
   

 

 

 

 

Abstract 
 

This paper presents a novel method for creating a 

frame, to be used as an overcomplete dictionary for the 

progressive compression of 3D mesh geometry.  The frame 

is computed from redundant linear combinations of the 

eigenvectors of a mesh Laplacian matrix, and atoms are 

selected by a Matching Pursuit algorithm.  Experimental 

results show that a sparser representation of a given mesh 

geometry can be obtained with the frame than by 

decomposition of the mesh geometry onto an orthogonal 

basis.  The proposed frame also has other desirable 

properties, including directionality and orientability of the 

atoms, and the ability to be applied directly to a manifold 

mesh with arbitrary topology and connectivity type. 

 

1. Introduction 

The raw data size of many 3D models created today for 

applications such as engineering design and 

manufacturing, architectural walkthroughs, biometrics, 

cultural heritage, entertainment, and e-commerce, often 

exceeds what can be stored or downloaded in a reasonable 

time by the users of these models.  This has created an 

essential need for efficient algorithms for 3D model 

compression.  Research on 3D model compression mainly 

started to take off in the mid- to late-90s, and has been 

heavily focused on the compression of triangular meshes 

as this is the most common representation for 3D objects.  

Traditionally, the research on mesh compression was on 

single-rate compression methods, where the entire 

geometry and connectivity are compressed, decompressed 

and rendered as a whole.  But with the rise in popularity of 

the Internet and the increasing needs of consumers to 

share and download large 3D models over low-bandwidth 

network links, the idea of progressive compression started 

to emerge.  Progressive compression allows a mesh to be 

transmitted and reconstructed progressively, from coarse 

to fine levels of detail, so that intermediate states of the 

model can be rendered while the data is still being 

received. 

The focus of early progressive compression techniques 

[1-3] was the compression of mesh connectivity 

information.  However, more recent algorithms [4-8] have 

striven to give priority to the compact encoding of the 

geometry data, because this often makes up a larger 

portion of the total mesh size than the connectivity data.  

Amongst these latter algorithms, the ones that seem to 

offer the best compression performance are those based on 

spectral analysis techniques borrowed from signal 

processing, namely the Fourier Transform [5] and the 

Wavelet Transform [6-8].  The fundamental assumption 

behind such techniques is that the input data can be 

represented as some sparse linear combination of atoms 

taken from a representative dictionary of atoms that 

constitute the new representation domain.  Traditionally, 

these dictionaries have been chosen to be orthogonal 

bases; however, the recent explosion of research into 

alternative signal representations has shown that 

overcomplete dictionaries, or frames [9], where the 

representative vectors are not necessarily linearly 

independent, may be able to offer even sparser 

representations than orthogonal bases can.   

In the field of 3D mesh compression, the idea of 

redundant representations has only recently started to 

emerge [10, 11].  The main difficulty in implementing a 

redundant representation system is currently the creation 

of a good overcomplete dictionary.  In this paper we 

attempt to move this research a step forward, by offering a 

new method for constructing a frame to use for 3D mesh 

geometry compression.  The results show that our frame 

indeed produces a sparser approximation of a given mesh 

geometry than the decomposition of the geometry on an 

orthogonal basis. 

Section 2 of this paper covers background information 

on sparse approximations from redundant dictionaries, and 

reviews previous work in this area relevant to this paper; 

Section 3 presents our proposed frame; Section 4 explains 

how we use the proposed frame to achieve progressive 

mesh geometry compression; Section 5 details the 

experimental procedure that we followed to evaluate our 

frame in the context of mesh geometry compression; 

Section 6 presents some key results of our investigation; 

Section 7 examines the benefits of the proposed frame as 

well as the areas that still need further work; and Section 8 

concludes the paper.      
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2. Sparse approximations from redundant 

dictionaries 

The goal of sparse approximations is to express a given 

signal of dimension   (belonging to an  -dimensional 

vector space   ) as a linear combination of a small 

number of vectors taken from a dictionary that is 

representative of that class of input signals.  The elements 

of the dictionary are typically unit-norm vectors called 

atoms [12].  The dictionary atoms may form a basis, or a 

frame, or neither, depending on their properties. 

