
 

 
Abstract 

 
This paper presents improved automatic moving target 

detection and tracking framework that is suitable for UAV 
imagery. The framework is comprised of motion 
compensation phase to detect moving targets from a 
moving camera, target state estimation with Kalman filter, 
and overlap-rate-based data association. Finally, P-N 
learning is used to maintain target appearance by utilizing 
novel structural constraints to select positive and negative 
samples, where data association decisions are used as 
positive (P) constraints. After learning target appearance, 
a cascaded classifier is employed to detect the target in 
case of association failure. The proposed framework 
enables to recapture targets after being out of camera 
field of view and helps discriminating between targets with 
similar appearance while alleviating drift problems. 
Experimental results obtained with publicly available 
DARPA aerial datasets demonstrate that the proposed 
tracker with automatic detection feedback achieves better 
recall and average overlap than existing manually-
initialized trackers. 
 

1. Introduction 
Unmanned Aerial Vehicles (UAVs) are becoming 

increasingly vital for a variety of applications in urban 
and non-urban settings such as aerial surveillance 
/reconnaissance, search and rescue, traffic 
monitoring, to name a few. In order to achieve the goal 
of autonomous UAV operation, algorithms for automatic 
target detection and tracking are deployed on aerial 
platforms. Nevertheless, processing of UAV imagery is 
challenging due to several factors such as rapid camera 
motion and low resolution images captured from high 
altitude vehicles making it difficult to discriminate similar 
targets. Additional challenges stem from the fact that 
targets may undergo significant appearance changes and 
they can also go in and out of camera field of view. 

Plethora of work has been conducted specifically on 
target detection and tracking in UAV imagery. In 
[8][9][10][11][12] motion compensation was used to 

separate target motion from scene motion using image 
registration. In [14] a particle filter was used for target 
tracking to estimate the state of a tracked target. Instead of 
manual initialization of the targets to be tracked, in[12] an 
automatic detection of moving targets was presented. It 
was followed by applying a Kalman filter to track each 
target. In [13] an adaptive tracker for manually labeled 
targets was used to select the most discriminative features 
from color and shape-texture cues.   

Further work on target tracking not concerned with 
aerial imagery can also be found in the literature. For 
instance, the basic mean shift technique [27] is mainly 
based on a color model and fails with significant 
appearance changes due illumination or viewpoint 
changes. In [26], two approaches are introduced for 
selecting discriminative features online: the variance ratio 
between foreground and background classes and the peak 
difference. The former is used to rank the features and 
fails with cluttered environments. The latter favors 
features that minimize the effect of distraction due to 
clutter. In [28], a static model is used to represent  the 
object where its patch is represented as multiple image 
fragments. It is robust in case of partial occlusions, but 
doesn't learn the target's appearance. 

Some of the challenges in the processing of aerial 
imagery include rapid camera motion, target going out of 
the camera field of view, and targets with similar 
appearance that are difficult to discriminate. To solve the 
aforementioned problems, techniques for learning target 
appearance throughout the aerial video are used. Semi-
supervised learning techniques are one family of 
algorithms that utilize both labeled and unlabeled data to 
accommodate changes in target appearance. In self 
learning [1][5][6][7][29], an initial classifier is trained 
using labeled data, then evaluated on unlabeled data and 
the most confident examples are augmented to the training 
set of the classifier. In [29], an online semi-supervised 
learning algorithm was presented and it was observed that 
the performance got better when another criterion was 
used independent on the classifier confidence like the PN 
constraints introduced later. In [30] multiple instance 
learning(MIL) was introduced where the idea was to 
present the examples as bags instead of instances. Still, the 
update strategy caused tracker drift in some cases. In 
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[2][4], P-N Learning is introduced which is an approach 
for utilizing the structure in the unlabeled data was 
presented. This work is the main inspiration for the 
proposed framework. It used positive and negative 
constraints to restrict the labeling of unlabeled examples. 
In this case, the positive constraint is the one used to 
identify samples labeled wrongly as negative while the 
negative constraint identified samples labeled wrongly as 
positive. The constraints used were based on the median 
flow tracker [3], where the positive constraint required all 
patches close to the target's trajectory to be positive. But, 
as will be shown in the results section, this caused drift 
issues. It was suggested in [4] to use motion detection 
techniques to enhance the performance of the tracker. 

