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Abstract

This paper proposes a methodology to estimate the trans-
mission in underwater environments which consists on an
adaptation of the Dark Channel Prior (DCP), a statisti-
cal prior based on properties of images obtained in out-
door natural scenes. Our methodology, called Underwa-
ter DCP (UDCP), basically considers that the blue and
green color channels are the underwater visual information
source, which enables a significant improvement over exist-
ing methods based in DCP. This is shown through a com-
parative study with state of the art techniques, we present
a detailed analysis of our technique which shows its appli-
cability and limitations in images acquired from real and
simulated scenes.

1. Introduction

In images acquired in a participating medium, the light
suffers absorption and scattering by the medium before
reaches the camera. It generated an effect called haze. Ba-
sically, haze becomes a serious issue since it reduces the
overall contrast in images and causes color shift, directly
impacting on the reduction in the visibility. Therefore, de-
hazing an image plays a fundamental role in the restora-
tion process of an image that will be further processed by
legacy computer vision algorithms. The main challenge in
the dehazing process, as well as with many other underwa-
ter restoration methods, is obtaining the true scene appear-
ance, i.e., the appearance that the scene would have if it
were not immersed in that specific medium.

More specifically, the problem of restoring underwater
images has been approach from several angles in the liter-
ature: using specialized hardware [8], multiple images un-
der different conditions [15], stereo images [17, 16] and po-
larization filters [19]. Despite the good results, the meth-
ods that rely on specialized hardware are expensive and
complex. Furthermore, they are hard to implement when
more automatic acquisition is required. In the stereo sys-
tems approach, the correspondence problem becomes even

harder due to the strong effects imposed by the participat-
ing medium. Methods based on multiple images require
several images of the same scene taken in different environ-
ment conditions, which makes it of difficult application in
real conditions. Therefore, in spite of the advances that have
already been reached, the problem of image restoration for
underwater scenes still demands much research effort.

Recently, several dehazing algorithms using a single im-
age have been proposed [6, 20, 9]. While dehazing meth-
ods have shown good performance for outdoor terrestrial
images, there is still room for improvement when they are
applied to underwater images. One key aspect that needs to
be probed further is the transmission estimation, which is
based on heuristics, which may hold true only for restricted
conditions.

As far as single image methods are concerned, He et al.
[9, 11] proposed a new methodology called Dark Channel
Prior (DCP). Their approach is based on the observations
that haze-free images have at least one color in the RGB
spectrum with low intensity value. More recently, the DCP
methodology has also been applied in underwater image
restoration [3, 4]. However, those works do not address
some of the key DCP limitations and the required changes in
the assumptions. Thus, the main contribution of the present
work is the adaptation of the DCP in order to overcome its
limitations for applications in underwater imaging.

2. Methodology
2.1. Optical Model

The images captured in a participating medium can be
modeled as a complex interaction between the light, the
medium and the scene. The model proposed by Jaffe-
McGlamery [13, 12] is one of the most used in the litera-
ture. This model is composed of three components: direct
illumination (Ed), forward-scattering (Efs) and backscat-
tering (Ebs), as shown in Eq. 1:

ET = Ed + Efs + Ebs. (1)

The direct component is the fraction of light that reaches
the camera. Part of the light that irradiates from object is
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lost due to scattering and absorption. This effect should be
considered in the direct component. According to Schech-
ner and Karpel [19], backscattering is the prime reason for
image contrast degradation, thus the forward-scattering can
be neglected. Indeed, this assumption is valid, since the
average depth between the scene and the camera is large.
After simplifications and following the nomenclature used
in [9, 11], the direct component is defined as:

Ed = Je−ηd = Jt, (2)

where J and d are the scene radiance and depth, respec-
tively, and η is the attenuation coefficient (also termed c in
the literature), and t is the medium transmission, considered
as the exponential term.

In outdoor scenes, the attenuation coefficient η is com-
posed only of the scattering coefficient, called β in [9]. In
underwater environments, the absorption represents the in-
herent properties of the medium [12], thus the coefficient η
is the sum of the absorption coefficient, a, and scattering, β;
where both are wavelength dependent.

