
Fury of the Swarm: Efficient and Very Accurate Triangulation for Multi-View
Scene Reconstruction

Shawn Recker, Mauricio Hess-Flores, Kenneth I. Joy
University of California Davis

One Shields Ave. Davis, CA 95616
Email: http://www.idav.ucdavis.edu/people/

Abstract

This paper presents a novel framework for practical and
accurate N -view triangulation of scene points. The algo-
rithm is based on applying swarm optimization inside a
robustly-computed bounding box, using an angular error-
based L1 cost function which is more robust to outliers and
less susceptible to local minima than cost functions such as
L2 on reprojection error. Extensive testing on synthetic data
with ground-truth has determined an accurate position over
99.9% of the time, on thousands of camera configurations
with varying degrees of feature tracking errors. Opposed
to existing polynomial methods developed for a small num-
ber of cameras, the proposed algorithm is at best linear in
the number of cameras and does not suffer from inaccura-
cies inherent in solving high-order polynomials or Gröbner
bases. In the specific case of three views, there is a two
to three order of magnitude performance increase with re-
spect to such methods. Results are provided to highlight
performance for arbitrary camera configurations, numbers
of cameras and under noise, which has not been previously
achieved in the triangulation literature. Results on real data
also prove that reprojection error is improved with respect
to other methods.

1. Introduction

The reconstruction of scenes from multiple images or

video streams has become an essential component in a num-

ber of modern applications, such as robotics, surveillance

and virtual reality. A number of systems [18, 3] are capa-

ble of accurately reconstructing scenes from thousands of

images, obtained for instance from the Internet. However,

increasing the accuracy, efficiency, and reconstruction den-

sity are still areas of ongoing research in the community.

Triangulation is an important step in the process of scene

reconstruction. Triangulation determines the 3D location of

a scene point X from its imaged pixel location xi in two

or more images. When X reprojects exactly onto its xi

coordinates, triangulation is trivial through simple, linear

methods. However, in the presence of image noise, the re-

projected coordinates of X will not coincide with each re-

spective xi. In the general setting with an arbitrary number

of cameras, possibly noisy camera parameters, and image

measurements (feature tracks), the goal becomes finding the

point X that best fits a given track. There are a number of

methods in the literature to perform triangulation. The mid-

point method [9], though inaccurate in general, is by far the

fastest method given two views. Another common, fast and

somewhat accurate method that solves for 3D points based

on linear least squares is linear triangulation [9]. Such

methods are not very accurate, and the obtained solution is

not necessarily the best from all feasible solutions. There-

fore, given noisy inputs, the final obtained 3D position can

be very inaccurate.

A number of optimal algorithms exist in the literature,

but most solve for very small numbers of views. For two

views, a closed-form solution was first proposed by Hart-

ley and Sturm [8], made more practical by Kanatani et
al. [10], and later made more efficient and simplified by

Lindstrom [11]. These methods yield the set of all sta-

tionary points of their respective cost functions, which are

then tested to obtain the optimal solution. These algorithms

result in new image positions xi, such that epipolar con-

straints are fulfilled. The final position can then be triangu-

lated through any linear method. For three views, closed-

form solutions were achieved by Stewénius et al. [19] and

more recently by Byröd et al. [2]. Both algorithms make use

of the Gröbner basis method for solving systems of poly-

nomial equations, which is computationally expensive and

susceptible to precision inaccuracies. More details on these

methods are provided in Section 2.

A polynomial solver has not been achieved in the liter-

ature for more than three views. The approach that is tra-

ditionally used for multi-view optimization has been a two-

phase method, where an initial linear method such as N -

view linear triangulation [9] is applied to obtain an initial

2013 IEEE International Conference on Computer Vision Workshops

978-0-7695-5161-6/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCVW.2013.90

652

2013 IEEE International Conference on Computer Vision Workshops

978-1-4799-3022-7/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCVW.2013.90

652

point. This is proceeded by non-linear bundle adjustment
optimization to reduce the sum-of-squares L2-norm of re-

projection error [12], a non-convex constrained optimiza-

tion problem. This yields the maximum-likelihood estimate

for the point assuming independent Gaussian image noise,

which is geometrically meaningful. However, bundle ad-

justment is very expensive for high numbers of scene points

and cameras, even though sparse implementations alleviate

complexity [12]. Furthermore, it is very prone to miring

in local minima, so it requires an accurate initialization to

produce an accurate estimate. Also, several issues exist in

N -view linear triangulation which affect the accuracy of the

result, including numerical conditioning. sTherefore, while

this two-phase procedure can be very accurate, there is al-

ways a risk of converging to a local minima of the cost func-

tion, especially when starting far from the solution. A recent

triangulator by Recker et al. [16] uses a novel L1 angular er-

ror cost function, which is optimized with adaptive gradient

descent given an initial midpoint estimate. It shows a sig-

nificant speed increase and better reprojection errors than

other triangulators, such as N -view linear. However, the

solution has not been proven to be very robust.

