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Abstract

In this paper, we deal with the problem of categoriz-
ing different underwater habitat types. Previous works on
solving this categorization problem are mostly based on the
analysis of underwater images. In our work, we design a
system capable of categorizing underwater habitats based
on underwater video content analysis since the temporally
correlated information may make contribution to the cat-
egorization task. However, the task is very challenging s-
ince the underwater scene in the video is continuously vary-
ing because of the changing scene and surface condition-
s, lighting, and the viewpoint. To that end, we investigate
the utility of two approaches to underwater video classifi-
cation: the common spatio-temporal interest points (STIPs)
and the video texture dynamic systems, where we model the
underwater footage using dynamic textures and construct a
categorization framework using the approach of the Bag-of-
Systems(BoSs). We also introduce a new underwater video
data set, which is composed of more than 100 hours of
annotated video sequences. Our results indicate that, for
the underwater habitat identification, the dynamic texture
approach has multiple benefits over the traditional STIP-
based video modeling.

1. Introduction
Recent years have witnessed an incredible growth of ma-

rine economy. However, with the increasing human ac-

tivities, the stability of marine ecosystems is facing severe

threats due to pollution, overfishing, exploitation of under-

water sources, etc. Hence, a system with the function of

monitoring and analyzing the change and damage of the

marine environment would be highly advantageous in the

monitoring and protection of this invaluable habitat. In this

paper, we design a system capable of categorizing different

underwater habitat types. With the help of this system, one

will be able to build detailed maps of different ecosystem-

s and then identify the degree of destruction to the marine

environment.

Figure 1. Visual images captured via a high resolution underwater

cartographic HD camera

Many recent works on underwater object or scene clas-

sification are based upon the analysis of images collected

by underwater visual sensors [6, 9, 7, 11]. In our work, the

classification problem is faced by exploiting theories and

techniques provided by underwater video analysis since the

temporally correlated visual information may make contri-

bution to distinguish different kind of habitats.

Obtaining compelling visual categorization result on the

underwater video footage can be a difficult task for two rea-

sons. Firstly, systematically describing distinction among

various habitat types from a video set, such as the scenes

in Figure 1, is often challenging for experts themselves be-

cause of simultaneous occurrence of multiple and uncertain

habitat identifiers, such as the types or the density of sea-

grass. Secondly, although several detectors and descriptors

[8, 3, 13] have shown strong results in modeling space-time

video sequences, especially in tasks such as object and ac-

tion recognition problems, the state-of-the-art approaches
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have poor performance in our scenario since the underwater

scene is continuously varying in the appearance, illumina-

tion, artifacts from surface deformations (waves), light scat-

ter, as well as the viewpoints of camera by which the video

sequences were taken. Last but not the least, the sparseness

of annotated observation data and shortage of relevant ref-

erences on underwater video categorization problem make

this task challenging beyond typical visual sequence cate-

gorization problems.

Most recent approaches to video content analysis have

focused on identification of space-time interest points. In

[8], Laptev and Lindeberg proposed the Harris3D detector,

which compute a spatiotemporal second-moment matrix at

each video point using independent spatial and temporal

values. The HOG/HOF introduced in [8] was utilized to de-

scribe the character in the selected interest points. Another

detector was proposed by Dollar in [3], which is based on

temporal Gabor filters and a 2D spatial Gaussian smooth-

ing kernel. Interest points are selected as local maxima and

then described by Cuboid descriptor, which concatenates on

the computing of local gradients for each pixel in a patch

centered at each interest point. Willems proposed Hessian

detector [13] as a spatiotemporal extension of the Hes-

sian saliency measure. All these works have shown great

success for many spatiotemporal video content recognition

tasks such as object and scene recognition.

However, all the above approaches are based on local in-

terest points extraction, and this property makes it unreason-

able to utilize these detectors and descriptors in our problem

because, in our case, we are interested in the motion of the

whole underwater scene where every point may contribute

to identification of the scene. As a result, we seek to de-

scribe patches instead of specific interest points. Dynamic

texture related approaches [4, 12, 1] perform very well in

modeling and synthesizing space-time video patches. Dy-

namic textures are sequences of images of moving scenes

that exhibit certain stationary properties in time, such as the

water on the surface of a lake, the flag fluttering in the wind,

etc. Among several strongly performing approaches, Doret-

to’s [4] use of linear dynamic systems(LDSs) shows good

generalization properties and robustness to scene artifacts.

In this paper, we focus on using Linear Dynamic Systems

to model underwater scenes and then categorize them into

different habitat types.

In order to make the variation of viewpoints in the un-

derwater video have less impact on the categorization preci-

sion, we model video sequences as Bag-of-Systems(BoSs),

inspired by the Bag-of-Feature(BoF) approach [10], where

an image is hypothesized to be identifiable by the distri-

bution of certain key features extracted from the image.

Hence, a video sequence can be represented by the distri-

bution of LDSs. However, traditional classifiers, such as N-

earest Neighbors and Support Vector Machines(SVMs) will

not work if the original non-Euclidean distance between

LDSs is selected as the distance metrics. We need to de-

fine an indirect distance between two LDSs. In our work,

we calculate the Martin distance [2] as the metric distance

between two LDSs. Finally, by testing different settings for

the BoSs on our Posidonia Oceanica underwater video set,

we study the impact of different framework factors on the

habitat categorization task.

