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Abstract
Recent advances in Structure-from-Motion and Bundle

Adjustment allow us to efficiently reconstruct large 3D
scenes from millions of images. However, acquiring the im-
agery necessary to reconstruct a whole city and not only
its landmark buildings still poses a tremendous problem. In
this paper, we therefore present an online system for collab-
orative city reconstruction that is based on crowdsourcing
the image acquisition. Employing publicly available build-
ing footprints to reconstruct individual blocks rather than
the whole city at once enables our system to easily scale to
large urban environments. In order to map all partial re-
constructions into a single coordinate frame, we develop a
robust alignment scheme that registers the individual point
clouds to their corresponding footprints based on GPS co-
ordinates. Our approach can handle noise and outliers in
the GPS positions and allows us to detect wrong alignments
caused by the typical issues in the context of crowdsourcing
applications such as malicious or improper image uploads.
Furthermore, we present an efficient rendering method to
obtain dense and textured views of the resulting point clouds
without requiring costly multi-view stereo methods.

1. Introduction
Recent advances in Structure-from-Motion (SfM) enable

modern SfM systems to scale to large datasets containing

millions of images [3, 5, 7, 17, 21, 23, 29]. However, acquir-

ing the necessary image data is still a major bottleneck when

trying to reconstruct entire cities. Community photo collec-

tion websites such as Flickr provide a convenient source to

obtain imagery on a large scale. Yet, they mostly contain

images of (famous) landmarks taken from a set of “iconic”

viewpoints [27] while the larger remaining part of the city is

usually not covered densely enough for a SfM reconstruc-

tion. Vehicle-based approaches in the style of Google Street

View are able to generate a more uniform coverage [17],

but the required hardware is often costly and not easy to

obtain. At the same time, the wide spread adoption of mod-

ern smartphones equipped with a high-quality camera and a

GPS sensor enables us to solve this data acquisition problem

through crowdsourcing [13, 25]. In this paper, we therefore

present a framework for collaborative city reconstruction.

In order to enable non-expert users to participate, sys-

tems for collaborative reconstructions need to provide rapid

feedback about whether the images taken by the user are

useful or do not overlap enough to enable SfM. Yet, many

of the graph-based decomposition techniques developed for

scalable SfM [22, 7, 12] cannot be used for such an online
SfM system since the images are not known in advance but

are uploaded one after another in no specific order. Inspired

by [23], we solve the scalability problem by reconstructing

individual blocks, manually selected by the user, rather than

the entire city at once. In order to recover the scaling factor

of the individual point clouds and map them into a common

coordinate system, we propose an approach for automati-

cally aligning the reconstructions to a publicly available set

of building outlines [1] based on the GPS coordinates of the

images. We demonstrate that our method is very robust to

noise in the GPS positions and to outlier positions. Incor-

porating constraints based on the building footprints into

the Bundle Adjustment process enables a non-linear refine-

ment of the alignment, which can compensate drift in the

reconstruction even if loop closure is not possible. In con-

trast to existing collaborative systems [13, 25] that obtain a

dense reconstruction in a separate offline step, we describe

a method to quickly generate dense, photo-realistic render-

ings of the current state of the reconstruction in order to

rapidly provide visual feedback.

While solving the data acquisition problem, crowdsourc-

ing also introduces additional challenges. Collaborative

systems for city reconstruction need to provide some in-

centive for the users to participate in the reconstruction ef-

fort such as awards, a point system [25], or, as in our case,

cool-looking 3D visualizations. Furthermore, the system

should be easy to use, automating tasks whenever possible,

and needs to present manageable tasks to the user instead of

simply asking him to “take pictures of the city”. Notice that

by reconstructing single blocks, our system automatically

offers such more fine-grained tasks. At the same time, col-

laborative online systems have to deal with malicious users

uploading unrelated photos to slow down and pollute the

system. While the former can be countered by employing
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an image retrieval system [20], we show that our alignment

process enables us to detect most of the wrong assignments.

The remainder of this paper is structured as follows.

Sec. 2 discusses related work. Sec. 3 introduces our frame-

work for collaborative online SfM while Sec. 4 details our

alignment process. Sec. 5 discusses our method for effi-

ciently obtaining a dense representation of the scene. We

then evaluate our framework in Sec. 6.