The dictionary forms a basis if: (a) its atoms are all 

linearly independent (no atom in the dictionary can be 

represented by a linear combination of any of the other 

dictionary atoms), (b) the set of atoms is complete (the 

atoms in the dictionary can be used to represent any other 

vector that belongs to the same vector space), and (c) any 

other vector in the same vector space can be represented 

by a unique linear combination of the basis vectors.  In 

this sense, basis representations are non-redundant. 

  The redundant counterpart of a basis is called a frame 

[9].  Similarly to a basis, a frame is a representative set of 

vectors that span a given vector space.  The difference is 

that the vectors in a frame do not necessarily need to be 

linearly independent.  Thus for the same  -dimensional 

vector space   , the frame may contain   vectors, where 

   .  This makes a frame an overcomplete set of 

representative vectors for a given vector space, because 

some of the vectors in this set are redundant. 

Formally, a family of vectors           (where 

         ) in a Hilbert space   of dimension   (where 

   ) is said to be a frame for that vector space if there 

exist two constants        , such that for all   in 

 : 

 

 ‖ ‖  ∑|〈    〉|
 

   

  ‖ ‖  
(1) 

 

Here   and   are called the frame bounds.  If    , the 

frame becomes a tight frame and equation (1) becomes:   

 

∑|〈    〉|
 

   

  ‖ ‖  
(2) 

 

If all the frame vectors also have a norm of 1, the frame is 

called a unit-norm tight frame and the constant   gives the 

redundancy ratio.  Tight frames are convenient to use, 

because a tight frame and its dual are the same.  This 

means that the same frame can be used for analysis and 

synthesis of the input signal because        for all  , 

thus no inversion of the frame matrix is necessary.  

However, for more general frames, the frame and its dual 

are usually not the same, which means that a pseudo-

inversion of the frame matrix is necessary.  The solution 

for the pseudo-inverse is not unique and can be very time-

consuming for a high-dimensional frame matrix. 

The two main challenges of working with frames are: 

(i) the creation of a good frame, which can represent the 

input signal in a compact manner, and (ii) the method by 

which the “best” atoms are selected from this frame, in 

order to obtain the sparsest possible representation.  The 

following sub-sections review some of the most important 

work to date in these two areas, which is relevant to the 

work in this paper. 

2.1. Survey on existing overcomplete dictionaries 

The variety of dictionaries proposed in the literature for 

various applications so far have been created by using one 

of three methods [13]: (i) analytic dictionaries, created 

from a mathematical model of the data; (ii) dictionaries 

learned from a training set of the data; or (iii) a 

combination of the methods in (i) and (ii).  The work in 

this paper mainly fits under the umbrella of analytic 

dictionaries, and so the following literature review will be 

focused on that class of dictionaries only.   

 The overcomplete analytic dictionaries proposed to 

date have mainly been extensions of the well-known 

Wavelet Transform and have typically been formulated as 

tight frames.  The difference between the different frames 

is mainly in the “shape” of their atoms and their 

localization properties.  In [14], Candès and Donoho 

introduced tight frames made of curvelets, whose atoms 

are obtained by anisotropic dilations, rotations, and 

translations of a collection of unit-scale “oscillatory blobs” 

[14], which are localized in position, scale and orientation.  

This was extended to a 3D version in [15], where the 

curvelet atoms resemble flattened ellipsoids, and an 

alternative to the 2D curvelets was proposed in [16] as 

contourlets.  The contourlet atoms look similar to the 

curvelets, but are easier to compute and have been 

extended to a multi-dimensional version called surfacelets 

[17].  In [18], Le Pennec and Mallat introduced bandelets 

for sparse image representations, with a second version by 

Peyré and Mallat [10] being introduced soon after.  

Bandelets on an image are edge-like elements that are 

achieved by a 2D wavelet transform followed by a 

bandeletization.  Other analytic dictionaries that have been 

proposed, which follow different approaches to those 

described above, include mainly: the idea of merging two 

or more dictionaries to create mega-dictionaries [19]; the 

use of wavelet packets [20]; and forming unions of 

orthonormal bases [21].    

