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Abstract

Locality sensitive hashing (LSH) is a computationally
efficient alternative to the distance based anomaly detec-
tion. The main advantages of LSH lie in constant detection
time, low memory requirement, and simple implementation.
However, since the metric of distance in LSHs does not con-
sider the property of normal training data, a naive use of
existing LSHs would not perform well. In this paper, we
propose a new hashing scheme so that hash functions are
selected dependently on the properties of the normal train-
ing data for reliable anomaly detection. The distance met-
ric of the proposed method, called NSH (Normality Sensi-
tive Hashing) is theoretically interpreted in terms of the re-
gion of normal training data and its effectiveness is demon-
strated through experiments on real-world data. Our results
are favorably comparable to state-of-the arts with the low-
level features.

1. Introduction
Anomaly detection is a problem of detecting data that do

not follow a normal behavior, and there are a wide variety of

applications in computer vision such as a surveillance cam-

era. In a general setting of anomaly detection problem, it is

prohibitively expensive to collect training data at an abnor-

mal situation, e.g., criminal and accidental situations. This

causes the difficulty of the anomaly detection that we need

to deal with unseen types of anomaly not included in the

training data. To overcome this difficulty, many of anomaly

detection approaches define a normal model representing

the normal training data collected at normal situations, and

detect a test instance which does not follow this model as

an anomaly [6].

Along this line, many types of anomaly detection ap-

proaches have been proposed, such as a statistical model

approach, a classification based approach and a distance

based approach. In a statistical model approach, a statis-

tical model such as topic model [11], Bayesian network [3],

and Markov random field [14], is estimated from the nor-

mal training data. Then, statistical inference is used to de-

termine if the test instance is normal or not. This approach

could detect a complex anomaly e.g., indirectly related to

observations. However, the statistical model needs to be

carefully designed dependently on each target application—

a statistical model for some target application would not be

applicable to other applications. For example, the statistical

model for detecting abnormal objects among pedestrians [3]

cannot be applicable to detecting abnormal condition of taxi

drivers from their facial expression.

In a classification based approach, a classification

boundary is learned from the normal training data. Then,

if a test instance does not belong to the inside of the bound-

ary, it is classified as an anomaly [22, 21]. Classification

based approach could handle complex normal models using

kernel functions and the optimal parameters of the model

can be analytically learned. However, the classification

based approach would not provide an anomaly score (the

degree of anomaly) since it classifies a test instance to nor-

mal or anomaly only. In anomaly activity detection, the

anomaly score is useful because it indicates how emergent

an anomaly event occurs.

In a distance based approach, the distance between a

test instance and normal training instances is measured

and then an intuitive anomaly score, e.g., k-nearest neigh-

bor distance [4, 5] and the sum of k-nearest neighbor dis-

tance [2, 24] is provided. In addition, this approach does

not need to design the statistical model for each target appli-

cation since the distance between instances is simply mea-

sured. However, the computational cost and memory re-

quirement for computing the anomaly score is basically de-

pendent on the number of normal training data and thus it

was difficult to apply this approach to a large scale problem

such as anomaly activity detection.

To alleviate this disadvantage, locality sensitive hash-
ing (LSH) such as p-stable hashing [23] and randomized

trees [17] have been explored in the field of outlier detec-

tion. These approaches compute approximated distance by

simply counting normal training instances allocated to the

same bucket as a test instance. Thus, the computational cost
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and memory requirement for computing the anomaly score

is constant. In addition, it can be implemented without any

advanced optimization solvers and cumbersome functions.

However, the distance metric used in these approaches con-

siders only individual similarity, e.g., Euclid distance and

Hamming distance between two instances. Thus, the ap-

proximated distance is not relevant to the property of nor-

mal training data and thus its resulting anomaly detection

would be unstable, e.g., due to the influence of dense and

sparse regions of the data.

Our contribution in this paper is to propose the new hash-

ing scheme that enables accurate anomaly detection by in-

corporating the normality dependent hash functions. In par-

ticular, we select hash functions from random candidates

so that instances within the normal region are allocated to

the same bucket and instances across the normal region

boundary are allocated to the different buckets. In this new

hashing scheme, we develop a reliable anomaly detection

method while retaining the advantages of LSHs. The the-

oretical interpretation of the proposed method, called NSH

(Normality Sensitive Hashing) is discussed and its effec-

tiveness is demonstrated through experiments on toy data

and real world data (i.e., UMN, UCSDped and Subway) for

anomaly activity detection.