This paper proposes automatic moving target detection 
and tracking framework as an extension on our previous 
work in[15][16]. The proposed extension uses novel P-N 
structural constraints extracted from efficient overlap-
rate-based data association [12] are used to maintain 
target appearance where data association decisions are 
used as positive (P) constraints. This enables the tracker to 
recapture the target after being out of the camera field-of-
view for several consecutive frames. The tracker is able to 
discriminate between nearby targets with similar 
appearances. The performance of the framework 
supersedes the original P-N algorithm [2] and alleviates 
the drift issues by using automatic feedback from moving 
target detection. Furthermore, compared to existing target 
tracking approaches that are adaptive to the target's 
appearance, such as in [13], the proposed framework 
provides better performance with experiments applied to 
the DARPA datasets where the former failed in partial 
occlusions and in discriminating similar targets. The paper 
is organized as follows: Section 2 provides an overview of 
the framework architecture, Section 3 describes the target 
detection phase, Section 4 discusses target tracking and 
data association, and Section 5 describes the P-N learning 
approach and the newly developed constraints. Section 6 
presents experimental results obtained while Section 7 
concludes the paper. 

2. Framework Architecture 
 The steps involved in the proposed moving target 

detection and tracking framework are as follows: 
(1)moving target detection (2)overlap-rate based data 
association, (3)Kalman tracking, (4)target localization 
using cascaded classifier comprised of patch variance, 
ensemble classifier and Parzen window, and (5)learning 
target appearance using P-N learning. The framework 
combines both detection and tracking of moving targets 
for improved accuracy. Figure 1 illustrates the architecture 
of the framework. 

 

3. Moving Target Detection 
The first phase in the framework detects moving targets 

by clustering the outlier features that don't conform to 
scene motion. The output clusters represent potential 
targets that have to be checked first for false positives. The 
details of the steps of the proposed detection algorithm are 
discussed below. 

3.1. Homography Computation 
First step is to extract FAST features[17], which is 

performed on two stages. First, the segment criterion test 
is performed, which searches for candidate corners. A 
candidate corner has neighboring pixels, which are 
brighter or darker than itself above a certain threshold. 
That's followed by computing decision trees to classify 
corners in a computationally efficient manner. Then 
features correspondences are calculated using Lucas 
Kanade optical flow[18]. The motion between consecutive 
frames is determined to be projective transformation, thus 
represented by a 2D homography matrix. The Least 
Median Square Estimator (LMedS) algorithm[19] is used 
to estimate the coefficients of the homography while 
rejecting outliers.  

LMedS is used rather than RANSAC which is another 
parameter estimation method, because it requires a fixed 
threshold to determine the inliers. In LMedS the only 
condition is to have at least half of the data as inliers. That 
is provided in aerial imagery, in which most of the scene is 
background. Instead the LMedS algorithm uses a standard 
deviation estimate to reject outliers, which is computed in 
equation 1, where M is the minimum median of squared 
residuals and n is the number of corners. � � �����	 
� � �
��� ��            (1) 

Kalman Tracker 

Moving Target Detection 

Data Association Object 

Cascaded Classifier 

Patch 
Variance 

Ensemble 
Classifier 

Parzen 
Windo

Update 
P-expert

Predict 

Correct

 

NA/ Merge/ 
Split 

Predict 

P-
N

 E
xp

er
ts

  

Select PN samples and 
Train the classifier  

Tracked Targets 

Figure 1: Block Diagram of target detection and tracking famework 

587587



 

3.2. Outliers Clustering 
Instead of applying image registration as in[8][10], 

outliers detected from the previous step are clustered and 
used directly as the potential targets. Thus, the proposed 
work avoids registration errors. The clustering approach 
used is Density-Based Spatial Clustering (DBSCAN) 
algorithm [20]. It doesn't need the number of clusters as 
input, works real-time on large data and is able to estimate 
clusters of arbitrary shapes. The algorithm's input is the 
search area to look for cluster members, and the minimum 
number of points constituting a cluster. The clusters 
produced from the previous stage are potential targets and 
are further filtered. As in [12] those potential targets are 
checked for track persistency over certain number of 
frames. To ensure the rejection of false positives due to 
false matches or motion estimation errors. The output 
clusters are shown in Figure 2. 

 

 
   Figure 2: Clustered outliers detected from LMedS, redpoints indicate 
all corners detected with very low threshold. 
 