2.2. Survey on methods for selecting atoms from 

overcomplete dictionaries 

Selecting the “best” set of atoms from an overcomplete 

dictionary in order to obtain the sparsest possible 

approximation of the input signal is, in general, an NP-
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hard problem.  However, some good sub-optimal solutions 

have been proposed to date, which are solvable in 

polynomial time.  Amongst these solutions, the most 

widely-used include: Matching Pursuit (MP) [22], which 

iteratively decomposes a signal into a linear combination 

of dictionary atoms by greedily selecting the best-

matching atom at each iteration; Basis Pursuit (BP) [19], 

which starts with a representation of a signal in a basis and 

iteratively “improves” the basis by swapping out relatively 

insignificant atoms with new, more useful atoms; and 

Orthogonal Matching Pursuit (OMP) [23], which is 

similar to MP except that OMP updates all the coefficients 

extracted after each iteration by computing the orthogonal 

projection of the signal onto the set of atoms selected so 

far.  These algorithms have been designed for general 

overcomplete dictionaries, making them widely 

applicable. 

2.3. Survey on the use of redundant 

representations for 3D mesh compression 

In the context of compression of 3D mesh data, the idea 

of using redundant representations still appears to be very 

much in its infancy.  Indeed, we have only been able to 

find two papers [10, 11] that directly deal with this issue.  

In [10], the authors apply their bandelet frames to the 

compression of spherical geometry images [7] and normal 

maps of 3D mesh models.  In [11], the authors resample 

the input mesh onto a regular spherical grid, and 

decompose the resampled model onto a redundant 

dictionary of oriented and anisotropic atoms living on the 

sphere.  The redundant dictionary in [11] is created by 

applying translations, rotations and anisotropic scaling on 

two Gaussian generating functions on the sphere. 

While the redundant representations in [10] and [11] 

demonstrate promising compression results over some 

existing, non-redundant techniques, there still exist 

avenues for improvement, mainly: (i) both of these 

algorithms are limited to models that can be mapped well 

on the sphere; (ii) both of these methods change the input 

mesh connectivity, so they cannot recover the original 

connectivity at the end; and (iii) the redundant dictionaries 

presented in these papers have only been tested on a very 

few select models, with certain properties, and so the 

design of an optimal frame for sparse approximations of 

3D mesh geometry still remains an open problem.   

To this end, in this paper we present a new idea for the 

creation of a frame, for the purpose of achieving a sparse 

approximation of 3D mesh geometry.  Our objective here 

is not to demonstrate the creation of an optimal dictionary 

(indeed, that is an area that still needs much further work), 

but simply to (i) propose a new way of creating an 

overcomplete dictionary that can be used for 3D mesh 

geometry compression, and (ii) thereby confirm that 

redundant representations do indeed have promising 

capabilities for sparse approximations of 3D mesh data 

and should be researched further.  The details of the 

proposed frame are presented in the following section.  

3. The proposed algorithm for frame creation  

Our frame is created from redundant linear 

combinations of the eigenvectors of the mesh Laplacian 

matrix, and a sparse approximation of the input mesh 

geometry is then obtained by using a Matching Pursuit 

algorithm.  The procedure is outlined in the following sub-

sections.   

3.1. Basis creation 

Firstly, the basis for a given input mesh is computed as 

the set of eigenvectors of the combinatorial Laplacian 

matrix of the input mesh, similarly to the spectral 

decomposition algorithm of Karni and Gotsman [5].  The 

Laplacian               is computed from the mesh 

connectivity as: 

 

     , 

 

(3) 

where   is the       adjacency matrix of the input 

connectivity and   is the       matrix of vertex degrees 

(number of edges incident to each vertex), so that: 

 

(    )  {
                                                       
                                       

                                                         

 

 

(4) 

where          is the degree of the vertex  .  The resulting 

eigenvectors of   are orthogonal to each other and they are 

also normalized to have a length (norm) of 1, which makes 

this set an orthonormal basis for the input mesh.  The 

eigenvectors are ordered in ascending order of their 

corresponding eigenvalues, so that the eigenvectors at the 

lower end effectively represent the low-frequency basis 

vectors and the ones at the higher end represent the high-

frequency basis vectors.   