The backscattering component does not originate from
the object’s radiance, but it results from the interaction be-
tween the ambient illumination sources and particles dis-
persed in the medium. Therefore, a simplified model can be
written as:

Ebs = A(1− e−ηd) = A(1− t), (3)

where the A is the airlight or the global light in the scene,
also called B∞ in the literature. It is a scalar that depends
on the wavelength. The other terms are the same as for the
direct components.

Therefore, an enhanced model that describes the forma-
tion of an image in participating medium can be stated as:

I(x) = J(x)t(x) +A(1− t(x)), (4)

where x are the pixel coordinates and I is the image ob-
tained in a participating medium. This model is valid as-
suming that the medium is homogeneous.

2.2. Dark Channel Prior (DCP)

The Dark Channel Prior is a statistical prior based on the
observation that clear day images exhibited a mostly dark
image in a square patch of the image. It was firstly pro-
posed in [9], and extended in [11]. The authors consider
that in most of the nonsky patches, at least one color chan-
nel has some pixels whose intensity are almost zero. These
low intensity in the dark channel is due to three factors, as
described in [9, 11]: a) shadows in the images; b) colorful
objects or surfaces where at least one color has low inten-
sity and c) dark objects or surfaces. They collected a large
number of outdoor images and build histograms, and with
that, they have shown that about 75 percent of the pixels

in the dark channel have zero values, and the intensity of
90 percent of the pixels is below 25. Those results provide
a strong support to the dark channel prior assumption for
outdoor images.

The formal description of the DCP prior defines the con-
cept of dark channel as:

Jdark(x) = min
y∈Ω(x)

( min
c∈R,G,B

Jc(y)), (5)

where Jc is a scene radiance for each color channel and
Ω(x) is a local patch centered at x. Using this model, the
observation allow us to say that if J is a haze-free image,
except for the sky region, the intensity of J is low and tends
to zero (Jdark → 0).

Considering the optical model it is possible to estimate
the transmission based on the DCP. The airlight constant A
can be estimated in different ways: Using calibration [7],
finding the farthest pixel in the scene [16, 17], finding the
brightest pixel in the image [20, 6] or finding the brightest
pixel in the dark channel [9, 11]. Considering Eqs. 4 and
5, it is possible to isolate the transmission in a local patch t̃
using DCP. Applying the minimum operation to both sides
of the equation, we can estimate t̃ based on the image I and
the airlight A. Eq. 6 shows the estimation of t̃.

t̃(x) = 1− min
y∈Ω(x)

( min
c∈R,G,B

Ic(y)

Ac
). (6)

The transmission t̃ is only one approximation of the trans-
mission due simplifications.The use of a local patch affects
the performance of the transmission estimation. He et al.
[9] proposed the use of a spectral matting method to refine
the estimated transmission. Their method works well but re-
quires a high computational power to process the Laplacian
matrix. This method can be approximated, as described in
[10], in order to make it faster. The use of quadtrees was
also proposed as a way to reduce the computation when
solving the problem [5]. Other possibility to refine the
transmission is using Markov Random Fields, as proposed
in [6, 20].

2.3. DCP in Underwater Condition

Due to the good results obtained by the work of He et al.
[9, 11] and the similarities in the optical model of a haze im-
age and an underwater image, some works using DCP to re-
store underwater image were proposed in the literature. One
of the first works to use DCP was [3], where the methodol-
ogy proposed by He et al. [9, 11] was directly applied in
underwater images. The results show a limited number of
experiments where the visual quality of the result does not
show significant improvement, even in images with small
degradation. However, the authors raise an important issue
related to the normalized image (Ic/A), that it reduces the
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effect of color absorption for different wavelength in under-
water images.

