
 
 

 
Abstract 

 
In this paper we propose a novel street scene semantic 

parsing framework, which takes advantage of 3D point 
clouds captured by a high-definition LiDAR laser scanner. 
Local 3D geometrical features extracted from subsets of 
point clouds are classified by trained boosted decision 
trees and then corresponding image segments are labeled 
with semantic classes e.g. buildings, road, sky etc. In 
contrast to existing image-based scene parsing 
approaches, the proposed 3D LiDAR point cloud based 
approach is robust to varying imaging conditions such as 
lighting and urban structures. The proposed method is 
evaluated both quantitatively and qualitatively on three 
challenging NAVTEQ True databases and robust scene 
parsing results are reported.   

1. Introduction 
Automatic urban scene parsing refers to the process of 
segmentation and classifying of objects of interest into 
predefined semantic labels such as “building”, “tree” or 
“road” etc. This task is often done with a fixed number of 
object categories, each of which requires a training model 
for classifying image segments (i.e. superpixels). While 
many techniques for 2D object recognition have been 
proposed, the accuracy of these systems is to some extent 
unsatisfactory because 2D image cues are sensitive to 
varying imaging conditions such as lighting, shadow etc.  

In this work, we propose a novel automatic scene 
parsing approach which takes advantage of 3D 
geometrical features derived from Light Detection And 
Ranging (LiDAR) point clouds. Mobile Terrestrial LiDAR 
(MTL) provides accurate, high-resolution 3D information 
(e.g. longitude, latitude, altitude) as well as reflectance 
properties of urban environment (see such an example 
mobile mapping system in figure 2). Since such 3D 
information is invariant to lighting and shadow, as a result, 
significantly more accurate parsing results are achieved by 
using 3D cues.  
 
 
 

1.1. Related Work 
Automatic scene parsing is a traditional computer vision 

problem. Many successful techniques have used single 2D 
image appearance information such as color, texture and 
shape [10,12,13]. By using just spatial cues such as 
surface orientation and vanishing points extracted from 
single images, Hoiem et al. [7] achieved considerably 
more robust results. A drawback of single image feature 
extraction techniques is that they are sensitive to different 
image capturing conditions such as lighting, camera 
viewpoint and scene structure. Recently, many efforts 
have been made to employ 3D scene features derived from 
single 2D images to achieve more accurate object 
recognition [2,5,16,17]. Especially, when the input data is 
a video sequence, 3D cues can be extracted using 
Structure From Motion (SFM) techniques [18]. Brostow et 
al. [2], proposed to employ sparse structure from motion 
point clouds to recover 3D depth information. And in [17] 
the authors used dense (per-pixel) depth map information 
recovered in a camera pose independent manner. The SFM 
technique adopted in these system [2,17], however, is 
known to be fragile in outdoor environment because of the 
difficulty in obtaining correct correspondence in cases of 
sparse texture or occlusion in the images.  

With the advancement of LiDAR sensors and Global 
Positioning Systems (GPS), large-scale, accurate and 
dense point cloud can be created and used for 3D scene 
parsing purpose. There has been a considerable amount of 
research in registering 2D images with 3D point clouds 
[8,14,15]. Furthermore, there are methods designed for 
registering point cloud to image using LiDAR intensity 
[1].  

1.2. Overview of the Proposed Framework 
Figure 1 shows the overview of the proposed scene 
parsing framework, in which images and LiDAR Point 
Cloud (PC) are the inputs of the processing pipeline and 
parsing results are image segments assigned with different 
class labels. The proposed parsing pipeline starts from 
aligning 3D LiDAR point cloud with 2D images. Input 
images are segmented into superpixels to reduce 
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computational complexity and to maintain sharp class 
boundaries. Each SuperPixel (SP) in 2D image is 
associated with a collection of LiDAR points, which is 
assumed to form a planar patch in 3D world. 3D features 
such as height above camera, surface planarity and 
reflectance strength are extracted for each patch. Using a 
trained classifier based on boosted decision trees, each 3D 
feature vector is then assigned with a semantic label such 
as “sky”, “road”, “building’’ etc. The offline training of 
the classifier is based on a set of 3D features, which are 
associated with manually labeled SPs in training images. 
Main contributions of this work are the following: 

1) We demonstrate that using 3D LiDAR point clouds 
for street view scene parsing improves parsing accuracies 
under challenging conditions such as varying lighting and 
urban structures. The improvement is achieved by 
circumventing error-prone 2D feature extraction and 
matching steps.    