We chose to use the eigenvectors of the mesh Laplacian 

for several reasons: (i) The eigenvectors represent the 

curvature directions of all the independent curvatures 

(“frequencies”) making up the input mesh.  This means 

that they inherently have directionality and orientability, 

which are desirable properties in dictionary design [13]; 

(ii) The eigenvectors have a meaningful physical 

interpretation, which relates to the structure of the input 

model: they essentially represent the directions in which 

the mesh has been “stretched” to give it the shape it 

currently has, and the eigenvalues represent the amount of 

“stretch” in the associated eigenvector direction; (iii) The 

computation of the eigenvectors is independent of the 

input mesh geometry, which is useful when we wish to use 
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this dictionary for mesh geometry compression; (iv) The 

eigenvectors can be computed for a manifold mesh with 

arbitrary connectivity and topology type; (v) It has already 

been shown in [5] that decomposition of mesh geometry 

onto the eigenvector basis produces a sparse set of 

coefficients.  We wished to investigate if it was possible to 

improve this sparsity by extending the basis to a frame. 

3.2. Frame creation 

We create redundant dictionary vectors by computing 

different linear combinations of the eigenvectors in the 

basis described in section 3.1.  We do this by selecting a 

certain number of eigenvectors from the ordered 

eigenvector set (e.g., 2 eigenvectors in the simplest case) 

and computing every possible linear combination of these 

eigenvectors, using all the scalar multiplying values in the 

range [-0.9, 0.9] with a step size of 0.1 between successive 

values.  This range of scalars effectively represents all the 

possible coefficients that can be used in a linear 

combination of the vectors, when they have been 

quantized by rounding to a 1 decimal point precision.  We 

normalize each created redundant vector to have a norm of 

1 and store the normalized vector in the dictionary.  Each 

new group of eigenvectors is selected by shifting only 1 

place in the dictionary, so each group has an overlap with 

at least one of the eigenvectors of the previous group, e.g., 

when using pairs of eigenvectors, the second pair will 

consist of the second eigenvector used in the first pair and 

the next eigenvector in the list.  We continue this process 

until all the eigenvectors have been considered.  In the 

end, we have a frame that consists of the original 

eigenvectors of the input model and also the redundant 

vectors that have been created as linear combinations of 

these eigenvectors.  The size of the entire dictionary (the 

number of atoms inside) is then equal to: 

 

              , 

 

(5) 

where   is the number of original eigenvectors computed 

for a given input model with   vertices;   is the number of 

eigenvectors in a group that is used to create every new 

linear combination (e.g.,     when using pairs of 

eigenvectors); and   is the number of scalar values 

considered for creating linear combinations of 

eigenvectors (19 in our case).   

We chose to use the range [-0.9, 0.9] for the coefficient 

values, because we normalize all the dictionary atoms and 

the input vectors to have a length of 1, so any resulting 

inner product between an input vector and a dictionary 

atom will have a value between -1 and 1.  We exclude the 

values -1 and 1 from the range because, if an input vector 

has an inner product of -1 or 1 with a dictionary vector, 

this means that this input vector already only needs just 

that one dictionary vector to represent it. 

3.3. Matching pursuit for atom selection 

To select atoms from our frame, we implemented 

Mallat and Zhang’s Matching Pursuit (MP) algorithm 

[22].  We chose to use MP because it allows us to 

reconstruct our signal as a linear combination of the frame 

atoms, in an iterative manner, enabling us to easily apply 

our frame to the progressive compression of mesh 

geometry.  Since our frame is not tight (see section 2), we 

cannot simply use the same frame for analysis and 

synthesis of the input, and pseudo-inversion of this frame 

would be very time-consuming (and probably sub-

optimal) for large input models.  MP is attractive because 

it is able to rapidly capture the most important components 

of the input signal.  Furthermore, MP imposes very few 

restrictions on the dictionary construction, namely: (i) the 

dictionary must be at least complete for the input vector 

space; and (ii) the dictionary vectors should have unit 

norm.  Our frame satisfies both of these requirements. 

Formally, if the dictionary is defined as a family of 

vectors   {  }   
 in a Hilbert Space  , such that 

‖  ‖    and   spans  : For a given function     we 

can obtain an  -term linear expansion of   using MP, by 

successive approximations of     through orthogonal 

projections onto the elements of   [22]: 

 

  ∑〈       
〉

   

   

        

 

(6) 

where    is the residue of the Mth step of the algorithm 

and      .  At each iteration, the entire dictionary is 

searched to find the atom that has the largest absolute 

inner product with    .  For signals in finite-dimensional 

vector spaces, it has been shown [22] that the norm of the 

residues decays exponentially.  The rate of decay depends 

on how closely the dictionary atoms match the input 

signal. 