2. Related Work
Structure-from-Motion. Incremental SfM methods grow

a reconstruction by iteratively adding one or multiple im-

ages to an existing point cloud [3, 7, 13, 21, 23, 29], usually

followed by (multiple rounds of) Bundle Adjustment (BA)

[24]. The feature matches between the images required to

triangulate the 3D points are thereby obtained efficiently us-

ing image retrieval techniques [20] in the case of unordered

photo collections [3, 13] or feature tracking for sequential

data [17]. Since the worst case complexity of incremental

SfM is O(n4) [5], where n is the number of images, com-

mon approaches to decrease the run-times of SfM involve

parallelization [3, 7] and applying incremental SfM only on

a subset of all images and then adding the remaining cam-

eras to finish the reconstruction [3, 7, 22]. Other methods

use image similarity metrics to obtain subsets that are re-

constructed independently and then eventually merged [12].

In order to guarantee a better time complexity, global SfM
approaches try to directly reconstruct the scene using all im-

ages by first estimating the global rotations of all cameras

followed by their translations [5, 19]. Recently, Wu showed

that most steps in incremental SfM require only linear time

when the number of images added before running BA over

all cameras follows a geometric series [29]. In contrast to

the approaches mentioned above, Strecha et al. do not need

to know all images in advance [23]. Their method uses im-

age retrieval to identify and reconstruct clusters of related

images and can thus easily incorporate additional photos.

Geo-Registration of reconstructions. Instead of merging

all clusters into a single reconstruction, [23] estimate a rigid

transformation for each cluster using geo-tags and build-

ing footprints that maps the model into a global coordinate

system. Alternatively, an initial rigid alignment to build-

ing outlines can be estimated from the GPS coordinates of

the images, usually followed by an iterative refinement [10].

To obtain more photos with highly accurate GPS positions,

images from Google Street View can be added to the recon-

struction [26]. Furthermore, using the coarse 3D models

from Google Earth can improve the alignment [26].

Collaborative (Online) SfM. Other collaborative recon-

struction systems have been presented in [13, 25]. Ischara

et al. use image retrieval to identify the models to which

an image should be added [13]. Reconstructions are then

merged whenever possible and dense models are obtain in

an offline step by fusing the depth maps of the images. Tu-

ite et al. model the problem of collaborative city recon-

struction as a pervasive game, assigning points to a player

if his images add new 3D points to the reconstruction se-

lected by him [25]. Users can also initialize new 3D models

that are then reconstructed through an offline batch process

and registered manually onto a map [25]. Dense models of

the reconstructions are generated in an offline process using

multi-view stereo techniques [8]. We discuss the differences

between [13, 25] and our approach in more detail below.

3. A Framework for Collaborative Online SfM
Fig. 1 illustrates our framework for collaborative online

SfM. Our system allows multiple users to simultaneously

take pictures of the scene and submit them, either as soon

as they are taken or as a batch, to a reconstruction service

running our framework. Before uploading the images, the

user has to manually select one building block on a 2D

map. After extracting SIFT features [15], we match each

new photo against the images already assigned to the same

block. Using these matches, we add the image to (multiple)

existing reconstructions and seed new 3D models. Since

multiple users can take photos of buildings from the same

block, there might be multiple models associated with each

block. We try to merge such models when they overlap, but

we never attempt to merge models from different blocks.

Once our system cannot add more images to a reconstruc-

tion, it automatically tries to align the 3D model to a set of

building outlines obtained from OpenStreetMaps [1]. In the

following, we detail the different stages of our pipeline.

Image retrieval & matching. We use image retrieval with

tf-idf weighting [20] to find the 50 images most similar to

the newly uploaded photo. Next, we perform a more de-

tailed feature matching using the original SIFT descriptors

instead of the quantized words from the retrieval stage [15].

Since the database of images used for retrieval grows over

time, we need to recalculate the tf-idf weights after adding

new images. While [13, 23] use all available photos during

retrieval, we limit the search for similar images to those as-

signed to the same block of buildings. This results in shorter

inverted files and thus faster retrieval times and accelerates

recomputing the weights.