2. Related Work
In this section, we review the distance based approach

for the anomaly detection and a computationally efficient

alternative based on locality sensitive hashing (LSH).

2.1. Distance-based Anomaly Detection

First of all, let us assume that normal training data D =
{pn}Nn=1 is collected at normal situations, where pn is a

D-dimensional feature vector and N is the number of the

training data. Then, we define the term of anomaly in dis-

tance based approach based on the work [15] as follows:

Definition 1 DB(D,q) anomaly: a test instance q is an
anomaly if at least fraction pt of the normal training data
D lie at a distance greater than dt from q.

This definition indicates that a test instance q is anomaly

if there are not many enough training instances within the

radius dt from q. The problem detecting such anomaly cor-

responds to the decision version of nearest neighbor search

that the number of training data within the radius dt from q
is counted.

2.2. Locality Sensitive Hashing

For efficiently counting nearest neighbors from large

training data, LSH is a widely known and useful approach.

The basic concept of LSH is to allocate similar instances to

the same bucket with high probability. Mathematical defi-

nition of LSH is as follows [8]:

Definition 2 A family H = {h : S → U} is called
(r1, r2, p1, p2) sensitive if for any two instances p,q ∈ S:

If d(p,q) ≤ r1 then pr(h(p) = h(q)) ≥ p1, (1)

If d(p,q) ≥ r2 then pr(h(p) = h(q)) ≤ p2. (2)

where d(p,q) is the distance between a training instance

p and a test instance q in the context of the anomaly de-

tection and pr(h(p) = h(q)) is called collision probabil-
ity. More specifically, the contrapositive argument of Def. 2

implies that if the probability of a training instance p stored

into the same bucket as a test instance q is high, then p is

near q. This scheme is known as (R,1 + ε)-approximate
nearest neighbor search in particular when r1 = R and

r2 = (1 + ε)R where R is the nearest neighbor distance

in D. From this observation, the number Nm,q of training

instances stored into the same bucket as q by a hash func-

tion hm can be used as an anomaly score [23], i.e.,

s(q) =
1

M

M∑
m=1

Nm,q (3)

where M is the number of hash functions. Briefly, the lower

the value of s(q) is, the less training instances near the test

instance q there are. Thus, when s(q) is lower than a thresh-

old st, q can be detected as anomaly.

The advantages of LSH lie on its constant detection

time, low-memory requirement and simple implementation.

However, the performance of the anomaly detection based

on LSH depends significantly on the metric used to measure

the distance. Let us explain this issue briefly using the one

of LSHs applied to the anomaly detection, called p-stable

hashing [8, 23] defined as

hp−stable
m (q) ≡ �w

�
mq+ bm

r
� (4)

where 	 is the transpose operator of a vector, wm and bm
are is the normal vector and the bias of hyperplane w�mq+
bm = 0 respectively. wm is randomly selected following

a p-stable distribution, e.g., p = 2 is a normal distribution,

and bm is randomly selected following uniform distribution

in the range of [0, r]. Then, the collision probability with

p = 2 can be represented using L2-norm, i.e., Euclidean

distance [8].

Euclidean distance is a standard distance metric used

in nearest neighbor search. However, the performance of

many algorithms is seriously degraded by using Euclidean

distance as the distance metric [13, 9, 10]. In particular,

the performance of anomaly detection based on Euclid dis-

tance could be unstable due to the effect of local densities
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of training data (see Sec. 4.1 for the details). Thus, it would

be important to design hash functions in consideration of

its distance metric. Along this line, we extends the LSH

scheme so that the property of entire training data is taken

into account.

3. Our Approach
In this section, we propose a new hashing scheme called,

NSH (Normality Sensitive Hashing).