The authors in [22] claim that the largest possible 

dictionary   for representing a signal in a Hilbert space   

would be the set of all unit vectors in  , in which case the 

MP algorithm would converge in one iteration.  This is the 

same theory that (independently) motivated us to construct 

a frame by computing many possible linear combinations 

of the vectors of an existing basis for a given vector space.   

4. Using the proposed frame for progressive 

mesh geometry compression 

The progressive compression algorithm that we propose 

is focused on minimizing the amount of data that must be 

transmitted between two users in a network.  Because our 

focus is on mesh geometry compression, we assume that 

the connectivity will be compressed separately and sent to 

the decoder first.  The decoder can then use the 
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connectivity information to compute the basis and frame, 

as described in sections 3.1 and 3.2, respectively.  The 

encoder computes the basis and frame in the same way.  

The input mesh geometry in our compression algorithm is 

treated as three separate vectors, each corresponding to 

one set of coordinates, so that vector          , vector 

         , and vector          , with           
(where   is the number of vertices in the input mesh).  We 

transmit the norm of each of these vectors to the decoder.  

We then normalize each input vector to have unit norm: let 

us refer to these normalized vectors as  ̂,  ̂, and  ̂.  This is 

done so that when we are computing inner products 

between the input vectors and the dictionary atoms (which 

also have unit norm), the inner products will always be in 

the range [-1, 1].  This makes the inner products easier to 

interpret and compare, because they effectively represent a 

correlation value.  We pass each of the normalized 

geometry vectors to the Matching Pursuit algorithm 

separately, because the input model may have different 

curvature properties in the  ,  , and   directions.  We 

transmit the coefficients and indices of the unique atoms 

chosen by MP, to the decoder in a progressive manner, 

according to the magnitude of the coefficients (largest-

magnitude coefficients first).  The decoder progressively 

uses the decoded coefficients, together with the frame 

elements corresponding to the received atom indices, to 

reconstruct the input mesh geometry with an increasingly 

better accuracy.  Because the original geometry vectors 

are normalized to have unit norm at the encoder, and the 

best-matching dictionary atoms are found based on this, 

the geometry reconstructed from the received coefficients 

will not be immediately correct.  To correct this, each 

reconstructed vector is multiplied by the corresponding 

original vector norm, which was sent by the encoder. 

5. Experimental procedure 

The objective in our experiments was to determine 

whether the frame that we create for a given input mesh is 

capable of producing a sparser representation for this 

mesh’s geometry than the corresponding eigenvector basis 

can.  To obtain a fair comparison between the number of 

coefficients (and atoms) required by a basis-based 

reconstruction versus a frame-based reconstruction, we 

selected the “significant” dictionary atoms in the same 

way in each case, using an own implementation of the 

Matching Pursuit algorithm (see section 3.3).  For a basis-

based reconstruction, the “dictionary” that we passed to 

the MP process was just the original eigenvector set for 

the given input mesh.  For a frame-based reconstruction, 

the dictionary was the frame described in section 3.2, 

using firstly     (refer to equation (5)), then    , and 

finally    .  For each case, we let the MP process 

continue running until the norm of the residual vector 

dropped to a “very small number” (       is the value 

we used).  We did not quantize or entropy code the 

produced coefficients (nor the atom indices), because we 

wished to isolate the compression achieved just by 

considering the number of coefficients required for a 

certain reconstruction quality, rather than including the 

compression effects of quantization and entropy coding as 

well.  We then allowed the decoder to reconstruct the 

model progressively, building the mesh geometry up with 

one coefficient at a time.  During reconstruction, we 

measured the error between each new mesh approximation 

and the original mesh geometry, by using three different 

error metrics: the root mean square error (RMSE), the 

signal-to-noise ratio (SNR), and the Hausdorff distance 

(dH), and plotted a rate-distortion (R-D) curve using each 

of these metrics.  The rate in each R-D curve was 

represented as the number of coefficients used in the 

reconstruction so far.  The results of our experiments for 

two test models are shown in the following section.  