A few N -view optimal solvers have been proposed, ex-

plained in further detail in Section 2, but with very limited

results. The work of Agarwal et al. [1] is based on fractional

programming and branch-and-bound theory. However, their

procedure is very expensive, and only short feature tracks

were tested. There are also a few methods based on convex

optimization on an L∞ cost function, such as Hartley and

Kahl [7], Min [13], and most recently Dai et al. [4]. How-

ever, in general it is not clear how algorithms based on L∞
behave under noise and for arbitrary numbers of cameras.

It is also not justified why L∞ was chosen over L1, which

behaves very well in Dai et al. [4].

In summary, though optimal solutions have been

achieved for two and three views, a well-tested solver for an

arbitrary number of views remains an open problem, which

we seek to solve through thorough testing of an L1-based

solver. The main contribution of this paper is to introduce a

practical and efficient algorithm for very accurate L1-based

N -view triangulation of scene points. Though not theo-

retically optimal, since a rigorous mathematical model is

not provided here, in extensive simulation the triangulation

algorithm converged to the global optimum in over 99.9%
of test cases with ground-truth data. The test cases varied

across a wide number of camera configurations and feature

tracking errors. There are two main novelties of this frame-

work with respect to the previous literature. The first is a

non-polynomial solution to the optimization problem, based

on minimizing an L1-based cost function [16]. The second

is the introduction of a swarm optimization algorithm, ap-

plied on this cost function. The L1 sum of angular errors

requires fewer operations to compute than L2 bundle adjust-

ment with reprojection error [12], where expensive matrix

operations are required to solve normal equations. It is also

less susceptible to local minima and is robust in the presence

of noise. There are no issues with numerical stability, such

as those present in algorithms based on computing and solv-

ing Gröbner bases. Processing time is at best linear with the

number of cameras, as discussed in Section 3.1. A summary

of related work is provided in Section 2. The proposed tri-

angulator is detailed in Section 3, followed by experimental

results (Section 4), and conclusions (Section 5).

2. Related work
Multi-view scene reconstruction involves a number of

stages applied sequentially, where the output of one stage

directly affects accuracy in the following steps. There are

many general scene reconstruction algorithms in the litera-

ture, several of which have been successful for certain ap-

plications. A comprehensive overview and comparison of

different methods is given in Strecha et al. [20]. In this pa-

per, our focus will be on triangulation and not on the other

components of reconstruction, for which the reader is re-

ferred to surveys in the literature [20].

Triangulation is one of the final steps in multi-view scene

reconstruction and its accuracy depends directly on the ac-

curacy of previously-computed feature tracking, camera in-

trinsic calibration, and pose estimation [9]. Typically, 3× 4
projection matrices are used to encapsulate all camera in-

trinsic and pose information. The most widely-used method

in the literature, linear triangulation [9], involves solving

for the best-fit 3D scene point in one algebraic, non-iterative

step. A system of the form AX = 0 is solved, where the A
matrix is a function of feature track and camera projection

matrix values. The obtained solution is a direct, best-fit and

non-optimal solve. Numerical stability issues are possible,

especially with near-parallel cameras.

To this end, a recent triangulator by Recker et al. [16]

solves several of these issues. Their framework introduces

an angular error-based L1 cost function, which is robust

to outliers and inexpensive to compute. After initializing

through the simple midpoint method, adaptive gradient de-

scent is applied on the cost function. A statistical sampling

component, based upon confidence levels, reduces the num-

ber of rays used for triangulation of a given feature track.

Results are demonstrated on real and synthetic data, where

it achieves a significant speed increase and better reprojec-

tion errors than other triangulators, such as N -view linear.

However, despite the great results, this triangulator has not

been proven optimal. Furthermore, the initialization proce-

dure based on the midpoint algorithm is not ideal due to the

inaccuracy in this algorithm.