4. Target Tracking 
4.1. Overlap-Rate-Based Data Association  

The main task of the data association stage is to 
correlate the detected targets to the previous tracks. There 
exist different approaches, like the simple one-to-one data 
association which assumes that one track can correlate to 
only one detection, which fails in split and merge cases to 
be explained. In merge case, two cars are near each other 
and detected as only one cluster, the association technique 
should identify that this is a merge. In split case, when a 
single tracked target is detected as two clusters, the 
association technique should also identify this as split. The 
data association technique used is the overlap-rate based 
data association mentioned in [12]. Based on the 
intersection between detections and previous tracks, an 
association flag is determined. The flag is either 'Object', 
'NA', 'Split', or 'Merge'. 'NA' flag means that no 
association is established, this can occur if a new target 
entered the scene. In case of no association to previous 
tracks, a cascaded classifier is utilized to search for the 
target. This work is further explained in the P-N Learning 
section. In Algorithm 1, a pseudo-code for the algorithm is 

presented. The two important ratios to determine the flags �� and �� are defined as follows:  
1) ����The ratio between the area of intersection and 

the area of the detection. 
2) ����The ratio between the area of intersection and 

the area of the track. 

4.2. Kalman Filter 
Kalman filter [21] is used to model the state of the 

target, its position and velocity. It is comprised of two 
stages prediction and correction. In case of 'Object data 
association, the measurement is used in the Kalman 
correction stage. Otherwise, the predicted location is used 
within a cascaded classifier to search for the target. This 
classifier is explained in details in the next section. The 
Kalman is initialized with the detected targets' centroids. 
In[12] the matrices used in the Kalman filter are 
mentioned. The process and measurement noise W and V 
are assumed to be Gaussian noise with constant variances 
equals 0.5 and the initial estimation error covariance is set 
to zero.  

 

 

5. Learning Target Appearance 
The proposed framework maintains target appearance 

throughout the video sequence by using semi-supervised 
P-N learning [2] algorithm. This module learns a classifier 
from labeled data, which are the patches of detected 
moving targets, and then uses the unlabeled data to 
bootstrap its performance. This process creates a learned 
database of positive and negative samples to be used for 
robust target tracking.  

Algorithm 1: 
Foreach track T: 
 Foreach  detection D: 
  Calculate ��, �� 
  IF �� � �� AND �� � �� �     

Assoc = “NA” 
  ELSEIF �� � �� AND �� � �� �    

Assoc = “Split”  
        ELSEIF �� � �� AND �� � �� �    

Assoc = “Merge” 
        ELSEIF �� � �� AND �� � �� �    

Assoc = “Object” 
 End 
 
 IF Assoc == “Object” 
  Update P-N Learning Database 
  Update Kalman 
 ELSEIF Assoc == “Merge” || “Split” || “NA” 
  Predict Kalman 
  Search for target using P-N Learning 
End 
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5.1. P-N Learning 
P-N learning is similar to self learning, which is one of 

the oldest approaches in semi-supervised learning. The 
main difference between them is that self learning uses the 
most confident examples from unlabeled data to augment 
the training data iteratively. P-N learning, on the other 
hand, uses defined constraints to select examples from the 
unlabeled data to augment the training set. Given 
examples x and labels y, the set of labeled data is called 
L={(x, y)} and the set of unlabeled data is called X. The 
task of the P-N learning is to learn a classifier f from 
labeled data L and bootstrap it with unlabeled data X, to 
estimate classifier parameters �. The bootstrapping is done 
iteratively; in iteration k the procedure is as follows: 

1) Compute labels  !" � #$%!&'"�() for all%!* X. 
2) P-N experts identify the incorrect labels, where 

P-expert identifies false negatives and labels 
them as positive +,$-) while N-expert identifies 
false positives and labels them as negative +�$-). 

3) Augment the training set with +,$-) .+/�+�$-)0 
then retrain the classifier to estimate '" .  

 
Figure 3 shows the procedure of the P-N Learning as a 

semi-supervised technique. The task of target tracking 
using P-N learning, utilizes warped patches of the moving 
detected target, which are rotated and scaled versions of 
the detected target with increments set as parameter to the 
algorithm. And those warped patches are used first time as 
the labeled set L.  Then with each image frame, a sliding 
window approach [24] is used, where the input image is 
scanned by a window of various scales. Then each 
window (patch) is considered as an unlabeled example %1, 
and passed to a cascaded classifier to assign label y as 
object or non-object. The cascaded classifier used has 
three stages to enable the early rejection of non-object 
patches. The stages are as follows: patch variance, 
ensemble classifier, Parzen window. In the patch variance 
stage, patches with gray-level variance less than half the 
variance of the original patch are rejected. 