6. Results and discussion 

We show here the results for the Torus model (50 

vertices) and the Venus model (711 vertices), obtained 

from AIM@SHAPE and Gabriel Peyré, respectively (see 

Figure 1). 

 

6.1. Basis vs frame reconstructions 

In this section we present, separately, the R-D curves 

for a basis-based reconstruction versus a frame-based 

reconstruction, for the Torus and Venus models.  In these 

tests the frames were created by considering pairs of 

eigenvectors (   ). 

Figure 2 presents the R-D curves for the Torus.  These 

plots show that the frame-based reconstructions have a 

better rate-distortion performance than the basis-based 

reconstructions, especially at the lower rates (numbers of 

coefficients used for reconstruction).  This indicates that 

selecting atoms from the frame allows us to more rapidly 

capture the important features of a mesh than by just 

selecting atoms from the basis.  Figure 3 shows the 

reconstructed Torus models obtained from using the first 

(largest) 14 coefficients, from both the basis and frame 

dictionaries.  The superiority of the redundant 

representations is evident here: the Torus reconstructed by 

using the frame is almost visually identical to the original 

Figure 1: Torus (left) and Venus (right). 
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model (see Figure 1), while the reconstruction with the 

orthogonal basis is of a much lower visual quality.  

Indeed, this is confirmed in the R-D plots in Figure 2: the 

RMSE and dH values for the frame-based reconstruction 

with 14 coefficients drop to almost 0, while the basis-

based reconstructions still have higher error values.  The 

SNR difference between the frame- and basis-based 

reconstructions is also quite significant here, with the 

frame SNR being around 30dB higher than the basis SNR 

at the 14 coefficient mark. 

 
The rate-distortion results for the Venus model are 

shown in Figure 4.  Similarly to the Torus, we can observe 

that for Venus the frame-based representation generally 

achieves a better mesh reconstruction quality at a lower 

rate (fewer coefficients) than the basis.  Figure 5 shows 

the basis- and frame-based reconstructions of Venus, using 

the largest 50 coefficients.  We can observe that the frame-

based reconstruction with 50 coefficients captures not only 

 

 

 

 
the basic shape of the model, but also begins to capture 

some of the finer details such as the belly button, the legs 

and chest area.  This is in contast to the basis 

reconstruction with 50 coefficients, which manages to 

capture the basic shape of the model but does not really 

capture the finer detail.  

6.2. Reconstructions from different frame 

constructions 

In this section, we demonstrate the effects of increasing 

the redundancy in the frame for a given input model.  We 

show here the R-D results for the Torus model using

Figure 5: Venus models reconstructed with the largest 50 

coefficients: Basis reconstruction (left) and frame reconstruction 

(right). 

Figure 4: R-D curves for Venus. 

Figure 2: R-D curves for Torus. 

Figure 3: Torus models reconstructed with the largest 14 

coefficients: Basis reconstruction (left) and frame reconstruction 

(right). 

665665



   

 

 

 

    (refer to equation (5)) for the frame vector creation 

(“triplets” in Figure 6) and     (“quadruplets”), and 

compare these to the R-D curves for     (“pairs”).  We 

include the basis R-D curve in each plot as well.   

 

 
The R-D curves for all three metrics in Figure 6 show a 

clear trend that, generally, the more eigenvectors we use in 

the linear combinations that produce the redundant 

vectors, the smaller the number of coefficients we need to 

transmit to achieve the same mesh approximation quality.  