There exist a number of provably optimal triangulation

algorithms in the literature, which also surpass linear trian-

gulation in accuracy. The main drawback of these methods

653653

is their computational efficiency and that the majority are

designed specifically for two or three views. This class of

algorithms is based on polynomial methods [7], where all

stationary points of a cost function are computed and evalu-

ated to find the global minimum. A solution can be achieved

as long as the cost function can be expressed as a rational

polynomial function in the parameters. The cost function’s

extrema are located where the derivatives with respect to the

parameters become zero.

For two views, Hartley and Sturm’s original optimal

method [8] uses a given epipolar geometry estimation in or-

der to apply a Sampson correction on original feature match

positions x and x′ over their respective image planes, so

that they end up at the closest positions that lie on epipo-

lar lines. This algorithm requires solving for the station-

ary points of a 6th-order polynomial and then evaluating

each real root. The new computed positions for x and x′

lie exactly on the same epipolar plane as the scene point

they represent, such that any triangulation method can be

applied. Most recently, Lindstrom’s ‘fast triangulation’ al-

gorithm [11] expresses optimal triangulation’s equations in

terms of Kronecker products, which allows for terms to can-

cel out and the cost function is reduced to a quadratic equa-

tion. The algorithm converges in two iterations and with one

to four orders of magnitude performance increase over the

previous technique. Unstable configurations such as near-

parallel cameras are handled without degeneracies.

Existing methods for optimal three-view triangulation

are also polynomial. The main difference is that feature

track positions are left intact. The first of these algorithms

was proposed by Stewénius et al. [19], who used tech-

niques from computational commutative algebra such as the

Gröbner basis method for solving polynomial equation sys-

tems. The algorithm computes the eigenvectors of 47 × 47
action matrices and evaluates the real solutions, where up

to 24 minima exist. One major drawback is its costly pro-

cessing time, since certain arithmetic operations must be

performed in high-precision floating point, with 128 bits of

mantissa, to avoid round-off error accumulation. The three-

view method by Byröd et al. [2] alleviates numerical issues

in the previous algorithm, but at the expense of a greater

processing time. It is based on a modified version of the

Gröbner basis method. In such polynomial approaches, the

degree of the polynomial grows cubically with the number

of views. The sequence of degrees is 6, 47, 148, 336, 638,

1081 for triangulation from two to seven cameras [19]. This

implies a huge computational cost and potentially a large

number of local minima.

We are aware of only a few attempts at optimal N -view

triangulation for more than three views, which deviate from

the polynomial method. The main issue is a lack of exper-

imental results as far as error and processing time against

different noise and camera configurations. The first is by

Agarwal et al. [1], who demonstrated that several prob-

lems in multi-view geometry can be formulated using frac-

tional programming, including triangulation. They propose

a branch and bound algorithm that provably finds a solu-

tion arbitrarily close to the global optimum, which min-

imizes reprojection error under Gaussian noise. Hartley

and Kahl’s survey paper [7] as well as Min [13] perform

convex optimization on an L∞ cost function making use

of second-order cone programming (SOCP). Most recently,

Dai et al. [4] described an L∞ optimization method, based

on gradually contracting a region of convexity towards com-

puting the optimum. With simulations consisting of 50
randomly-generated views of 100 random 3D points, it is

claimed that convergence can be achieved from any initial

point. The method outperforms previous L∞ methods in

both time and iterations. In the next section, we propose

a novel very accurate N -view triangulator, which outper-

forms the existing algorithms. It can be applied on an ar-

bitrary number of cameras and is linear at best with the

number of cameras. It is not plagued by numerical stabil-

ity or precision issues. The algorithm is based on applying

swarm optimization based on Recker et al.’s triangulation

cost function [16], both of which will be discussed in detail.

3. Proposed triangulator
The polynomial method is intractable for an arbitrary

number of views due to the cubic growth of the algo-

rithm [19]. Instead, our focus will be on finding a more

practical and efficient solution to the triangulation problem,

where we do not seek to detect or to have knowledge of all

local minima. We argue this is not necessarily important

in the grand scheme of simply finding the global optimum.

In fact, a potentially large number of polynomial solutions

may violate cheirality and thus not be geometrically mean-

ingful.

In general, our approach is based on searching within a

bounding box where the probability of enclosing the global

minimum of a cost function is extremely high. As we will

demonstrate, our procedure works in 99.9% of cases, with

failures confined to very specific camera configurations.

The cost function must be defined in terms of the (X,Y, Z)
position parameters for a given point, assuming fixed fea-

ture tracking and camera parameters. The task amounts to

finding the 3D position which globally minimizes the cost.