3.1. Normality Sensitive Hashing

The basic concept of NSH is to allocate instances within

the normal region into the same bucket and instances across

the region boundary into different buckets. Let us denote a

hyperplane by w�p − b = 0 where w is a D-dimensional

normal vector, p is a D-dimensional feature vector, and b is

a scalar bias. From randomly generated candidates of hy-

perplanes, {(wl, bl)}Ll where L is the number of candidates,

we select the one (w∗, b∗) that minimize the following ob-

jective function 1:

1

N

N∑
n=1

f(w�l pn − bl)− λbl (5)

where λ is a penalty parameter for a small bias and f(z) is

a loss function defined by

f(z) ≡
{

0, if z ≥ 0,

z2, otherwise.
(6)

Given a selected hyperplane (w∗, b∗), a hash value for a

feature vector p (and q) is computed as follows

hNSH
w∗,b∗(p) ≡

{
1, if w∗�p− b∗ ≥ 0,

0, otherwise.
(7)

The first and second terms of Eq. 5 correspond to the first

and second condition of LSH (Def. 2) respectively. The in-

tuition of this hash function is as follows: the fewer num-

ber of training data D a hyperplane (wl, bl) intersects, the

smaller the value of the first term of Eq. 5 is. Then, this re-

sults in a high collision probability pr(h(p) = h(q)) since

a test instance q near p has the same hash value as p with

high probability. In addition, the closer a hyperplane to the

training data D is, the smaller the value of the second term

is. Then, this results in a low collision probability since q
far from p has the same hash value as p with low probabil-

ity.

3.2. Theoretical Interpretation

Regarding p1 and p2 of Def. 2 for NSH, we have the

following lemma:

1For simplicity, we introduce to select hash functions that training data

are located on the side of its normal vector heading. In practice, we extend

Eq. 5 and 7 to select hash functions that training data are located on its

either side for computational efficiency.

p
q

x
�

x
x
�

(a) Maximum angle θx in D

p

q

x

x
�

(b) Minimum angle βx in D from q

Figure 1: Diagram of angles θx and βx used for the region-

based distance metric

Lemma 1 When D = 2 and candidate hyper-
planes are limited to pass through a point x at the
horizontal axis,

p1 = 1−
(π + θx

2π

)L

+
(π − θx

2π

)L

, (8)

p2 =
(2π − βx

2π

)L

−
(βx

2π

)L

. (9)

where θx is the maximum angle in training data D, and βx

is the minimum angle between q and p ∈ D with respect

to the point x as shown in Fig. 1. Note that we assume

θx, βx ∈ {0, π}. The proof of Lemma 1 is based on the

work [19] and is given in Appendix. This lemma implies

that the distance metric of NSH is based on the region of

normal training data, represented by angles θx and βx.

3.3. Algorithm

Fig. 2 depicts the pseudo code of learning a normal

model by generating hash functions and computing hash

values of training data. In addition, Fig. 3 depicts the

pseudo code of computing anomaly score for a test instance

q. As shown in pseudo codes, the computational cost for

learning normality model is linear as O(MN) where M
is the number of selected hash functions. Both the com-

putational cost for detection and memory requirement are

constant asO(M). In addition, these algorithms can be im-

plemented using only multiplication and addition, that any

optimization solver and cumbersome functions such as ex-

ponential and cosine are not necessary.

4. Evaluation

In this section, we evaluate our proposed NSH through

experiments on a toy example and the anomaly activity de-

tection using UMN [20], UCSDped [18] and Subway [1]

datasets. In the sequel, we assume ’normal training data’ is

collected at ’normal’ situation.
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(a) p-stable hashing with st = 120 (b) p-stable hashing with st = 140
(c) Examples of selected hyper-

planes in NSH
(d) NSH with st = 199

Figure 4: Toy examples of the anomaly detection using p-stable hashing and NSH. A blue dot is a normal training instance,

a black cross is a test instance, and a red circle is a the test instance detected as anomaly.

4.1. Toy Example

To show the qualitative behavior of p-stable hashing

and NSH, we use toy data with the dimension D = 2,

and N = 200 normal training data, each dimension of

which is following the mixture of two Gaussian distribu-

tions 0.5N (1, 0.25) + 0.5N (−1, 1). That is, there are

a dense region (around (1, 1)) and sparse region (around

(−1,−1)) in training data. Each dimension of a test in-

stance is following a uniform distribution qn ∼ U(−5, 5)
and parameters of p-stable hashing and NSH are set as

M = 100, L = 200, r = 5 and λ = 0.0001. Fig. 4a and

Fig 4b depict examples of detected anomalies by p-stable

hashing. Fig. 4a shows that when the threshold is rela-

tively low, st = 120, test instances outside the dense region

(around x = 2 or y = 2) cannot be detected as anomalies.