Adding an image. The 2D-2D matches from the previ-

ous stage are used to build feature tracks between two or

more images, where each track will eventually become a

3D point. Adding a new image thus grows and merges ex-

isting tracks, generates new ones, but might also result in the

removal of tracks if they are not consistent, i.e., if they con-

tain two or more features from the same image [21]. Since

multiple users can reconstruct different parts of the same

building, it might happen that the newly uploaded image

shares tracks with photos from different 3D models. For

each such reconstruction, we try to register the new photo
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Figure 1. Overview of our collaborative city reconstruction framework: Multiple users simultaneously take pictures of the scene and send

them to a reconstruction service. To scale to large scenes and many users, our framework performs reconstructions on a block level and

robustly aligns the resulting point clouds to the building outlines. Dense visualization can be quickly created using textured splat rendering.

to the existing point cloud using the 6pt DLT algorithm [11]

inside a RANSAC loop [6] to estimate its camera pose [21].

The 2D-3D correspondences required for pose estimation

are thereby obtained from the feature tracks corresponding

to 3D points. We then refine the camera pose by minimizing

the sum of squared reprojection errors of all inliers. After-

wards, we triangulate newly added feature tracks.

Due to the transitivity of features tracks, adding a new

image to a model might allow us to register other images

that have no direct matches with the existing models. We

thus try to add as many additional photos as possible before

performing BA for the current model, i.e., we try to grow

the current model as large as possible. This procedure is

then repeated for all other reconstructions associated with

the same block of buildings as the newly added image.

While [13, 23] allow reconstructions of arbitrary size,

we force each reconstruction to contain only images of the

buildings from the same block. This effectively limits the

size of the bundle adjustment problems encountered during

SfM and allows our system to trivially scale to large scenes.

In contrast to [25], our framework automatically tries to in-

clude photos that could not be registered previously instead

of forcing the user to re-upload these images.

Merging models. A newly uploaded image is added to

all models against which the camera pose can be estimated.

We use photos shared by multiple reconstructions to merge

them into a single model. Merging models is attempted

once we cannot add more images to all existing models.

Two models are merged by first aligning them using a sim-

ilarity transform, consisting of a rotation R, a translation t,

and a scaling factor s, and applying Bundle Adjustment on

the result. Instead of estimating the transform from the 3D

points of features reconstructed in both models [12], we es-

timate R, t, and s from the camera poses of two images

contained in both reconstructions since we found that the

camera poses are often more accurate at the boundaries of

a model than the 3D point positions. Let i be the index

of an image contained in both models and let Rki and cki ,

k = 1, 2, denote the rotation and translation of the camera

corresponding to the image in the k-th model, respectively.

The transformation aligning the second model to the first

one is then calculated as

R = R1i
T
R2i , s =

‖c1
i−c1

j‖2
‖c2

i−c2
j‖2 , t = c1i − sRc2i . (1)

In order to robustly estimate the transformation, we only

attempt to merge two reconstructions if they share at least

three images and 16 3D points. We estimate the transfor-

mations induced by all camera pairs and choose the one

that minimizes the mean Euclidean distance between the

shared points. After aligning the two reconstructions, fea-

ture tracks with points in both models are re-triangulated.

Initializing a new reconstruction. In the case that a new

image cannot be added to an existing model, we try to ini-

tialize new reconstructions from pairs of images. We there-

fore use the feature tracks to search for pairs for which the

fundamental matrix between the photos has significantly

more inliers than the homography estimated between them

[21], i.e., if the scene is not dominated by a single planar

surface. The resulting two-view reconstruction is only used

to seed a new model if it contains at least 200 3D points.

Handling malicious users. Malicious users can try to up-

load unrelated images in order to pollute the reconstruction.

Requiring a certain number of inliers to register images to a

reconstruction effectively prevents including unrelated pho-

tos into a model. The problem of unrelated photos slowing

down the image matching stage is effectively handled by

employing image retrieval, which is able to efficiently han-

dle large amounts of distractor images. Implementing the

clustering scheme of [7] could further accelerate this stage.

In addition, we could weight down images taken by users

that are known to upload many unrelated images.

4. Alignment to Building Outlines
Once there are no additional images to add to a recon-

struction, we try to align the model to the footprints of the

block of buildings it was assigned to. In order to compute

the alignment, we first rotate the model upright. We then use

the GPS coordinates of the images to obtain an initial align-

ment, which is subsequently refined. Finally, we perform

a non-linear registration. In contrast to purely rigid align-

ments [10, 23], this last refinement can compensate drift

and gaps in the reconstruction.
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(c) iterative refinement(b) refinement wrt. GPS (d) non-linear refinement(a) initial alignment

Figure 2. Alignments obtained after the four stages of our procedure that registers a reconstruction onto the footprints of a building.