On the advantages of using the L1 norm Optimiza-

tion involves finding the set of parameters that best fits

a model, where a cost function is typically minimized

over the set of parameters. However, there is a question

of which cost functions should be referred to as very

accurate. The L2 least-squares solution is the maximum

likelihood (ML) estimate under Gaussian image noise.

However, it can be argued that image measurement noise

654654

does not always follow such a distribution and ML is not

necessarily equivalent to optimal [7]. The ML estimate

may be biased, and as noise increases, the average estimate

drifts away from the true value [7]. Furthermore, the ML

cost function typically contains many local minima. The

L∞ model assumes uniform bounded noise so that all

measurements less than a threshold distance from the true

value are equally likely, with zero probability beyond it.

Many problems can be formulated in L∞ and give a single

solution, an advantage over L2 optimization. However,

the L1 norm, which essentially measures the median of

noise and is more robust to outliers than L2 [9] or L∞, is

a more intuitive measurement. Unfortunately, it is not the

ML estimate under Gaussian noise like L2. Despite this

shortcoming, it has desirable convergence properties and

we have been surprised that L1 was not investigated much

for triangulation.

Recker et al. [16] proposed an L1 triangulation cost

function based on an angular error measure for a candidate

3D position, p, with respect to a feature track t. As input,

a set of feature tracks across N images and their respective

3 × 4 camera projection matrices Pi are known. The error

for a candidate 3D position p is computed as follows. For a

camera center Ci, a unit direction vector vi is first computed

between it and the candidate position p. A second unit

vector, wti, is computed as the ray from each Ci through the

2D feature track t in each image plane. Since t generally

does not coincide with the projection of p in each image

plane, there is frequently a non-zero angle between each

possible vi and wti. Finally, the average of the dot products

vi · wti across all cameras is obtained. Each dot product

can vary from [−1, 1], but only points that lie in front of

the cameras are taken into account, corresponding to the

range [0, 1]. We use the same nomenclature as in Recker et
al. [16] to define the cost function mathematically. Given

C the set of all cameras, T the set of all feature tracks, and

p = (X,Y, Z) a 3D evaluation position, the cost function

for p with respect to a track t ∈ T is displayed in Eq. 1.

Here, I = {Ci ∈ C|t “appears in ” Ci}, �vi = (p − Ci),
and �wti = P+

i ti. The right pseudo-inverse of Pi is given

by P+
i , and ti is the homogeneous coordinate of track t in

camera i. This cost function has its lowest possible value at

zero. Gradient values along the X , Y and Z directions are

defined in Eqs. 5− 7 of Recker et al. [16].

ft∈T (p) =
∑

i∈I(1− v̂i · ŵti)

||I|| (1)

It is important to determine the convexity properties of

this function for an arbitrary number of cameras. A sum of

convex functions is convex, but the same does not apply for

quasi-convex functions, such as dot products. In order to

verify convexity, the most common approach is to perform

an analysis of the function’s Hessian. However, this analy-

sis becomes intractable for even small amounts of cameras.

Instead, we take a different and much more simplified ap-

proach. Fig. 1(c) shows a scalar field, consisting of the L1

cost function measured for a dense set of test positions near

a known ground-truth position. The scalar field shows a

very smooth variation in a large vicinity surrounding this

position. This is key since there is a high chance of con-

vergence to the global optimum even from large distances.

Such scalar field renderings are not as mathematically rig-

orous as a direct convexity analysis, but in all of our testing

we have not detected local minima in the near vicinity of

the global minimum.

We chose Recker et al.’s cost function as a basis for

our triangulator due to these attractive convergence prop-

erties. There are two important differences in the way the

cost function is applied. Statistically-meaningful samples of

rays are not used. By using sampling, the solution computed

using our algorithm would be biased towards a particular

subset of the cameras. Also, gradient descent optimization

is replaced by non-linear conjugate gradients, since better

results were obtained in practice. Fletcher and Reeves in-

troduced the method of non-linear conjugate gradients was

for locating an unconstrained local minimum of a non-linear

function of several variables [5]. Since the introduction of

this method, many additional modifications have been pub-

lished [6], but we used their method, which works well due

to the small number of parameters for optimization. As for

the convergence criterion, we found that testing the magni-

tude of the gradient at each iteration and terminating when

it was close to zero (10−15) works well in practice.