 In the ensemble classifier, a number of base classifiers 
are used [22][23] where each one performs pixel 
comparisons. Initially the locations of pixel comparisons 
are randomly generated as a priori to the classifier. Then a 
class label is assigned to the patch according to the 
average of posteriors of the base classifiers. Subsequently, 
it is iteratively augmented with unlabeled data according 
to the predefined structural constraints explained in the 
next section. In the last stage, Parzen window is used to 
classify all the patches within fixed range from the 
predicted Kalman centroid as object. If no detection is 
finally labeled as object, a simple Lucas-Kanade flow is 
computed for a small grid of points around the centroid to 
determine the target location. 

5.2. Novel P-N Constraints 
In order to understand the nature of P-N structural 

constraints, structured data are defined first. Structured 
data are data with dependant labels. For example, in the 
case of target tracking by detection, a trajectory for the 
target is to be found and the patches that are close to this 
trajectory are labeled object, while far patches are labeled 
non-object. This structure within the data is utilized using 
the P-N constraints. The positive (P) and negative (N) 
constraints are used to verify the labels assigned to the 
examples with the classifier, and after being corrected are 
added to the training set. In [2] a proof of convergence of 
the classifier's error was shown depending on equation (2) 
where the state vector %$-) � � 23$-)�4$-)5�  contains the 
false positives 3$-) and false negatives 4$-). It was 
proved that if the Eigen values of M were less than 1, it 
will converge. The transition matrix M in equation (3) 
contains four values6,, �,, 6�, �� explained as follows: 

1)7,: P-precision, number of correct positive examples 
divided by total number of samples output by P-
constraint. 
2)�,: P-recall, number of correct positive examples 
divided by number of false negatives. 
3)7�: N-precision, number of correct negative 
examples divided by number of all examples output by 
N-constraint. 
4)��: N-recall, number of correct negative examples 
divided by total number of false positives. 
 %$- � �) � �� %$-)             (2) 

 

� �� 8 � 9��� $(�:;):; �,
$(�:<):< �� � 9��, =         (3) 

 
Novel P-N constraints are used in the proposed 
framework. The positive (P) constraint utilizes the 
temporal structure; i.e. it assumes that the target moves 
along a trajectory. In this case, the data association 
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decision, which relates the moving target detections to the 
targets' tracks, is used as the (P) constraint. When an 
association between moving target detection and an old 
track is established as 'Object', it requires that patches with 
high overlap with that detection are positive. The negative 
(N) constraint utilizes the spatial structure that assumes 
that the object can appear in only one location. Patches 
that are far from the target's trajectory and were labeled 
wrongly as positive are corrected. In Figure 4 the positive 
and negative samples are shown. 

6. Results and Discussion 
This section presents quantitative and qualitative 

analysis of the proposed framework in comparison with 
the work in literature. The datasets used are the DARPA 
VIVID datasets [25] which are aerial datasets collected 
with different challenging scenarios. Eglin1 and Eglin 3 
both contain illumination changes of the target. Eglin 1 
contains targets going out of the camera field of view and 
in again in consecutive times. Eglin 2 contains rapid 
camera panning. Both Eglin 2 and Eglin 3 demonstrate the 
challenging scenario of two convoys running pass each 
other with similar targets partially occluding each other. 
Finally, the Redteam dataset has continuous viewpoint and 
target's appearance change. The first section shows the 
qualitative analysis of the proposed work compared to the 
TLD [2] framework to highlight the effect of the newly 
introduced P-N constraints.  

 

 
Figure 4: The two red rectangles resemble potential 
detections. The red dot indicates the predicted Kalman 
centroid, the positive and negative samples are insets on right 
and left of the image, respectively. 