Meanwhile, Fig. 4b shows that when the threshold is rela-

tive high, st = 140, test instances inside the sparse region

(around (−1,−1)) are wrongly detected as anomalies. The

former case causes a high false-negative rate, and the lat-

ter case causes a high false-positive rate and thus there is a

trade-off on adjusting threshold parameter st. This implies

that p-stable hashing based on L2-norm distance is seriously

influenced by local densities of the training data.

On the other hand, Fig. 4d obtained by NSH shows that

when the threshold is high enough e.g., st = 199 (the max-

imum threshold is the number of training data N = 200),

test instances outside the dense region and inside the sparse

region are classified correctly. This results in a high accu-

racy on the anomaly detection, implying that NSH (consid-

ering the region of the training data) can handle well the

influence of these local densities. Fig. 4c depicts M = 100
selected hash functions. This shows that hash functions are

located along the region of the normal training data.

4.2. UMN dataset

The UMN dataset [20] consists of three different scenes

each of which repeats several intervals of normal (walking)

and abnormal (escaping) crowd activities. The frame-rate

is 30 per-sec and the resolution is 320 × 240 pixel. We

Method Average AUC (SD)

k-nearest neighbor 86% (15%)

p-stable hashing 82% (12%)

NSH 88% (12%)

Table 1: Average AUC and its standard deviation on UMN

dataset.

use 400 frames 2 of each interval as a normal training part

and the rest of the interval as a test part. In order to extract

features, we estimate the magnitude and orientation of op-

tical flow [16] at each pixel and then compute a multi-scale

histogram of optical flow (MHOF) [7] from each of 4×5 re-

gions at each frame as shown in Fig. 5. That is, the number

of normal training data is 8000 (20 regions × 400 frames)

and the dimension of data is 16. The threshold for MHOF

is set to the average of 1-percentile of the magnitude of all

the normal training data.

The average anomaly score over 20 regions is calculated

at each test frame and used for determining if an anomaly

behavior occurs. Table 1 depicts the average AUC over all

intervals for three methods: the sum of k-nearest neighbor

with k = 15 as a baseline method, p-stable hashing with

M = 50, B = 5 and r = 2 and our proposed NSH with

M = 50, L = 1000, B = 5, λ = 0.001 and r = 2,

where B is the number of concatenated hash functions [8].

Note that we label frames containing an escape behavior as

anomaly. This table shows that our proposed method NSH

outperforms a baseline method k-nearest neighbor and p-

stable hashing.

Fig. 6 depicts examples of average anomaly scores (nor-

malized to 0 to 1) obtained by NSH, and its correspond-

ing ground truth and image frames. These figures show

that the anomaly score keeps close to 1 during people wak-

ing and then starts decreasing as people start running (e.g.,

2If there are not 400 frames before the escaping activity, we use 200
frames as the normal training part.
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Figure 5: The diagram of flow of feature extraction. From left figure, an input frame, optical flow with regions, a multi-scale

histogram of optical flow (MHOF) [7] for the region in red box, and the index of 8 orientations and two levels of magnitude

of optical flow.

(a) 401th frame (b) 485th (c) 540th (d) 600th
(e) Anomaly score for scene 1-1

(f) 1655th frame (g) 1780th (h) 1805th (i) 1905th
(j) Anomaly score for scene 2-1

(k) 7333th frame (l) 7655th (m) 7683th (n) 7721th
(o) Anomaly score for scene 3-3

Figure 6: Examples of average anomaly scores obtained by NSH and these corresponding image frames for UMN dataset.

485 frames). The value of anomaly score takes the min-

imum value when the escaping behavior is at peak levels

(e.g., 540th frame), and increases as only a few people re-

main. These figures imply that NSH can capture correctly

the crowd anomaly behavior.

4.3. UCSDped1 dataset

The UCSDped1 dataset [18] consists of 34 normal train-

ing and 36 test video clips each of which contain 200
frames and 238 × 158 resolution. Normal training videos

contain only pedestrians but test videos contain also non-

pedestrians such as bikers and skaters. Similarly with UMN

dataset, we computed MHOF from each of 13× 10 regions

of each frame with 15-pixel overlap—its threshold is set to

the average of 5-percentile of the magnitude of all normal

training data. Unlike UMN dataset, we constructed a nor-

mal model at each region since appropriate normal models

would be diverse over regions. At each frame, the region

that the average magnitude of optical flow are small is fil-

tered out since there must not be any pedestrian in such re-

gion. Then, the average anomaly score of the current frame,

and ten frames before and after is calculated for each region

and used for determining if an anomaly behavior occurs at

each region. Note that we use the ground truth label pro-

vided with the UCSDped1 dataset [18].