3.1. Initialization

The key step in our algorithm is initialization, or where

to start the swarm optimization. We initialize based on a

procedure that is much more robust and exhaustive than

the simple midpoint start of Recker et al. [16], which also

uses an undesired fixed threshold. First, the midpoint al-

gorithm is used to compute an initial point between every

possible camera pair. Each of these points is then optimized

by Recker et al.’s cost function, using non-linear conju-

gate gradients. The complexity of this step is O(N2) for

N cameras. Experiments have determined that for tradi-

tional feature track lengths and reasonable noise, our algo-

rithm has linear performance. However, in the worst case

the behavior is quadratic. The set of optimized midpoints

(OMs) forms a bounding box, the green box depicted in

Figs. 1(a,b). This box is the largest axis-aligned box that

encloses all the OMs. We then compute an initial reference

for swarm optimization inside this box. To compute this ini-

tial point, we must take into account the influence of outlier

OMs. We use statistics on the OMs to compute an initial

point inside the bounding box, defined as the centroid of all

the OMs. Finally, this point is optimized. The main contri-

655655

bution of our work with respect to Recker et al. is finding n

very accurate position based on the initialization. For this,

an exhaustive search based on swarm optimization is now

performed, as discussed in Section 3.2.

3.2. Swarm optimization applied to triangulation

To understand the next step in the algorithm, a brief

overview of particle swarm optimization is provided. Par-

ticle swarm optimization (PSO) is a stochastic approach

for solving both continuous and discrete optimization prob-

lems [15]. In PSO, entities known as particles, or starting

points, move in the search space of an optimization prob-

lem, where the position of a given particle represents a can-

didate solution. At each time step, each particle updates its

position searching for a better solution, by changing its ve-

locity according to rules originally inspired by behavioral

models of bird flocking. Each particle’s movement is a

function of both the direction it has taken towards its best lo-

cal solution and also the best global solution found so far by

one or more particles in its vicinity, with some random per-

turbations. More specifically, the next iteration occurs after

all particles have been moved and eventually, the swarm as

a whole is likely moving closer towards the cost function

optimum. There are many methods which define how to

initialize the swarm and how to move each member in the

search space [15].

Each particle consists of three D-dimensional vec-

tors [15], where D is the dimensionality of the search space:

current position xi, the previous best position pi, and veloc-

ity vi. In each iteration, the current position is evaluated as

the solution. In our case, an evaluation of the L1 cost func-

tion [16] is performed. If it is better than any previous result,

xi is stored in pi. The value of the best function result so far,

pbest, is stored as well. As the algorithm keeps iterating, the

goal is to keep finding better positions and updating pi and

pbest. The values for vi are adjusted, and can be interpreted

as step sizes for each particle. Finally, iterations end when

some criterion is met, such as a sufficiently good fitness or

a maximum number of iterations. In our implementation,

150 iterations were always used with great results, though

future work includes adaptively estimating this value.

The swarm optimization process as described above is

summarized in Fig. 1. We utilize 64 particles, since this

has been proven to be a proper amount for our parameter

space [15]. Notice in Fig. 1(d) that particles can end up

far outside the box due to the random velocity initialization,

but through communication with other particles march back

into the box and converge at the global optimum.

4. Results
The proposed triangulator was tested exhaustively for its

accuracy, processing time and general behavior, on both

real and synthetic data. All implementation was done using

(a) Bounding box (b) Zoom

(c) Scalar field (d) Swarm

Figure 1: Swarm optimization applied for a point of the ET
dataset [18]. (a) Multi-view reconstruction, with cameras in

dark blue. (b) Zoom of (a). (c) A volume view of a scalar

field representing an L1 angular cost function [16] evalu-

ated at a dense grid of sample points inside the bounding

box, with redder values closer to zero cost. (d) Particle path

evolution in swarm optimization.

C++, on a MacBook Pro with an Intel Core i7 processor

at 2.66 GHz with 4 GB of RAM, running Mac OS X Lion

10.7.3. For matrix operations such as eigen-analysis and

SVD, the Eigen library (http://eigen.tuxfamily.
org) was used.

4.1. Synthetic tests

Synthetic tests were performed to analyze the triangula-

tor’s performance in agreeing with ground-truth positions,

given different levels of feature track noise and with vary-

ing track lengths. Processing time and reprojection error

were the parameters of interest. It was not possible to

compare performance directly with optimal two-view meth-

ods [8, 11] since in those methods tracks are modified. A

direct comparison with optimal three-view triangulation is

discussed in Section 4.1.1.