 
The second section shows the quantitative analysis 

where the proposed framework is compared to the work in 
[13] which reports on the performance of 3 algorithms: the 
basic meanshift tracker [27], the variance ratio [26], and 
the peak difference [26]. Our work is also compared 

against Fragtrack [28], Online Semi-supervised Boosting 
(SemiBoost) [29], Multiple Instance Learning (MIL)[30], 
and the Tracking-Learning-Detection framework (TLD) 
[2][4]. As well as comparison with Moving Target 
Detection (MTD)[15][16] which is similar to this 
framework but without utilizing P-N structural constraints. 
All trackers were initialized with manual labels for the 
targets, except for[16] and the proposed work where both 
were initialized by automatic target detection. Finally, last 
section shows the ability of the framework to recapture the 
target. 

6.1. Qualitative Analysis 
In Figure 6, qualitative analysis comparing both the 

proposed work and TLD [2] is presented. The frames 
selected from all datasets are to manifest the challenging 
scenarios. In Eglin 1 dataset top row in Figure 6, the 
scenario of an illumination change occurs and the target is 
rotating. TLD shows low overlap because of its 
dependence on the median flow tracker in the PN 
constraints. In Eglin 2 dataset second row of Figure 6, 
both trackers succeed in discriminating similar targets 
from each other. But all other trackers as will be shown in 
the quantitative analysis except the adaptive one fails in 
this scenario. In the third row in Figure 6 Eglin 3, both 
trackers succeed in tracking the target in case of the partial 
occlusion scenario, while all other trackers failed in it. But 
TLD showed low overlap with illumination changes on the 
target in the last frame. Finally, in Redteam dataset last 
row in Figure 6, it's obvious that TLD drifted with the 
shadow of the target. This is due to again the PN 
constraints used depending on the median flow tracker. It's 
also shown in the last frame that TLD had already drifted 
and wasn't able to recover. While the proposed work 
succeeded again in partial occlusion scenario. 

6.2. Quantitative Results 
In this section quantitative comparisons between the 

proposed framework and existing techniques are presented 
in Table 2 and Table 3. Two metrics are used for the 
evaluation, the recall and the average overlap. The recall is 
the number of frames from the dataset tracked before drift, 
i.e. when no overlap occurs between the target and ground 
truth. The average overlap is the percentage of the 
intersection between the target and ground truth with 
respect to the ground truth area [13]. Note that the overlap 
is only measured on the initial frames till the first time the 
tracker loses the target. As demonstrated in the recall 
results in Table 2, the proposed framework alleviates the 
drift problem that occurs with the TLD [2] framework. 
This is due to the fact that the proposed framework uses 
the feedback from the moving target detection unlike TLD 
that uses the median flow tracker. The median flow tracker 
main weakness is that it drifts with the background points 
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as the target undergoes scale changes. Furthermore, it 
overcomes the deficiency of the adaptive tracker [13] in 
the Eglin3 dataset that happened when the target was 
partially occluded with another car. While the proposed 
work succeeded because of using the predicted Kalman 
location in the cascaded classifier.  

Table 3 shows the results of the average overlap metric 
where it can be seen that the proposed framework 
supersedes the other trackers. In case of both Eglin 1and 
Redteam it superseded with 25 % the best approach from 
among the techniques that achieved recall of 1, without 
including MTD which is our previous work. In Eglin 3, 
the variance ratio [26] and the adaptive tracker [13] 
achieved higher overlap in case of the Eglin 3 dataset, 
however both have very low recall. Both tracked the target 
to the first 12% and 20% of the dataset, respectively, and 
then lost the target. So their overlap is measured on this 
small percentage. While the proposed work achieved best 
overlap among approaches with 100% recall [2]. In case of 
Eglin 2, the only tracker to have reported better is the 
adaptive tracker [17] with 100% recall. However, this is 
due to the fact that the target's first initialization was 
manual, whereas the target initialization used in the 
proposed work is from the automatic detection phase. That 
is why when the target is not perfectly segmented, the 
tracker is affected and the results give lower overlap. So 
the deficiency occurred from the detection phase not from 
the proposed tracker. 

Our previous work MTD without using PN constraints 
failed in Eglin 2 and Eglin 3 due to its simple tracker. 
Finally, to test that the novel P-N constraints presented 
cause the classifier's error to converge to zero, the four 
values 6,0 �,0 6�0 �� are calculated for the Eglin 1 and 
Redteam datasets. The results shown in Table 1 
demonstrate that the Eigen values are less than one which 
proves that the PN constraints will cause convergence. 
Although the Eigen values in Eglin 3 are high, it's worth 
noting that the ensemble classifier is followed by Parzen 
window stage to reject false positives.  