We extrapolate from these results that the sparsest possible 

solution using this method would be obtained by 

computing each redundant vector as a linear combination 

of all the eigenvectors in the original basis (i.e.,    ), 

and computing every possible linear combination in this 

way.  This is because the original eigenvector set is a basis 

for the finite vector space   , which means that there 

exists a unique linear combination to represent every 

possible  -dimensional input vector.  However, the trade-

offs here include the time required to compute the larger 

redundant dictionary, the time taken to search through the 

larger dictionary, and the amount of storage space that 

would be required.  From equation (5), we can deduce that 

increasing   by 1 increases the total dictionary size 

approximately 19 times.  For example, for the Torus 

model, with     the total number of frame elements is 

17,739; with     this number increases to 329,282; and 

with     it is 6,125,137.  With    , the total number 

of frame elements would be around       .  The 

increase in computation time is theoretically also linear, 

increasing by a factor of 19 for each increase by 1 in  , but 

in practice this depends on the computational resources at 

hand.  For example, in our implementation in MATLAB 

R2012b, on a machine with a 64-bit OS, 16GB RAM and 

a 3.30GHz CPU, the time taken to compute the frame for 

the Torus with     is only around 0.04 seconds and with 

    it is around 16.4 seconds.  The time taken to 

perform one full dictionary search is also linear, increasing 

by a factor of 19 for each increase by 1 in  .  Storing the 

frame for a given model with double-precision floating-

point elements requires     bytes of storage space, where 

  is the total number of atoms in the dictionary.  For large 

dictionaries, in order to avoid overloading the main system 

memory, the dictionary may be saved on disk (provided 

that enough disk space is available) and loaded into main 

memory in chunks.  Based on the results presented in this 

paper, our recommendation would be to use as high an   

value as possible, given the available storage space and the 

acceptable computation time as determined by the user.   

7. Benefits of the proposed frame and 

potential areas for improvement 

The following sub-sections summarise the main 

benefits of our frame for 3D mesh geometry compression, 

and identify some areas that still require further work. 

7.1. Benefits 

Our frame enables a progressively better reconstruction 

of mesh geometry, requiring a smaller number of 

coefficients for reconstruction than when using an 

orthogonal basis, for the same reconstruction quality.  This 

is especially useful in applications where rapid previewing 

of the model is required, e.g., in product visualization for 

e-commerce or a first prototype evaluation in collaborative 

product design.  The frame is computed from the 

eigenvectors of the mesh Laplacian matrix, which have a 

meaningful physical interpretation in relation to the 

structure of the input model, and offer directionality and 

orientability of the atoms.  The frame elements do not 

need to be transmitted between the encoder and decoder, 

because they can be generated independently at each end.  

The frame is also able to be applied directly on a given 

input mesh, regardless of its connectivity or topology type.      

7.2. Areas for improvement 

The main area for improvement is in optimizing our 

algorithm and implementation to be able to compute larger 

frames, for larger models, in a computationally efficient 

Figure 6: R-D curves for Torus when using different frame 

constructions. 
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manner.  One way to do this might be to partition the input 

model into several smaller sub-meshes as was done in [5], 

and compute the eigenvectors and their linear 

combinations separately for each sub-mesh.  Our frame is 

also currently computed separately for each input model; 

we wish to extend this to construct a larger frame that can 

work for an entire class of input models.  

8. Conclusion 

In this paper, we proposed a new method for creating a 

frame to be used for the progressive compression of 3D 

mesh geometry.  The frame consists of the eigenvectors of 

the mesh Laplacian matrix, which form an orthogonal 

basis for the given mesh, plus a large number of redundant 

vectors created from linear combinations of these 

eigenvectors.  Experimental results show that the frame-

based representation of a given input mesh geometry has a 

better rate-distortion performance than representation of 

the mesh geometry in the eigenvector basis, as measured 

independently by three objective error metrics (the RMSE, 

the SNR, and the Hausdorff distance), in addition to visual 

inspection of the reconstructed models.  The most 

pronounced differences between the basis and frame 

reconstructions are at the lower ends of the R-D curves, 

which indicates that the frame can more rapidly capture 

the important features of the input model than the 

orthogonal basis can.  Our results also show that 

increasing the redundancy of the frame further improves 

the R-D performance of the algorithm.  Other desirable 

properties of our frame include directionality and 

orientability of the atoms, as well as the ability to be 

applied directly to a manifold mesh with arbitrary 

topology and connectivity type.  In future work, we will 

concentrate on finding a computationally efficient method 

for constructing larger frames with greater redundancy, 

which can be applied to an entire class of input models.  

We will also further investigate the parameters of our 

frame constructions, in order to optimize them to achieve 

the best possible rate-distortion trade-offs. 

References 

[1] H. Hoppe, "Progressive meshes," in Proc. of SIGGRAPH 

1996, New Orleans, LA, USA, 1996, pp. 99-108. 

[2] J. Popović  and H. Hoppe, "Progressive Simplicial 

Complexes," in Proc. of SIGGRAPH 1997, Los Angeles, 

CA, USA, 1997, pp. 217-224. 