To this end, tests were performed on four different types

of camera configurations, as displayed in Fig. 2. The first

represents a set of cameras positioned in a circle above the

scene. The second is similar to the first, except is uses only

a semi-circle of cameras. The third involves a set of cam-

eras in a line above the scene. The fourth involves a set

of cameras that were placed randomly, representing an un-

structured collection of images. In each case, all cameras

656656

(a) Circle (b) Semi-circle (c) Line (d) Random

Figure 2: Synthetic camera configurations. Ground-truth

positions are shown in black, with a selected one in red, the

bounding box in green, and cameras in blue.

are looking towards the origin, (0, 0, 0), of the scene.

The first experiment consisted of analyzing the trian-

gulator under various levels of noise and with varying fea-

ture track lengths. The same camera intrinsics were used in

all tests, with an image size of 1024 × 1024 and an iden-

tity camera calibration matrix (unity focal length). A to-

tal of 8316 test datasets were created, each consisting of

100 synthetic points with known ground-truth tracks. For

each test configuration, 100 points were randomly gener-

ated from the world origin, at different distances up to a

radius of 0.4 world units. It was ensured that none of the

cameras were within the visual hull of the points. All 100
points were triangulated for each set, and statistics were ob-

tained. The individual datasets were generated for each of

the four main types of camera setups. The number of cam-

eras evaluated ranged from 2 − 100, in increments of one.

For each camera amount, feature tracking errors were sim-

ulated by adding image plane noise to ground-truth feature

tracks, in random directions, up to M% of the image plane

diagonal dimension. The value of M was varied from in-

tegers 0% to 20%. As for evaluation of results, a com-

puted point was considered ‘correct’ when the median of

the computed reprojection error was lower than the median

of ground-truth reprojection error. Based on this criteria,

over 99.9% of all evaluated points were correct. The few

failures were contained within an average of 5 × 10−4 of

the ground-truth position. These were mainly limited to un-

likely cases where inaccurate midpoints from near-parallel

cameras skewed bounding box computation.

Results for feature tracking error versus processing time

are shown in Fig. 3, for feature tracks spanning 100 cam-

eras. In this simulation, it can be seen that a very accu-

rate solution can be obtained even in the presence of high

amounts of track noise. Surprisingly, processing time ac-

tually stabilizes at a near constant value after about 1%
image plane noise. Feature track length versus process-

ing time is shown in Fig. 4, for 0% and 1% image plane

noise. It shows that processing time is linear as the feature

track length is increased, for lower errors. Keep in mind

that a 1% error is about 10 pixels, which is a high track-

ing error in practice. For higher errors, behavior tends to be

quadratic. As the number of cameras is increased, the time

it takes to apply non-linear conjugate gradients on a number

of quadratically-increasing midpoint pairs begins to domi-

nate with respect to the time it takes for swarm optimiza-

tion. For typical track lengths of 10 and 20 cameras, times

are lower than 10ms per point despite noise. For longer

tracks and with noise, triangulating one point can take close

to 100ms. This is an excellent result which can be pos-

sibly sped up further through parallelization. In constrast,

the polynomial method would be intractable for long tracks.

In comparison with optimal N -view methods, for example

the fractional programming method by Agarwal et al. [1]

claims a near linear runtime with number of cameras. Re-

sults for triangulation were demonstrated on 3-6 cameras.

The only indicative result for larger numbers is for cam-

era resectioning, where processing times are approximately

40-700 seconds on 6-100 cameras using a 3GHz computer.

This indicates an expensive branch and bounds framework.

Based on these experiments, our triangulation may possibly

be two to three orders of magnitude faster. With such speed

and accuracy in near 100% of cases, our method opens the

door to accurate reconstructions even with very long fea-

ture tracks. Reconstruction from massive amounts of im-

ages may become more commonplace in the future due to

the ubiquity of images, especially from mobile devices. In

such cases, error propagation of mismatched tracks has a

greater impact on accuracy, but as shown, very precise so-

lutions can be obtained even under high amounts of noise.

Figure 3: Feature tracking error vs. computation time (ms).

Processing time stabilizes after 1% error.

4.1.1 Comparison with three-view triangulation

Byröd’s optimal polynomial three-view method [2]

evaluates 10 points with exact ground-truth input. Our

triangulator agrees with the ground-truth values up to at

least 8 decimal places, except in the third case, where the

point actually lies behind the cameras. In our extensive

657657

Figure 4: Feature track length (number of cameras) vs.

computation time (ms), for 0% and 1% image-plane feature

tracking error. Behavior is nearly linear for small errors.

testing, this is the only documented case of a large failure

in the final result. This is due to the fact that our algorithm

is designed to work only for points that meet the cheirality

constraint. Polynomial methods can identify such points,

but in practice this solution is not geometrically mean-

ingful. As for processing time, Stewénius et al. [19] took

20 hours to triangulate the 2683 three-view points of the

Dinosaur dataset [14] on 128-bit arithmetic, and Byröd et
al. took 2.5 minutes, but our triangulator takes less than 6
seconds on a conventional laptop for all 4983 full tracks.