Fig. 7 depict results of UCSDped1 dataset for our pro-

posed NSH with M = 300, L = 1000, B = 5, r = 2
and λ = 0.0001 in comparison with the state-of-art meth-

ods [3, 7, 1, 18]. Both frame-level and pixel-level results are

calculated following the definition described in [18]. This

results show that our proposed method, NSH, are well com-

parable with the state-of-arts (e.g., [7, 3]).
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(b)

Method EER RD AUC

SF [18] 31% 21% 17.9%
MPPCA [18] 40% 18% 20.5%

SF-MPPCA [18] 32% 18% 21.3%
MDT [18] 25% 45% 44.1%
Adam [1] 38% 24% 13.3%
Sparse [7] 19% 46% 46.1%

Video parsing [3] 18% 68% 76%
NSH 18.7% 63.4% 60.3%

(c)

Figure 7: The results of UCSDped1 dataset. (a) Frame-level ROCs, (b) Pixel-level ROCs, and (c) Quantitative comparison

of out proposed NSH with state-of-art methods [3, 7, 1, 18]: EER is frame-level equal error rate, RD is pixel-level rate of

detection, and AUC is pixel-level area under ROC.

Figure 8: Examples of detected anomalies by NSH in UCSDped1 dataset. Red bounding boxes are the regions taking the

lower anomaly score than a fixed threshold.

Especially, our framework of NSH with region de-

pendant normality model (i.e., 13 × 10 models) outper-

forms Sparse [7] and MPPCA [18] which use the same

type of low-level features, e.g., optical flow. Furthermore,

NSH has advantages on constant detection time, low mem-

ory requirement and simple implementation. Meanwhile,

Sparse [7] needs to solve a linear programming problem for

computing anomaly score, and thus its computational cost

depends on the number of iterations—the cost in the worst

case is known to be O(C3.5T ) [12] where C is the number

of dictionaries and T is the number of bits in a test instance.

Fig. 8 depict examples of detected anomaly objects by

NSH. These figures show that our proposed method NSH

can capture correctly anomalies such as bikers, skaters,

carts, persons running, and persons walking in the grass.

4.4. Subway exit dataset

The Subway exit dataset [1] consists of a surveillance

video clip (43 minutes) captured at the exit gate of a sub-

way station. We used the first 10 minutes of the clip as

normal training data and the rest of the clip as test data. We

resized the frames from 512×384 to 320×240 and divided

the resized frames into 10× 10 regions with 10-pixel over-

lap. Similarly with UCSD dataset, we computed MHOF

from each of regions with the threshold set to the average

of 1-percentile of the magnitude of all normal training data,

Method Detection rate False alarms

Adam [1] 100%(9/9) 2
Sparse [7] 100%(9/9) 0

NSH 100%(9/9) 1

Table 2: Detection rate and false alarms on Subway exit

dataset.

and constructed a normal model at each region. Table. 2 de-

picts results of Subway dataset for our proposed NSH with

M = 300, L = 1000, B = 5, r = 2 and λ = 0.0001 in

comparison with the state-of-art methods [1, 7]. We note

that the area of detection is limited to the rectangle from

the point (40, 60) with the width of 160 and the height of

50, corresponding to an upper part of the exit gate. Fig. 9

depict examples of detected anomaly activities by NSH.

These results show that our framework of NSH with region-

dependent normality model (i.e., 10 × 10 models) perform

reasonably well even in complex anomaly detection prob-

lems.

5. Conclusions
We proposed a new hashing scheme, NSH, that hash-

ing function is specially designed for anomaly detection.
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Algorithm 3.1: LEARNNORMALMODEL(M,L,D, λ, r)

// Initialize counter

C ← 0
for m← 1 to M⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

// Collect hash candidates

{(wl, bl)}Ll ← COLLECTHASH(r, L)

// Select a hash function

(w∗m, b∗m)← SELECTHASH({(wl, bl)}Ll , λ)

// Update counter

for n← 1 to N⎧⎨
⎩

if hNSH
w∗

m,b∗m
(qn) = 0

then Cm,0 = Cm,0 + 1
else Cm,1 = Cm,1 + 1

return ({w∗m, b∗m}Mm , C)

Figure 2: Pseudo code for learning a normality model.