[3] G. Taubin, et al., "Progressive forest split compression," in 

Proc. of SIGGRAPH 1998, Orlando, FL, USA, 1998, pp. 

123-132. 

[4] P.-M. Gandoin and O. Devillers, "Progressive lossless 

compression of arbitrary simplicial complexes," ACM 

Trans. Graph., 21(3):372-379, 2002. 

[5] Z. Karni and C. Gotsman, "Spectral compression of mesh 

geometry," in Proc. of SIGGRAPH 2000, New Orleans, 

LA, USA, 2000, pp. 279-286. 

[6] A. Khodakovsky, et al., "Progressive Geometry 

Compression," in Proc. of SIGGRAPH 2000, New Orleans, 

LA, USA, 2000, pp. 271-278. 

[7] H. Hoppe and E. Praun, "Shape Compression using 

Spherical Geometry Images," in Advances in 

Multiresolution for Geometric Modelling, N. A. Dodgson, 

et al., Eds., ed: Springer Berlin Heidelberg, 2005, pp. 27-

46. 

[8] A. Khodakovsky and I. Guskov, "Compression of Normal 

Meshes," in Geometric Modeling for Scientific 

Visualization, G. Brunnett, et al., Eds., ed: Springer Verlag, 

2002, pp. 189–206. 

[9] J. Kovačević and A. Chebira, "An introduction to frames," 

Signal Processing, 2(1):1-94, 2008. 

[10] G. Peyré and S. Mallat, "Surface compression with 

geometric bandelets," ACM Trans. Graph., 24(3):601-608, 

2005. 

[11] I. Tošić, et al., "Progressive Coding of 3-D Objects Based 

on Overcomplete Decompositions," Circuits and Systems 

for Video Technology, IEEE Transactions on, 16(11):1338-

1349, 2006. 

[12] I. Tošić and P. Frossard, "Dictionary Learning," Signal 

Processing Magazine, IEEE, 28(2):27-38, 2011. 

[13] R. Rubinstein, et al., "Dictionaries for Sparse 

Representation Modeling," Proceedings of the IEEE, 

98(6):1045-1057, 2010. 

[14] E. J. Candès and D. L. Donoho, "New tight frames of 

curvelets and optimal representations of objects with 

piecewise C2 singularities," Communications on Pure and 

Applied Mathematics, 57(2):219-266, 2004. 

[15] L. Ying, et al., "3D discrete curvelet transform," in Optics 

& Photonics. Proc. of SPIE, San Diego, CA, USA, 2005, 

pp. 591413-591413-11, vol. 5914. 

[16] M. N. Do and M. Vetterli, "Contourlets: a new directional 

multiresolution image representation," in Proc. of Signals, 

Systems and Computers 2002, Pacific Grove, CA, USA, 

2002, pp. 497-501, vol.1. 

[17] Y. M. Lu and M. N. Do, "Multidimensional Directional 

Filter Banks and Surfacelets," Image Processing, IEEE 

Transactions on, 16(4):918-931, 2007. 

[18] E. Le Pennec and S. Mallat, "Sparse geometric image 

representations with bandelets," Image Processing, IEEE 

Transactions on, 14(4):423-438, 2005. 

[19] S. S. Chen, et al., "Atomic decomposition by basis pursuit," 

SIAM Journal on Scientific Computing, 20(1):33-61, 1998. 

[20] R. Coifman, et al., "Signal processing and compression 

with wavelet packets," in Wavelets and Their Applications. 

vol. 442, J. S. Byrnes, et al., Eds., ed: Springer 

Netherlands, 1994, pp. 363-379. 

[21] R. Gribonval and M. Nielsen, "Sparse decompositions in 

"incoherent" dictionaries," in Proc. of ICIP 2003, 

Barcelona, Spain, 2003, pp. I-33-6, vol.1. 

[22] S. G. Mallat and Z. Zhang, "Matching pursuits with time-

frequency dictionaries," Signal Processing, IEEE 

Transactions on, 41(12):3397-3415, 1993. 

[23] Y. C. Pati, et al., "Orthogonal matching pursuit: recursive 

function approximation with applications to wavelet 

decomposition," in Proc. of Signals, Systems and 

Computers 1993, Pacific Grove, CA, USA, 1993, pp. 40-

44, vol.1. 

 

667667