2) We propose a novel method to register 3D point 
cloud to 2D image plane, and by doing so, occluded points 
from behind the buildings are removed in an efficient 
manner (see Section 2 for details). 

3) We propose to use a novel LiDAR point reflectance 
property, i.e. intensity feature for semantic scene parsing, 
and demonstrate that combining both LiDAR intensity 
feature and geometric features leads to more robust 
classification results. Consequently, classifiers trained in 
one type of city and weather condition is now possible to 
be applied to a different scene structure with high 
accuracy (See section 4). 

2. Generating 2D-3D Association 
Given a 3D points cloud and one 2D image with known 

viewing camera pose, the association module described in 
this section aims to establish correspondences between 
collections of 3D points and groups of 2D image pixels. In 
particular, every collection of 3D points is assumed to be 
sampled from a visible planar 3D object i.e. patch and 
corresponding 2D projections are confined within a 
homogenous region i.e. superpixels (SPs) of the image. 
While the 3D-2D projection between patches and SPs is 

straightforward for known geometrical configurations, it 
still remains a challenging task to deal with outlier 3D 
points in a computationally efficient manner.  We will 
illustrate in Section 2.2 a novel and simple outlier removal 
method, but let us first briefly review in Section 2.1 the SP 
segmentation technique adopted in our processing 
pipeline. 

2.1. Segmenting Images into Superpixels 
Without any prior knowledge about how image pixels 

should be grouped into semantic regions, one commonly 
used data driven approach segments the input image into 
homogeneous regions i.e. superpixels based on simple 
cues such as pixel colors and/or filter responses. The use 
of SPs improves the computational efficiency and 
increases the chance to preserve sharp boundaries between 
different segments. 

In our implementation, we adopt the geometric-flow 
based technique of Levinshtein [9] to segment images into 
SPs with roughly the same size. Sharp image edges are 
also well preserved by this method. For input images with 
dimensionality of 2032×2032 pixels, we set the initial 
number of SPs as 2500 for each image. See the first image 
in figure 3 as the example of SP segmentation results 

Figure 1: Overview of the proposed framework
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2.2. LiDAR Point cloud to Superpixel 
We first review how to project a 3D point on 2D image 

plane with known viewing camera pose, and then illustrate 
a method that associates a collection of 3D points with any 
given SP on 2D image.  
Given a viewing camera pose i.e. position and orientation, 
represented, respectively,  by T a 3×1 translation vector 
and R a 3×3 rotation matrix, and a 3D point M=[X,Y,Z]t,  
expressed in a Euclidean world coordinate system, then 
the 2D image projection mp= [u, v]t of the point M is given 
by  

��� = ����	�
���� � ���    (1) 

Where K is an upper triangular 3×3 matrix 

K=��� � ���� �� ���� �� � �    (2) 

where fx and fy are the focal length in the x and y directions 
respectively, x0 and y0 are the offsets with respect to the 
image axes, and ��� = [u,v,1]t and ��= [X,Y,Z,1]t are the 
homogeneous coordinates of mp and M. 

3D Light Detection And Ranging (LiDAR) point clouds 
are often measured in a geographic coordinate system (i.e. 
longitude, latitude, altitude), therefore, projecting a 3D 
LiDAR point on 2D image plane involves two more 
transformation steps, namely Geo-to-ECEF and ECEF-to-
NED. After these two transformations, 3D point in NED 
coordinate aligns to image plane by equation (2). Figure 3 
illustrates an overview of these transformations.    