Similarly, Chiang et al. [4] proposed an underwater im-
age restoration method using standard DCP in order to find
the transmission map t. They consider that the attenuation
coefficient η is known a priori. This allows finding the
depth map, instead of the transmission. Furthermore, they
also proposed a method to estimate the water depth where
the image was acquired. Their method obtains good results
for real underwater images, but it is limited by the standard
DCP method in underwater images and by the assumption
that the image is predominantly blue.

Bianco et al. [2] proposed a underwater single image
dehazing using a new interpretation of the DCP for under-
water conditions. The prior proposed explores the fact that
the attention of light in water varies depending of the color
of the light, i. e., the wavelength. In underwater medium,
the red color channel is attenuated at a much higher rate
than the green or blue. The prior is shown in the Eq. 7,
and called BP in this work. Differently from the standard
DCP, this prior is based on the difference between the max-
imum in the red channel and the other channels, instead of
the minimum as in DCP.

D(x) = max
x∈Ω,c∈R

Ic(x)− max
x∈Ω,c∈B,G

Ic(x),

t̃(x) = D(x) + (1−max
x

D(x)). (7)

Other variations of the DCP were proposed by Gibson et
al [7]. They replace the second minimum in the Eq. 6 by
the median operator, called MDCP. The median operator
was chosen due to its ability to preserve edges. It avoids
the refinement in the transmission, as proposed by He et al.
[9, 11]. The MDCP is constructed as described by Eq. 8.

t(x) = 1−medy∈Ω(x)( min
c∈R,G,B

Ic(y)

Ac
). (8)

2.4. UDCP Methodology

The statistic correlation of a low Dark Channel in haze-
free images is not easy to be tested underwater due the dif-
ficulty to obtain real underwater images in an out of water
condition. But, the assumptions made by He et al. [9, 11]
are still plausible, i.e at least one color channel has some
pixels whose intensity are close to zero. This low intensi-
ties are due to: a) shadows; b) objects or surfaces where at
least one color is low intensity, e.g fishes, algae or corals; c)
dark objects or surfaces, e.g. rocks or dark sediment.

Although, the dark channel assumption sounds accept-
able, some problems with the wavelength independence is
clearly false in most of the cases. In Fig. 1, we show two
real underwater images where the DCP fails due to the red
channel. The first column shows a typical situation where
the red channel is nearly dark, thus it corrupted the trans-
mission estimate by the standard DCP. Finally, we show an

example in the last column where the red channel is approx-
imately independent from the scene depth. It is important to
observe the red channel representation, where small values
and larger values are due to darker and lighter colors, re-
spectively, hence, it is the opposite of the transmission, see
Eq. 6.

(a) (b) (c)

(d) (e) (f)
Figure 1. Common situation where the red channel does not re-
spect the wavelength independence and the relation with the depth.
Two different underwater images1 are shown in the first column.
In the second column, it is shown the minimum of the red channel
(miny∈Ω IR(y)). Last column show the colorized transmission
estimated using UDCP.

Considering the aforementioned limitations in underwa-
ter conditions, we propose here a new version of DCP,
which we call Underwater DCP (UDCP). In this case, the
DCP is only applied in the green and blue channels. It is
due the difficult to modeling the behavior of the red chan-
nel. This phenomena is mainly related to the high absorp-
tion effect in the red channel that imposes it to be near zero
in a lot of situation.

Similarly to Eq. 5, Eq. 9 shows the UDCP proposed
here.

JUDCP (x) = min
y∈Ω(x)

( min
c∈G,B

Jc(y)). (9)

The airlight constant A is estimated by finding the bright-
est pixel in the underwater dark channel. Considering Eqs.
4 and 9, we isolate the transmission in a local patch t̃ as
in the standard DCP. Applying the minimum operation to
both sides, we can estimate t̃ based on the image I and
the airlight A. Eq. 10 shows the estimation of t̃. As pro-
posed by He et al. [9], we also use the spectral matting
method to refine the estimated transmission. We defined
the Ω(x) = 15× 15.

t̃(x) = 1− min
y∈Ω(x)

( min
c∈G,B

Ic(y)

Ac
). (10)

1The credits of the images: 2.1) www.underwatersculpture.com; 2.2)
[1].
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3. Experimental Results
In this section, we evaluate three different image restora-

tion methods in underwater conditions, all of them based on
DCP. The standard DCP was applied in underwater images,
as proposed by [3] [4]. The MDCP [7] was also applied
to underwater images, but using refinement method as pro-
posed by He et al. [9]. To the best of our knowledge, ours
is the first work to demonstrate the method’s performance
in this type of environment. We also evaluate the Bianco’s
prior (BP) [2].

