e., makes a negative inner prod-
uct with the ray emanating from camera to its location. In

the camera centered WCS, this can be written as

V(p,n1,n2|θ) = 1{mins=1,2〈θ◦p,θ◦ns〉<0}. (6)

An upper bound on V over the range of poses, is given by
maxθ∈Θ 1{mins=1,2〈θ◦p,θ◦ns〉<0} = 1{mins,θ〈θ◦p,θ◦ns〉<0}.
With θ ◦p = R(a, b, c)p+ t(d) and θ ◦ns = R(a, b, c)ns,

the inner product inside the indicator becomes p�ns +
t(d)�R(a, b, c)ns. Letting vs denote the lower bound on
the z-components of {R(a, b, c)ns : (a, b, c) ∈ A×B×C},
which can be found by the bounding scheme in (i) for 3D lo-

cations, and noting that t(d) = (0, 0, d)�, the upper bound
on visibility is given by

V(p,n1,n2|Θ) = 1{mins=1,2(p�ns+min(dvs,dvs))<0}. (7)

(iv) Upper bound on qHOG scores. Let B(p, e|Θ) denote
the sub-box of the qHOG domain, specified by the bounds

{i, i, j, j, k, k} on the spatio-angular projection of the prim-
itive, obtained in step (ii). Then, an upper bound on qHOG

scores is given byH(p, e|Θ) = max{H(i, j, k) : (i, j, k) ∈
B(p, e|Θ)}. Computing H in a naive way by scanning its

entries within B will take O(|B|) time. But, depending on
the bin resolution, and the size of the evaluated pose range

Θ, |B| can be as large as the whole qHOG domain, espe-
cially in the early phases of the BB algorithm. Nonetheless,

by exploiting the L-level quantization of H, we can com-
pute its upper bound with a much smaller cost using integral

images. Note that, in our case, we are interested inH’s max-
imum value within B rather than its sum over B. Thus, we
extract integral images not in the usual way, namely once

for the whole histogram, but separately for each of its quan-

tization levels. In particular, letting hl(B) denote the lth-
channel integral image of H over B, the sought after upper
bound on qHOG scores is found by

H(p, e|Θ) = max
l∈{1,...,L}

l × 1{hl(B)>0}, (8)

which is the largest level l∗, at which hl∗(B) is nonzero.
That would mean an entry of H with value l∗ was indeed
present inside B, but there was none greater than it. As a
result, bounds on the qHOG scores of each primitive can

be computed in less than O(L) time. Besides, this con-
stitutes the only bound computation needed online during

inference, once the hierarchy of pose partitions is fixed a

priori, and the corresponding visibility bounds and B-boxes
in the feature domain are precomputed using steps (i)-(iii).
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Figure 3: Comparison of our method with the state-of-the-

art. Top: Diagonal elements (in %) of confusion matrix on

Caltech dataset [20]. Bottom: Histogram of absolute errors

in azimuth angles on the Weizmann dateset [8]
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Figure 4: Confusion matrices (in %) of pose estimation.

Top-Left: On Caltech data [20] with L = 2 quantization
levels in qHOG. Top-Right: with L = 50. Bottom-Left:
Confusion matrix of [24] on PASCAL VOC 2006 car data.

Bottom-Right: Our results on the same dataset.

5. Experiments
To show the effectiveness of our approach, we built a

3D model for sedan cars containing a total of M = 139
edge primitives (see Figure 1), and experimented it for de-

tection (localization) and pose estimation on the following

publicly available data: (i) PASCAL VOC 2006 cars, (i) the

Caltech car dataset of [20], and (iii) Weizmann car dataset

of [8]. The PASCAL dataset contains car images roughly

in four different views, namely front (13 images), back (94

images), left (78 images) and right (64 images), where we

used test images, with only one car instance in the scene.

The Caltech data includes 10 sets of car images, each set

containing 48 images in three different scales, two different

heights, and eight different azimuth angles that are roughly

multiples of 45 degrees (i.e., front, back, front-left, back-
right views and so on) labeled by A1 to A8. The Weizmann

dataset on the other hand, has 22 image sets, each contain-

ing approximately 70 images with real valued ground truth

labels for both azimuth and elevation angles, which enables

us to assess error statistics on the estimated pose. We ex-

perimented with different levels of quantization L applied
to HOG features. L = 2 corresponds to a binary valued
qHOG, where the upper bound for each primitive takes con-

stant time to compute. As L is increased to 50, the average
accuracy of the approach increases modestly (e.g., from an
average performance of 69% to 73% on Caltech dataset).

As can be seen from Figures 4 and 3, the most significant

pose confusion occurs between symmetric views of back

(A1) and front (A5) of the car, which is expected, since

our approach exclusively relies on shape information rather

than appearance. As observed on Caltech data, pose es-

timation errors also tend to occur more frequently for far

objects, which is probably due to our HOG features becom-

ing too coarse to be discriminative in those cases. Inference

takes as low as 0.5 seconds with L = 2, but it can go up to
at most 7 seconds with L = 50 (These times are obtained
with an unoptimized MATLAB code on an i7-3520M CPU

at 2.90GHz). We compared our pose estimations on each

dataset (see Figure 5 for example results) with the state of

the art. On PASCAL data, we performed significantly bet-

ter than the compared work by [24] (see Figure 4). On Cal-

tech data, we achieved on the average a better pose estima-

tion than most of the recent methods, except for [17] and

[8] (see Figure 3-top), whereas, due to our explicit model

fitting approach, our detection (localization) results, which

are quantified by the standard 50% VOC overlap criterion,

are relatively more accurate than the literature (see Figure

5-left). On Weizmann data, we compared our method with

the publishers of the dataset [8], where we report the dis-

tribution of absolute error in the azimuth angle (see Figure

3-bottom). Although, we managed to detect significantly

more cars within 10 degrees of precision, our erroneous es-

timations can be slightly more off than [8] with a median

error of 23.2◦. Given our promising results, it should also
be noted that (i) We did not do any training on any of the

datasets, nor on real images, as other work do (e.g., in Cal-
tech data, the standard approach is to use first 5 of the total

10 car collections for training, and the last 5 for testing. In

that aspect, we report there our results on twice as many

examples), and (ii) All of the compared approaches heav-
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Figure 5: Localization results. Left: precision-recall curves

of object detection in Caltech dataset. Right: example de-

tections on PASCAL (first column), Caltech (second col-

umn), and Weizmann (third column) datasets. Models un-

der the estimated pose are overlayed to the input image,

where only visible edges (identified by (6)) are shown.

ily rely on discriminative training on viewpoint-dependent

appearance information of individual object parts, whereas

our method almost solely relies on shape (only a few prim-

itives in the front and back of our 3D car model are at-

tributable to texture boundaries between headlights and the

car body). Therefore, it is expected that our approach lacks

some important discriminative power due to appearance.

6. Conclusion
In this paper, we presented a new and computation-

ally very efficient approach for object localization and fine

grained pose estimation. Our method uses an explicit 3D

wireframe model of the category of interest, which is gener-

ated from blueprint sketches. For pose estimation, model’s

edge primitives are matched to the HOG pattern on the input

image, where optimization is achieved very rapidly (with

costs as low as half a second) by a BB algorithm formu-

lated over the 6D pose space. We achieved performances

comparable to the state of the art as demonstrated with ex-

periments in three publicly available datasets on car objects.

As a future work, we intend to include to our 3D model, ad-

ditional primitives with attributes like color or flatness of

intensity etc, to improve performance. Another important

extension is to use our blueprint extracted model as an ini-

tial template to guide model learning from actual images.
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