Using the projection step in equation (2) and necessary 
transformation steps, we are able to identify those 3D 
points that are projected within a specific SP.  Since we 
assume there is only one dominant 3D patch that 
associates with the given SP, so outlier 3D points that are 
far from the patch should be removed.  In order to 
successfully remove outlier points, a plane-fitting method 
can be used e.g. as in [15]. However, such an outlier 

removal methods have to be repeatedly applied to every 
SP and turns out to be too computationally demanding for 
our application. In this paper, we instead propose a novel 
and simple method to remove outlier points for all SPs in 
one pass. The proposed method takes advantage of priori 
knowledge about urban scene environment and assumes 
that there are building facades along both sides of the 
street. While this assumption appears to be oversimplified, 
the method actually performs quite well with urban scenes 
in three different US and European cities as demonstrated 
in the experimental results. 

The essence of the method is to fit two hyperbolic 
curves to 3D points represented in a camera centered two-
dimensional Z-u plane (see Figure 4 top image). 3D points 
that are far from camera center and behind these two 
hyperbolic curves are deeded outliers and are removed. 
However, points with depth less than 50 meters (see red 
line) are kept because they play important roles to label 
road or other near objects.   

The derivation of hyperbolic curves in this Z-u plane is 
due to the normalization of homogeneous coordinates or 
simply: 

� � ����� � �������������������� � ����� � �� 
In this case the street width X is assumed constant, u is 

inversely related to the depth Z, and the collection of 
aligned points in the 3D world lies between two 
hyperbolic lines (black lines in figure 4) 

3. Semantic Parsing of Street Scene Images   
After the associating of the LiDAR point cloud with the 

image SPs, the processing pipeline proceeds to extracting 
3D features for different patches. At the offline training 
phase, these 3D features are used to train a boosted 
decision tree classifier. Detailed processing steps are 
elaborated below and the results are presented in section 
4.� 

 

Figure 3: 2D-3D association overview. 
. 
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3.1. Feature Extraction 
For each 3D patch, seven features are extracted to train 

the classifier. Among these seven features, Height above 
ground, surface normal, planarity, density and intensity 
are five camera pose independent features whereas 
horizontal distance to camera path and  depth to camera 
center are two features which are defined according to the 
camera location.  

Height above ground: Given a collection of 3D points 
with known geographic coordinates, the median height of 
all points is considered as the height feature of the patch. 
The height information is independent of camera pose and 
is calculated by measuring the distance between points and 
the road ground. In contrast to 3D point clouds 
reconstructed with SFM technique, the advantage of 
LiDAR point cloud is that we know the exact measure of 
points height and it is not necessary to use RANSAC 
method to estimate the ground plane, e.g. such as in [17].  

Horizontal distance to camera: Following [17], we 
compute the horizontal distance of the each patch to the 
camera as second geographical feature.  

Depth to camera: Depth information helps to 
distinguish objects, because in that case we can estimate 
the 3D spatial location of each patch. Although these three 
features represent geographical cues of each patch, they 
are not completely independent from vehicle location and 
as seen later when we change scene structure (training in 
one city and testing in another), the classifier performance 
is lower than when training and testing are performed on 
the same scene. 

Surface normal: Similar to [17], we also extract surface 
normal for each patch. But following [11], we adopt a 
more accurate method to compute the surface normal by 
fitting a plane to the 3D points in each patch. In our 
implementation we used RANSAC algorithm to remove 
outliers which may correspond to very "close" objects 
such as a pedestrian or vehicle [6]. 

Planarity: Patch planarity is defined as the average 
square distance of all 3D points from the best fitted plane 
computed by RANSAC algorithm. This feature is useful 
for distinguishing planar objects such as buildings form 
non planar ones such as trees.  

Density: Some objects such as road and sky, have lower 
density of point cloud as compared to others such as trees 
and vegetation. Therefore, the number of 3D points in a 
patch is used as a strong cue to distinguish different 
classes.  

Intensity: LiDAR systems provide not only positioning 
information but also reflectance property, referred to as 
intensity, of laser scanned objects. This intensity feature is 
used in our system, in combination with other features, to 

classify 3D points. More specifically, the Median intensity 
of points in each patch is used to train the classifier. 