Fig. 2 shows the results obtained by applying the meth-
ods to images that we have captured as well as images
acquired by other authors. Our images were acquired in
the Brazil’s Southeast Coast, approximately 17 nmi from
the coast at a depth of 20 m using the underwater vehicle
Seabotix LBV300-5 equipped with two colored cameras.
For these images, the airlight was well balanced in all wave-
lengths due the characteristics of the water and the small
water depth, i.e. the red channel suffers small absorption
rate; some images were acquired with overlayed on-screen
information (OSD) as the one in Fig. 2(u); the images con-
tain part of the vehicle structure in the top left corner; and
resolution of the captured images is 640× 480.

In the first column of Fig. 2, we show the original im-
ages with the airlight A estimation. The yellow pixels are
the 0.1% brightest pixels in the dark channel, as proposed
by He et al. [9]. The red circle is the largest intensity pixel
among these pixels. The orange circle is the estimation us-
ing the UDCP, where He’s method is applied only to the
G-B channels. Finally, the purple circle is the estimation
based on the BP, where the farthest point from the camera
is chosen.

The airlight estimation requires a completely haze-
opaque region in the image, which usually occurs in a re-
gion above the horizon. The method proposed by He et al.
[9] clearly fails in the estimation as shown in Fig. 2(f). In
this case the airlight is detected on a rock. Using the UDCP,
the airlight is correctly detected in every cases. Lastly, the
estimation based on BP fails to find the airlight in the 2(a)
and 2(k).

In Fig. 2, the refined transmission t is shown in the other
columns. The results are colored in order to improve the vi-
sualization, where hot colors, i.e. reddish colors, represent
closer points and cold colors, i.e. bluish colors, represent
distant points.

It is easy to see that the standard DCP fails in the trans-
mission estimation in some cases. This can be mainly seen
in figs. 2(b) and 2(l). This is due to the low intensity of the
red channel. Thus, the standard DCP is mostly composed
by red channel information. Hence, both works [3, 4] that
uses standard DCP can fail in this typical situation. In Fig.
2(g), the transmission seems overestimated, due the bad es-
timation of the airlight. The standard DCP and the UDCP

attained the best results for the images we have acquired,
i.e. the last two rows.

The UDCP and the MDCP results are presented in third
and fourth columns in Fig. 2. They are similar and very
impressive; as it can be seen in figs. 2(c) and 2(d). It is
possible to see that the methods correctly identify the dis-
tance from the camera to the divers and rocks. Moreover,
figs. 2(m) and 2(n) are also similar. The similarities occur
due the low intensities of the red channel and the similar in-
tensities in the green and blue channel, thus the median and
the minimum of the blue and green channels present similar
value. The largest difference between UDCP and MDCP,
shown in figs. 2(h) and 2(i), is due to the red channel inten-
sities. In the last two rows, there is a very small difference
in the low intensity values of the transmission, where the
UDCP is more plausible than the MDCP.

The last column in Fig. 2 shows the results obtained by
BP. In figs. 2(e) and 2(o), it is possible to see the transmis-
sion are well estimated.Fig. 2(j) shows the results of BP,
where the segmentation of the scene is overestimated but
made in a correct way, with exception of the fishes.The last
results are the worst obtained by the BP, where the method
fails to estimate the transmission coefficient (see figs. 2(y)
and 2(t)).