 6,0 �, 6�0 �� >(, >? 
Eglin 1 0.99, 0.89 0.78, 0.68 @�AA, @�� 
Eglin 3 0.95, 0.185 0.9, 0.02 0.98, 0.8 

Table 1:PN Constraints Evaluation 

6.3. Recapture Target out/in Field of View: 
One of the main contributions of learning the target's 

appearance is the ability to recapture the target after going 
out of the field of view. In the MTD framework[16] when 
the target went out of field-of-view and in again, it was 
identified as a new target. But since the proposed approach 
uses the novel P-N constraints discussed, the classifier is 
able to maintain a set of positive samples for the target. 
Then the approach applies a sliding window over the 
whole image with different scales. Those windows 
(patches) are passed to the classifier to identify and 
redetect the target. In Figure 5, an example scenario is 
shown for one of the targets, marked with the dark blue 
bounding box, going twice out of the camera field of view 
and in again. In frame #368, the target is about to go out of 
camera field of view. Frame #450 shows that the target is 
still out of view for about 100 frames. The target is 
recaptured when it entered the field of view again as 
shown in frame #573. The target disappears in frame #658 
occurs, and recaptured again in frame #730. 

7. Conclusions 
In this paper, we introduced novel P-N constraints using 

the data association decision as structural constraints. 
Based on the assumption that unlabeled data are 
structured, meaning that their labels are dependant. The 
positive and negative constraints are used to control the 
labeling of the data and bootstrap the performance of the 
classifier. Those constraints were utilized within target 
detection and tracking framework for UAV imagery, and 
tested on the publicly available DARPA datasets. The 
experiments were conducted among different state of the 
art trackers. The quantitative results showed improvement 
in both recall and average overlap in the proposed work. 
Also the framework introduced had additive advantages 
over the trackers compared to. The ability to recapture the 
target after being out of the field of view and to 
discriminate similar targets was shown. 

 
 

 

 
 
 

Figure 5: Eglin 1 dataset, recapture target scenario, the target is colored in dark blue. Frames from left to right. Frame # 368, 450,  573, 
658, 730. 
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Figure 6: Qualitative Analysis, blue solid line is the proposed work, and the dashed line is the ouput of TLD. From top to bottom, the 
datasets presented are Eglin1, Eglin2, Eglin3, and Redteam. From left to right, Eglin1 Frame #301, 351, 1355. Eglin2 Frame # 301, 641, 
848. Eglin3 Frame # 50, 561, 2457. Redteam Frame # 613, 780, 523. 

 Means
hift 
[27] 

VarianceRatio[
26] 

PeakDiff[
26] 

FragTrack 
[28] 

SemiBoost 
[29] 

MIL 
[30] 

Adaptive 
Tracker 
[13] 

MTD
[16] 

TLD 
[2] 

Proposed 
Work 

Eglin1 0.19 0.29 1 1 0.55 1 1 1 1 1 
Eglin2 0.4 0.29 0.33 1 0.18 0.42 1 0.4 1 1 
Eglin3 0.22 0.12 0.12 0.89 0.13 0.2 0.22 0.1 1 1 
Redteam 0.85 1 1 0.79 0.1 1 1 1 0.57 1 
Table 2: Recall evaluation for the trackers on Eg1, Eg2, Eg3, and redteam. The proposed superseded TLD in Redteam. 
 Mean

Shift 
[27] 

VarianceRatio 
[26] 

PeakDiff 
[26] 

FragTrack 
[28] 

SemiBoost 
[29] 

MIL
[30] 

Adaptive 
Tracker 
[13] 

MTD 
[16] 

TLD 
[2] 

Proposed 
Work 

Eglin1 65.5 76.87 61.76 58.1 62.9 47.5 61.62 83.8 55.7 86.7 
Eglin2 91.09 85.19 90.54 76 90.2 82.5 93.32 74.9 54.9 83.1 
Eglin3 86.96 93.74 92.27 81.7 80.9 79.2 88.66 64.8 63.6 73.5 
Redteam 68.37 73.24 72.37 43.99 70.5 63.7 72.61 84.9 38.5 98.3 

Table 3: Average Overlap evaluation for the trackers on Eg1, Eg2, Eg3, and redteam datasets. The proposed work superseded other 
trackers in Eg1 and Redteam with a marginal difference. In Eg 3 although it appears that Variance Ratio got the highest overlap but it 
had very low recall 12% only of the dataset . 
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