By the CollectHash function, the candidates {(wl, bl)}Ll
of hyperplanes are collected following wl,d ∼ N (0, 1)
where wl,d is the dth element of wl, and bl ∼ U(−r, r).
By the SelectHash function, a hash function (w∗m, b∗m)
is selected using Eq. 5. Cm,z is the matrix containing

the number of training data having the hash value z by

the hash function (w∗m, b∗m).

Algorithm 3.2: COMPUTESCORE({w∗m, b∗m}Mm , C,q)

// Initialize anomaly score

s← 1
for m← 1 to M⎧⎪⎪⎨
⎪⎪⎩

// Update anomaly score

if hNSH
w∗

m,b∗m
(qn) = 0

then s = s+ Cm,0

else s = s+ Cm,1

s = s
M

return (s)

Figure 3: Pseudo code for computing anomaly score.

Through experiments on a toy example and anomaly activ-

ity detection using UMN, UCSDped1 and Subway datasets,

we experimentally confirmed that NSH can capture anoma-

lies with a high accuracy, comparable to state-of-the-arts.

We showed that the algorithm of NSH needs only a con-

stant computational complexity, memory requirement with

simple implementation. Overall, NSH could be useful in

a resource-constrained device such as surveillance camera.

Further comparison with other state-of-the-art hashing tech-

niques would be future work.

The performance of NSH could be further improved

when training data with anomaly labels are available since

Figure 9: Examples of detected anomalies by NSH in Sub-

way exit dataset.

more reliable region could be defined by adding the loss-

function regarding anomaly labels to Eq. 5, e.g.,

Nn

N

Np∑
n=1

f(w�l xn− bl)+
Np

N

Nn∑
n=1

f(−(w�l xn− bl))−λbl

(10)

where Np is the number of normal training data, Nn is the

number of abnormal training data, and N = Np +Nn.

Furthermore, in NSH, we can select new hashing func-

tions in on-line manner. That is, we first evaluate hash func-

tions (w∗m, b∗m) selected for previous training data using

Eq. 5 with new training data. Then, we reuse highly eval-

uated hashing functions, e.g., low value of Eq. 5 as new

hashing functions for new data. This on-line update would

be effective in the case that the normality model changes

gradually in space and time, e.g., UCSDped1 and Subway

dataset are the cases of the spatial change.

Appendix
Proof of p1

A hyperplane passing through the angle αx (see Fig. 1a)

holds the equality h(p) = h(q) for any (p,q) ∈ ∠θx.

Thus, we consider the probability of a hyperplane in the

angle αx being selected by our proposed method, NSH. In

the angle αx, the hyperplane whose normal vector is head-

ing/not heading to the training data has the lower/higher

value than the ones in other regions in Eq. 5 with low

enough value of λ. From this fact, there are two cases that

a hyperplane in the angle αx is selected—when at least one

heading candidate is in the angle αx, or when all L non-

heading candidates are in the angle αx. The probability of

the former one is 1 −
(

π+θx
2π

)L

and the probability of the

latter one is
(

π−θx
2π

)L

. Then, the summation of these prob-

abilities results in Eq. 8.

Proof of p2
A hyperplane passing through the angle βx always holds

h(p) �= h(q) for any q /∈ ∠θx. Here, we consider the
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probability of a hyperplane passing through the angle βx be-

ing selected by our proposed method, NSH. The hyperplane

whose normal vector is heading and close to the training

data has the lower value in Eq. 5 with low enough (non-

zero) value of λ. From this fact, there are two cases that

a hyperplane in the angle βx is selected—when at least

one heading candidate is in the angle βx, or when all L
non-heading candidates are in the angle βx. The proba-

bility of the former one is 1 −
(

2π−βx

2π

)L

and the proba-

bility of the latter one is
(

βx

2π

)L

. The summation of these

probabilities results in the lower-bound of the probability

pr(h(p) �= h(q)), i.e.,

pr(h(p) �= h(q)) ≥ 1−
(2π − βx

2π

)L

+
(βx

2π

)L

. (11)

Then, 1 − pr(h(p) �= h(q)) results in the upper-bound p2
of the probability pr(h(p) = h(q)) in Eq. 9.
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