Preparing the building footprints. We use the building

footprints from OpenStreetMaps [1], which provide an out-

line for each individual building. However, most sides of a

building are typically hidden by adjacent buildings. Since

our alignment minimizes the distance between the projected

points and the walls of the buildings, we first extract the

outer outlines of each block and remove all other walls.

Projecting the model to 2D. Similar to [30], we align the

model to the up-vector before projecting all points onto a

plane perpendicular to the up-direction. For each point pi,

we obtain an initial estimate of its normal ni by fitting a

plane through its k = 32 nearest neighbors, resolving the

ambiguity of the orientation of the normal using the direc-

tions under which pi is observed. We initialize the up-

direction nup as the normal of the plane fitted through all

registered cameras1. For all following alignment steps, we

ignore 3D points with nT
i nup > 0.35. We then apply a

RANSAC-based approach to refine the up-vector by iter-

atively selecting two of the remaining points and estimat-

ing the up-direction as the cross products of their normals

[30]. Finally, we discard all points with nT
i nup > 0.15 for

all subsequent alignment steps. This discards most of the

points not lying on a surface perpendicular to the up-vector.

Initial alignment. We obtain an initial alignment by esti-

mating a 2D similarity transform Tinitial using RANSAC. A

similarity transform can be computed from two correspon-

dences between a 2D position of a camera Pci, where P

projects the 3D camera position onto the 2D plane, and its

corresponding GPS coordinate ciGPS stored in the image’s

EXIF tags. A correspondence is considered an inlier to a

similarity transform if the distance between the ciGPS and

the transformed camera position is below 40m. The trans-

formation estimated by RANSAC is then refined using all

inliers and all outliers are discarded.

Refinement respecting GPS coordinates. As can be seen

in Fig. 2(a), Tinitial does not perfectly align the projected

points and the footprints. In the next step, we thus try

to minimize the Euclidean distance dwall(p) between a 2D

point p and its closest wall. To prevent the reconstruction

from drifting away or shrinking too much, we add a second

term that penalizes large deviations between the GPS coor-

dinates and the transformed camera positions. Initializing

1We observed that estimating the up-direction also succeeded for mod-

els for which the cameras do not lie on a single plane.

T1 = Tinitial, we minimize∑N
i=0 (dwall(T1Ppi))

2
+

∑
i∈IGPS

(dGPS(i))
2

, (2)

where IGPS is the set of images with GPS coordinates and

dGPS(i) =

{
0 , if ‖T1Pci − ciGPS‖2 < 20

‖T1Pci − ciGPS‖2 − 20 , else
(3)

penalizes deviation from the GPS coordinates. The thresh-

old of 20m in Eqn. 3 is chosen based on the observation that

GPS error is below 20m for most images [23].

Iterative refinement. While preventing the reconstruction

from drifting away, Eqn. 3 contains large error terms for

parts of a model not contained in the building outlines (c.f .

Fig. 3(c)). In addition, it might drag the model towards the

wrong walls (c.f . Fig. 2(b)). Our second optimization thus

tries to obtain a better alignment by also considering the

normals of the walls when computing the closest wall for a

2D point and by assigning a constant error to points too far

away from the next wall. Initializing T2 = T1, we minimize

E1(τ) =
∑N

i=0 min
(
doriented wall(T2Ppi, T2Pni)

2, τ2
)
, (4)

where doriented wall(p,n) is the distance between the 2D point

p with 2D normal n and the closest wall whose normal nwall

satisfies nTnwall > 0. We iteratively refine the threshold τ
by setting it to the mean plus two times the standard de-

viation of the distances doriented wall(p,n) of the projected

points. We stop the iterative refinement if the change in τ is

below 0.1m, τ < 1m, or if τ increases. Fig. 2(c) illustrates

the result of this refinement step.