Quantitative results were obtained using two images
from the Middlebury Stereo Dataset - Rocks1 [18] with dif-
ferent illumination, where the disparity maps are available.
The model defined in Eq. 4 was applied in both images
in order to simulate the underwater effects. In this case,
the attenuation coefficient η and the airlight A was defined
as proposed in [14] and [19], respectively. It allows us to
simulate an oceanic water under variable chlorophyll con-
centration, defined by a constant C [14]. The depth map
was obtained using previous knowledge about stereo base-
line and focal distance that was multiplied by a 1.5 factor
in order to increase the global distance and depth variation.
The scene are far from the camera (≈ 4m;≈ 6.5m). We
define C = [0.05; 1.0] in the simulation. The ground truth
transmission was selected as the green channel transmis-
sion, due the small global root-mean-square error (RMSE).
The RMSE was used as metrics to evaluate the quality of
evaluated methods.

Fig. 3 shows the results using simulation. Figs. 3(a)
and 3(d) show the images obtained from the dataset. Figs.
3(b) and 3(e) show the Dark Channel Prior using all color
channel, where it is possible to see that the assumption of
darkness in almost true for the first case, but invalid in the
second case. Figs. 3(c) and 3(f) illustrated the simulated
images using C = 0.5. Both graphics in figs. 3(g) and 3(h)
show the quantitative results, where the results obtained us-
ing BP are discarded in order to improve the visualization.
For this case, it obtains RMSE ≈ [0.7; 0.9] for both cases.

Fig. 3(g) shows the simulated results for a low illumi-
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w) (x) (y)
Figure 2. Evaluation the transmission estimation methods: First column - real underwater images2 and airlight estimation, using DCP, in
red, UDCP, in orange, and the BP, in purple; Colorized refined transmission t using standard DCP, in the second column, the UDCP, in the
third column, the MDCP, in the forth column, and the BP, in the last column.

nation image, Fig.3(a). In this case, it is possible to see
that the UDCP obtains the best results in almost all turbid-
ity level. The largest error was obtained for smaller value of
C. It is due the fact that little degradation images provides
little information about the transmission. When the level of
turbidity increases, the method is able to estimate the trans-
mission until a limit where the information about the scene
is lost. In this case, the transmission is almost null for the
ground truth and estimation, thus the RMSE is small. Sim-

2The credits of the images: 3(a) courtesy of Nick Roberts; 3(f) [1]; 3(k)
freeunderwaterimages.com; 3(p),3(u) by the authors.

ilarly, Fig. 3(h) shows the results for a high illumination
image, Fig. 3(d). In this case the premises of the DCP fail,
although all DCP based method are able to provide a good
estimation. It is possible to see that the overall RMSE is
larger than previous one. In this case, the MDCP obtains
the best results with large turdibity level, and the UDCP
overcoming the DCP. For smaller levels, the DCP and the
UDCP obtain similar results with a some advantage to the
UDCP.
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Figure 3. Quantitative evaluation the transmission estimation
methods: First column - Images obtained from Middlebury Stereo
Dataset; DCP of the original images, in the second column; Ex-
ample of simulated underwater images using C = 0.5, in the third
column; Quantitative results using RMSE, in the last row.

4. Conclusions and Future Directions

The DCP is a very intuitive and fast method. However
it is limited in underwater conditions, due assumptions that
are not always true. Other important limitation is related
to the red channel. It suffers from high absorption rate,
generating wrong estimations. The BP method presented
good results in specific context. Typically, it underesti-
mated the transmission. Furthermore, it needs to be fur-
ther explored in terms of physical plausibility. The eval-
uated MDCP present more robustness in reduced intensity
red channel. Finally, UDCP presents the most significant
results in underwater conditions. It shows good results even
in situations where other methods can fail.

Although the methods presented meaningful results, they
lack both in the reliability and robustness. The use of single
image methods to restore image can enhance the quality but
is susceptible to the scene characteristics. Thus, the future
directions seem to use video in order to disambiguate the
parameters of the model. Acquiring video is a common ca-
pability in almost all model of underwater cameras used by
divers and vehicles. In this case, the single image restora-
tion methods can be a good initial estimation.
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