4.2. Evaluation on real datasets

For real scenes, processing time and reprojection error

were evaluated, as displayed in Table 1. Results were ex-

cellent even in Palmdale, where the images present a strong

radial distortion. Even though processing time is signifi-

cantly slower with respect to Recker et al. [16], there were

confirmed cases where positions computed with their algo-

rithm were not optimal and were fixed by our triangulator.

The added computational expense in our algorithm is nec-

essary in order to claim accuracy and robustness. For ex-

ample, in the Brown06 [17] dataset the average reprojection

error for Recker et al. was 1.453 and for our algorithm it

was 1.322. This shows that certain points in their gradi-

ent descent lead to imprecise solutions, which our swarm

optimization detected and corrected. Recker et al. outper-

formed bundle adjustment’s final reprojection error in their

experiments, so ours surpassing Recker et al. is very en-

couraging. Finally, some triangulations, generated by our

algorithm, are shown in Fig. 5.

In summary, we present a very accurate triangulation

Data set to tf εo εf C

Brown06 [17] 10046 78 1.3224 1.4295 220

Brown12 [17] 59727 172 1.3926 2.0891 337

castle19 [20] 604 5 1.1985 1.1985 14

castle30 [20] 819 7 1.3531 1.3531 19

Dinosaur [14] 4825 37 0.4677 0.4677 36

ET [18] 1017 7 0.4696 0.4696 9

fountain [20] 427 3 1.1610 1.1610 10

herzjesu [20] 864 7 1.2958 1.2958 22

Kermit [18] 674 4 0.4035 0.4035 11

Canyon [16] 2357 18 1.3818 1.3818 90

Palmdale [16] 163 3 4.2965 4.2965 66

Stockton [16] 2832 41 2.2052 4.4229 10

Campus 137 1 1.0000 1.0000 7

Walnut [16] 200 1 1.1240 1.1240 7

Table 1: Processing times to and tf (ms) and average repro-

jection errors εo and εf (pixels), respectively for our method

and fast triangulation [16], with number of cameras C, for

real datasets. Due to the high accuracy of Recker et. al’s

method [16], in most datasets our technique only needs to

fix a few of the final solutions, except in the Brown and

Stockton datasets.

(a) Notre Dame (b) Dinosaur

(c) Brown12 (d) ET

Figure 5: Scenes reconstructed with our triangulator. The

triangulation of Notre Dame [18] in (a) took 10.34 minutes,

with 73427 tracks spanning 290 cameras.

framework that presents excellent results on real and syn-

thetic scenes. To our knowledge, this is the first near op-

timal L1-based triangulator, with excellent results for ar-

658658

bitrary numbers of cameras and noise. However, there is

room for improvement in the algorithm. Bounding box size

is the main determinant of performance versus processing

time. If greater speed is desired, without compromising ac-

curacy, then a more efficient bounding box computation is

required. We hope our work can be a contribution towards

applications where very precise triangulation results are re-

quired.

5. Conclusions
This paper presents a framework for very accurate tri-

angulation in multi-view scene reconstruction. This is the

first very accurate N-view triangulation algorithm (optimal

in 99.9% of cases) that has been proven succesful across ar-

bitrary camera configurations, numbers of cameras and un-

der noise. Though not theoretically optimal, convergence

to the global optimum was achieved over 99.9% of the time

over thousands of synthetic multi-view configurations with

varying degrees of feature tracking noise. First, a bound-

ing box is robustly computed based on an angular error-

based L1 cost function applied to initial pairwise optimized

midpoint positions. An exhaustive search procedure based

on particle swarm optimization is applied to obtain the fi-

nal position inside the bounding box. Opposed to existing

polynomial methods developed for a small number of cam-

eras, the proposed algorithm is at best linear in the number

of cameras and does not suffer from inaccuracies inherent

in solving high-order polynomials or Gröbner bases. With

real data, reprojection error is proven to be optimized with

respect to other triangulation methods.

Acknowledgement

This work was supported in part by Lawrence Liver-

more National Laboratory and the National Nuclear Secu-

rity Agency through Contract No. DE-FG52-09NA29355.