Non-linear refinement. In order to use the outlines to

compensate drift in the reconstruction and to close gaps,

we add a term modeling point-to-wall distances into a BA

to refine the model using the information provided by the

building footprints. During BA, we therefore minimize∑N
i=0

∑M
j=0 vi,j

(
d
j
reproject(pi)

)2

+ αE1(1) , (5)

where vi,j = 1 indicates that the i-th 3D point is visible in

the j-th camera and d
j
reproject(pi) is the reprojection error of

the i-th point in the j-th camera. The weight parameter α is

chosen such that a point-to-wall distance of 0.1m is equal to

a reprojection error of one pixel, assuming that most cam-

eras have a similar distance to the building. As can be seen
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(c)(b)

non-linear refinementiterative refinementiterative refinement non-linear refinement

(a)

non-linear refinementinitial alignment

Figure 3. (a),(b) The non-linear refinement can compensate drift. (c) The whole alignment process works robustly even when parts of the

reconstruction are not modeled by the building outlines.

in Fig. 3(a)-(b), this step is able to compensate drift while

successfully ignoring parts of the reconstruction that have

no correspondence in the building outlines (c.f . Fig. 3(c)).

Rating the alignment. When images are assigned to the

wrong block, either by accident or with malicious intent, the

computed alignment will be wrong. In order to detect this

case, we define a similarity score for the computed align-

ment and compare it to the scores for all nearby buildings

inside a radius of 100m. A correct alignment should gen-

erate a score of at least 0.75. If multiple alignments yield

good scores, the reconstruction is flagged for manual in-

spection. To avoid unnecessary computations, the similarity

scores are computed after the first alignment instead of per-

forming all optimizations. The similarity score is defined as

salignment =
|{pi∈P|dwall(T1Ppi)<5}|

|P| · min(s(T1),s(Tinitial))
max(s(T1),s(Tinitial))

, (6)

where the first term models the fraction of points projected

within 5m of a wall. Since we removed all interior walls of

a block, P does not contain any points farther away from a

wall than 5m that are inside of a building outline. The first

term thus estimates how well the points align to the build-

ing outlines. For models assigned to the wrong building

outlines, we sometimes observed that the computed align-

ment degenerates such that many points are close to a wall.

The second term thus penalizes changes in scale between

the initial and the refined alignment, where s(T) is the scale

of the similarity transform T.

5. Visual Feedback For Non-Expert Users
Providing feedback about whether their images were in-

cluded in the reconstruction is essential to allow non-expert

users to participate in the collaborative reconstruction ef-

fort. Even though the sparse point cloud generated by SfM

already offers the required information, the sparsity of the

point clouds makes is hard for users not familiar with SfM

to judge the quality of the reconstruction (c.f . Fig. 4(a)).

At the same time, the standard approaches for dense sur-

face reconstruction [8, 14] are too slow to instantly provide

feedback of the current state of the model under construc-

tion. Thus, current collaborative reconstructions compute

the dense models in an offline step [13, 25]. Instead of ex-

plicitly generating a dense geometric representation of the

scene, we thus approximate the surface structure using tex-

ture splatting [4, 18], expanding each point pi in the sparse

point cloud into a splat, i.e., a planar disc defined by its

center pi, its normal ni, and its radius ri. Each such splat is

then textured with the images from the reconstruction. This

allows our approach to efficiently generate dense renderings

of the SfM point clouds whenever a user requests visual

feedback. In contrast to [9, 13], our approach also handles

non-planar surfaces and does not require depth maps.

We initialize the normal ni of each point as described in

Sec. 4. The normal is then refined by iteratively selecting

all nearest neighbors that are less than 5 cm away from the

tangent plane and re-estimating the normal. Points with less

than 8 selected neighbors are discarded, effectively remov-

ing outliers that have survived the reconstruction process.

Following [18], we divide the tangent plane into 12 sectors

centered at pi and store for each of these bins the shortest

distance between pi and the projections onto the plane of

all selected neighbors that fall into this sector. The radius

ri is then chosen as the maximum of the minimal distances

in order to ensure the appearance of a closed surface. Each

splat is textured by projecting it into the camera observing

pi that has the most orthogonal view onto the splat.

Overlapping splats are blended together when rendering

the point cloud. We found that assigning the same weight

to each fragment generated during the rasterization of the

splats leads to blurry images due to noise in the estimated

normals. To preserve sharp details of structures lying in the

planes of the splats, we project each fragment of pi‘s splat

into the two images with the largest baseline that observe pi

and weight the fragment based on the similarity of the two

color values corresponding to the projected positions.

Fig. 4 compares the proposed visualization approach

with renderings of the SfM point clouds and provides tim-

ings for the computation of the splats. The timing results

shown in the figure demonstrate that the splats can be com-

puted efficiently in a matter of a few seconds while [8, 14]

require multiple minutes for datasets of comparable size.