3.2.  Classifier 
The Boosted decision tree [3] has demonstrated superior 

classification accuracy and robustness in many multi-class 
classification tasks. Acting as weaker learners, decision 
trees automatically select features that are relevant to the 
given classification problem. Given different weights of 
training samples, multiple trees are trained to minimize 
average classification errors. Subsequently, boosting is 
done by logistic regression version of Adaboost to achieve 
higher accuracy with multiple trees combined together. 

In our experiments, we boost 20 decision trees each of 
which has 10 leaf nodes. This parameter setting is similar 
to those in [7], but with slightly more leaf nodes since we 
have more classes to label. The number of training 
samples depends on different experimental settings, which 
are elaborated in Section 4. 

4. Experimental Results 
Extensive classification experiments have been 

performed using point clouds generated with stereo vision 
techniques [2,17]. Since no labeled dataset consisting of 
corresponding LiDAR point cloud was available, we 

Figure 4:  Removing occluded points. The top image shows 
3D LiDAR point cloud in NED system. The occluded points in 
the one bystreet are shown in a green circle. The Bottom image 
illustrates camera view of scene, occluded points in the bystreet 
located in the red square (which corresponding to red line in top 
image) will be deleted. 

3D LiDAR  
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Front View of the Scene 
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testing in Chicago (79 % global and 52 % class average 
accuracy) and vice versa (69% global, 42% class average). 
Comparing to other cross experiments, Chicago and 
Helsinki cross experiments represent best parsing accuracy 
because as discussed earlier there are more similar classes 
compared to Paris which contains major water in its scene.  

Applying SP based segmentation to relatively small 
classes such as pedestrian and sign-symbol often leads to 
insufficient number of training samples, and hence, low 
classification accuracies. The plot in Figure 6 illustrates 
the qualitative comparison between per class accuracy 
according to their distribution in our datasets. It should be 
noted that sky, building, road and tree were well 
recognized in the street scene (all are over 70%). On the 
other hand, cars and pedestrian have less than 10% 
accuracies because these classes occur very rarely in the 
test images. One possible remedy is to obtain the bounding 
boxes of these objects with a more suitable technique, e.g. 
part-based object detector [4].  

Our system takes advantage of geographical and 
intensity statistics information of LiDAR point clouds, 
which is not available for existing methods e.g. in [2,17]. 

  

Table 2:  Scene parsing statistical results, Right table shows confusion matrix for mixed classification.  
Right table compares global and class average accuracy in whole different experiments. 

Table 1: Confusion matrices for direct classification in Paris, Chicago and Helsinki 

Experiments\Results Global Accuracy Class average 
Accuracy 

Direct (Helsinki) 86 % 79 % 
Direct (Chicago) 93 % 67 % 

Direct (Paris) 85 % 65 % 

Mixed 88 % 59 % 
Cross (Helsinki-Chicago) 79 % 52 % 

Cross (Chicago-Helsinki) 69 % 42 % 

Cross (Helsinki-Paris) 59 % 36 % 

Cross (Paris-Helsinki) 64 % 41 % 

Cross (Chicago-Paris) 61 % 37 % 

Cross (Paris-Chicago) 68 % 45 % 
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Figure 6: Top plot compares the accuracy of mixed classification
based on distribution of existing data. Bottom bar graph shows the
impact of intensity feature in mixed training-testing experiment. 
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The bar chart in figure 6 shows that using intensity feature 
improves classification accuracies, to various extents, for 
objects e.g. building, car, and signs-symbol and 
pedestrian.   There also seems a discernible increase in its 
effectiveness as objects become closer to the laser scanner. 

5. Conclusions 
We have proposed a novel framework for semantic 
parsing of street view images based on 3D features 
derived from terrestrial LiDAR point cloud. During the 
offline training phase, geometrical features associated with 
3D patches are extracted and are used to train boosted 
decision trees classifier. For new input images, the same 
geometrical features are extracted and semantics labels are 
assigned to corresponding image regions. One noticeable 
advantage of our method is the robustness to different 
lighting condition, shadows and city landscape. 
Furthermore, by using intensity information from LiDAR 
data the robustness of classifier is increased for certain 
object classes. 

  Future work will focus on the combination of 
neighboring patches features, to improve the robustness 
and accuracy of the classification algorithms. 
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