The authors thank their colleagues in the Institute for Data

Analysis and Visualization (IDAV) at UC Davis for their

support.

References
[1] S. Agarwal, M. K. Ch, F. Kahl, and S. Belongie. Practical

global optimization for multiview geometry. In ECCV, pages

592–605, 2006. 2, 3, 6

[2] M. Byröd, K. Josephson, and K. Åström. Fast optimal three

view triangulation. In Proceedings of the 8th Asian Confer-
ence on Computer Vision, ACCV’07, pages 549–559, Berlin,

Heidelberg, 2007. Springer-Verlag. 1, 3, 6

[3] Changchang Wu. VisualSfM: A visual structure from mo-

tion system. http://homes.cs.washington.edu/

˜ccwu/vsfm/, 2011. 1

[4] Z. Dai, Y. Wu, F. Zhang, and H. Wang. A novel fast method

for L∞ problems in multiview geometry. In Proceedings of
the 12th European conference on Computer Vision - Volume

Part V, ECCV’12, pages 116–129, Berlin, Heidelberg, 2012.

Springer-Verlag. 2, 3

[5] R. Fletcher and C. Reeves. Function minimization by conju-

gate gradients. The computer journal, 7(2):149–154, 1964.

4

[6] W. W. Hager and H. Zhang. A survey of nonlinear conjugate

gradient methods. Pacific journal of Optimization, 2(1):35–

58, 2006. 4

[7] R. Hartley and F. Kahl. Optimal algorithms in multiview

geometry. In Proceedings of the 8th Asian conference on
Computer vision - Volume Part I, ACCV’07, pages 13–34,

Berlin, Heidelberg, 2007. Springer-Verlag. 2, 3, 4

[8] R. I. Hartley and P. Sturm. Triangulation. Comput. Vis. Image
Underst., 68(2):146–157, 1997. 1, 3, 5

[9] R. I. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2nd edition,

2004. 1, 2, 4

[10] K. Kanatani, Y. Sugaya, and H. Niitsuma. Triangula-

tion from two views revisited: Hartley-Sturm vs. optimal

correction. In Proceedings of the British Machine Vi-
sion Conference, pages 18.1–18.10. BMVA Press, 2008.

doi:10.5244/C.22.18. 1

[11] P. Lindstrom. Triangulation Made Easy. In CVPR, pages

1554–1561, 2010. 1, 3, 5

[12] M. Lourakis and A. Argyros. The design and implementa-

tion of a generic sparse bundle adjustment software package

based on the Levenberg-Marquardt algorithm. Technical Re-

port 340, Institute of Computer Science - FORTH, Herak-

lion, Crete, Greece, August 2000. 2

[13] Y. Min. L-infinity norm minimization in the multiview tri-

angulation. In Proceedings of the 2010 international con-
ference on Artificial intelligence and computational intelli-
gence: Part I, AICI’10, pages 488–494, Berlin, Heidelberg,

2010. Springer-Verlag. 2, 3

[14] Oxford Visual Geometry Group. Multi-view and Ox-

ford Colleges building reconstruction. http://www.
robots.ox.ac.uk/˜vgg/, August 2009. 7

[15] R. Poli, J. Kennedy, and T. Blackwell. Particle swarm opti-

mization. Swarm Intelligence, 1(1):33–57, 2007. 5

[16] S. Recker, M. Hess-Flores, and K. I. Joy. Statistical angu-

lar error-based triangulation for efficient and accurate multi-

view scene reconstruction. In Workshop on the Applications
of Computer Vision (WACV), 2013. 2, 3, 4, 5, 7

[17] M. I. Restrepo, B. A. Mayer, A. O. Ulusoy, and J. L. Mundy.

Characterization of 3-d volumetric probabilistic scenes for

object recognition. IEEE Journal of Selected Topics in Signal
Processing, 6:522–537, 09/2012 2012. 7

[18] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: ex-

ploring photo collections in 3D. In SIGGRAPH ’06: ACM
SIGGRAPH 2006 Papers, pages 835–846, New York, NY,

USA, 2006. ACM. 1, 5, 7

[19] H. Stewénius, F. Schaffalitzky, and D. Nistér. How hard is

3-view triangulation really? Computer Vision, IEEE Inter-
national Conference on, 1:686–693, 2005. 1, 3, 7

[20] C. Strecha, W. von Hansen, L. J. V. Gool, P. Fua, and

U. Thoennessen. On benchmarking camera calibration and

multi-view stereo for high resolution imagery. In CVPR’08,

2008. 2, 7

659659