6. Experimental Evaluation
In this section, we evaluate the proposed system for

collaborative online reconstruction. After presenting the

dataset and statistics about the reconstructions obtained

with our framework, we evaluate the run-time efficiency of

our system. We also investigate the impact of unrelated im-

ages, uploaded by a malicious user, on the run-time. Finally,

we evaluate the robustness of our alignment process to noise

in the GPS coordinates and the ability of our system to de-
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Figure 4. (a) Textured splat rendering (top) offers a much better representation of the current state of the reconstruction than the sparse

point cloud created by SfM (bottom). Our approach is able to handle building that consists of (b) piecewise planar and (c) curved surfaces

while (d) preserving detailed structures on planar surfaces. Timings were measured using one thread of an Intel i7 CPU with 2.8 GHz.
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Figure 5. Sparse SfM point clouds and their alignments to the building outlines for 11 of the 43 buildings reconstructed with our system.

Id #Images #Points Id #Images #Points
1 125 46140 11 246 141299
2 935 212251 12 156 107758
3 306 60741 13 353 187443
4 96 24722 14 93 19875
5 771 89466 15 132 48544
6 340 81957 16 128 26101
7 574 80139 17 109 40351
8 276 214780 18 206 29349
9 330 22929 19 271 83956

10 199 50194 20 1240 196064

Table 1. Statistics for 20 models reconstructed using our system.

The building ids are the same as in Fig. 5

tect alignments to wrong buildings.

If not mentioned otherwise, timings were obtained using

an Intel i7-4770K CPU with 3.50GHz, 8 GB RAM and a

NVIDIA GTX 470 GPU. Four threads were used for Bun-

dle Adjustment and four additional threads handled all other

tasks. SIFT features were extracted using SiftGPU [28] and

FLANN [16] was used for nearest neighbor search. All min-

imization problems were solved using the Ceres library [2].

Reconstruction results. We used our system to recon-

struct (parts of) 43 blocks of buildings from 10, 482 photos,

with 993 images having GPS coordinates, resulting in about

2.6m 3D points (c.f . Tab. 1 for more details on 20 models).

Fig. 5 shows a selection of the obtained reconstructions and

their alignments to the building outlines.

Timings. One goal of our system for collaborative online

reconstruction is to provide rapid feedback whether an im-

age can be added to a reconstruction or not. Instead of mea-

suring the total time required for reconstruction, we thus

measured the time between the moment at which an image

was made available to the service and the moment at which

the image was added to a reconstruction. We uploaded the

images in the order in which they were taken, one after an-

other, at a five second rate, with each image having a reso-

lution of 12 megapixels.

Fig. 6(a) shows the timing results for three reconstruc-

tions of medium size. As can be seen, most images could

be added to the reconstruction within 40s. The spikes in

the plots indicate that some images could not be added im-

mediately due to insufficient correspondences to the recon-

struction and thus had to wait for further photos to be up-

loaded before they could be registered. Timings for the two

models containing the largest number of images are shown

in Fig. 6(b). We observe that the time required to add an

image to a model increases roughly linearly with the num-

ber of cameras already contained in the reconstruction. In

practice, we can expect a user to take multiple images be-

fore checking the current state of the reconstruction due to

the time required to upload an image. If the user takes one

photo every five seconds, our system is able to immediately

show him the model computed from all except the last 10

images since less than 50s are required to add most images.

We consider this to be acceptable for an online system.

In order to test the impact of unrelated images uploaded

by a malicious user on the time efficiency of our system,

we randomly selected 621 distractor images from the Arts

Quad SfM dataset [5] and added them to a building before
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Figure 6. The time elapsed between an image becoming available and being added to the reconstruction for (a) three medium-sized

reconstructions and (b) the two models in our dataset containing the most images. The numbers in the legends refer to the building ids

from Tab. 1. (c) Change in the response times when assigning 621 distractor images to building 12 before attempting the reconstruction.

uploading the relevant images. Fig. 6(c) compares the re-

sponse times of our system with and without the distractors,

reporting only the timings for the related images. Some of

the distractor images actually resulted in valid reconstruc-

tions, but these models did not pollute the overall recon-

struction since they could not be aligned to the building

footprints. Notice that the additional time required when

having distractors assigned to the building is mainly spent

on image retrieval since we currently re-compute the tf-idf
weights for all images when adding a new photo.

Robustness of the alignment process. To evaluate the

robustness of our alignment process to noise in the GPS co-

ordinates, we first aligned our reconstructions by manually

placing the images on a map and registered them against

the building outlines using the proposed approach. This

alignment is then used as a baseline. We then added Gaus-

sian noise to the GPS coordinates of the cameras computed

by the alignment. Fig. 7 shows the percentage of recon-

structions that could be successfully aligned to the building

footprints for different noise levels obtained by varying the

standard deviation of the Gaussian noise. We thereby con-

sider an alignment to be correct if the estimated rotation

and translation differ by less than τt = 1m and τR = 1◦

from our baseline alignment and if the change in the scal-

ing factor is between 0.9 and 1.1. For each noise level, we

repeated the experiment 40 times. As can be seen in Fig. 7,

our alignment process is quite robust to GPS noise, as it

is able to correctly align about 95% of all buildings for a

realistic noise level of 20m [23]. Even for a noise level of

50m, which is considerably larger than the actual GPS noise

measured in [23], our approach is able to successfully align

more than 80% of the models.

Using RANSAC to obtain the initial alignment, our reg-

istration process should be robust to outliers in the GPS

coordinates. For verification, we selected a reconstruction

containing only photos with GPS coordinates and signifi-

cantly distorted the GPS positions of a randomly selected

subset of images. Varying the number of photos with dis-

torted tags and repeating the experiment 10 times, we found

that our approach can handle outlier ratios of up to 90%.

Detecting false alignments. A 3D model might be regis-

tered to the wrong footprints when its images are assigned

0 10 20 30 40 50 60 70 80 90 100
40%

50%

60%

70%

80%

90%

100%

Noise [m]

S
u

cc
es

fu
ll 

al
ig

n
ed

 b
u

ild
in

g
s

 

 

Figure 7. The percentage of successfully aligned buildings de-

pending on the level of noise in the GPS coordinates of the images.

Even for large noise levels, most buildings can still be aligned.

to the wrong building. In this experiment, we show that our

alignment score from Eqn. 6 is able to detect such cases.

As in the previous experiment, we obtained noisy GPS

coordinates by adding Gaussian noise with a standard devi-

ation of 20m to the ground truth camera positions computed

by registering 31 reconstructions. Fig. 8 compares the align-

ment scores for the correct building (diagonal) to the scores

computed for all nearby buildings inside a radius of 100m.

Higher scores are thereby denoted by a darker color. As can

be seen in Fig. 8, the similarity score is significantly higher

for the correct building than for the surrounding buildings

for all but one reconstruction. The ambiguity for this model

is caused by buildings that are only a few meters apart from

the correct outline and have similar shapes (c.f . Fig. 8). The

failure to identify the correct building is thus understand-

able. Notice that in this case, our system would not accept a

wrong alignment automatically but request manual inspec-

tion since multiple buildings achieve a high similarity score.

7. Conclusion & Future Work
In this paper, we have presented a framework for collab-

orative online city reconstruction. Reconstructing individ-

ual buildings, which are mapped into a global coordinate

system by registering them to the building footprints using

our robust alignment procedure, instead of an entire city at

once allows our system to trivially scale to large scenes. We

have shown that the response time of our system is suffi-

ciently short to provide rapid feedback and have presented

an approach for instantly creating photo-realistic renderings

of our reconstructions. Our system is able to handle im-

proper or malicious image uploads, which are typical is-
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Figure 8. (Left) Confusion matrix showing the similarity scores of 31 reconstructions to all nearby buildings within 100m as estimated

from Eqn. 6. Darker entries correspond to a higher similarity. Each row represents a single reconstruction, each column a single building

footprint. (Right) The three confusing buildings from the row marked in red. While the alignment with building 1 is correct, the shape

of the model also fits onto the other outlines. Since the buildings are only a few meters apart, such a situation cannot be prevented when

allowing a reasonable error in the GPS positions of the images. However, our system is able to detect and report such an ambiguous case.

sues in the context of crowdsourcing, as well as noise in

the GPS measurements. Our current system does not detect

unrelated images explicitly, allowing them to influence its

run-time efficiency. For future work, we therefore plan to

automatically detect and remove these images.

To interact with the proposed system a mobile app,

which is named City Reconstructions, is available for free

in the Google Play2 and App Store3.
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