In this paper, we deal with the problem of categorizing

different underwater habitat types. Our first contribution is

making use of the temporal information in the video to cate-

gorize underwater habitats, rather than just isolated images.

We also introduce a new annotated underwater video data

set, which is composed of more than 100 hours of annotat-

ed video sequences taken by a high resolution underwater

cartographic HD camera.

2. Preliminaries

We firstly introduce necessary concepts that are required

to understand our approach. We introduce Linear Dynamic

Modeling and Martin distance between LDSs in this sec-

tion.

2.1. Linear Dynamic System

Given a video sequence {y(t)}Ft=1, we can model it as

the output of LDS as

x(t+ 1) = Ax(t) + v(t) v(t) ∼ N (0, Q) (1)

y(t) = C0 + Cx(t) + w(t) w(t) ∼ N (0, R) (2)

where x(t) is a hidden state at time t, A ∈ R
n×n models

the dynamics of the system, and C ∈ R
m×n maps from the

hidden state to the output of the system. C0 is the mean of

the video sequence. And v(t) ∼ N (0, Q), w(t) ∼ N (0, R)
represent the measurement and processing noise. n is the

order of the LDS system, and m is number of pixels in one

frame of a video sequence.

This model decouples the dynamics of the system, which

is modeled by A, from the appearance, which is modeled by

C. Therefore, we can describe a given spatiotemporal patch

using a tuple M = (A,C). Such a feature descriptor mod-

els both the dynamics and appearance in the spatiotemporal

patch as opposed to image gradient that only models local

texture. To calculate the parameters of this dynamic system,

Doretto et al. [4] introduced a fast but suboptimal method

for identifying the system coefficients. It is suboptimal s-

ince when calculate the hidden state x(t), the equation 1 is

not enforced. The basic calculation is based on the Principal

Component Analysis(PCA) and the Singular value decom-

position(SVD).
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Figure 2. Framework of the machine learning system

2.2. Martin Distance Between LDSs

Since the classifiers do not work if the original non-

Euclidean distance between LDSs is the distance met-

rics, we need to introduce an indirect distance metric-

s. In [2], the proposed Martin distance is one effec-

tive approach. The distance between two LDSs is based

on subspace angles. Given the tuple M = (A,C), the

angle is defined in observability subspace, represented as

O∞(M) = [C�, (CA)�, (CA2)�, ...]� ∈ (R)∞×n. The

angle distance is calculated by solving the Lyapunov equa-

tion A�PA− P = −C�C for P , where

P =

[
P11 P12

P21 P22

]
∈ R

2n×2n (3)

A =

[
A1 0
0 A2

]
∈ R

2n×2n (4)

C =
[
C1 C2

] ∈ R
m×2n (5)

The cosine of the subspace angles {θi}ni=1 is calculated as

cos2θi = ith eigenvalue(P−1
11 P12P

−1
22 P21) (6)

With the angles, the Martin distance can be calculated by

dM (M1,M2)
2 = −ln

n∏
i=1

cos2θi (7)

However, there is one limitation of Martin distance that the

number of the output pixels for both of the Linear dynamic

systems needs to be the same. This limitation can be solved

by resample and resize the video size. More detailed dis-

cussion can be found in [2].

3. Proposed System Framework and Methods
Basic system framework is described in Figure 2.

Inspired by the Bag-of-Features approach, our Bag-of-

Systems framework can be concluded as:(1) extracting dy-

namic textures in underwater video footage and then de-

scribe them using LDS. (2) Clustering methods, such as K-

means, hierarchial clustering, are utilized on the extracted

LDSs and then cluster centers are selected as codewords.

(3) Using this codebook, we can assign labels to the LDSs,

so each video sequence can be represented by the distri-

bution of codewords. (4) Compare the distribution of code-

words from a query video sequence with video sequences in

the database, and then infer its category by the knowledge

from training set.

3.1. Feature Extraction and Description

There are two popular approaches in extracting features:

interest points approach and dense sampling. For interest

points approach, certain pixels are selected as ”interesting”.

This kind of points show a salient property matching certain

requirements, such as certain extreme conditions on shape,

intensity, optical flow or gradients of neighborhoods around

them. For dense sampling, fixed size patches or volumes

are extracted and described. In our scenario, it is reasonable

to use dense sampling since we are interested in the motion

of the whole underwater scene where every point may con-

tribute to identification of the scene. After dividing video

sequences into volumes, we model each volume using Lin-

ear Dynamic System and calculate coefficients for this sys-

tem. After that, every video volume can be represented by a

tuple M = (A,C) as the descriptor. Such descriptor model-

s both the dynamics and the appearance in a spatiotemporal

patch as opposed to gradients that only model local texture.

3.2. Codebook Formation

After extracting features from the whole training set, we

get {Mi = (Ai, Ci)}Ti=1, where T represents the total num-

ber of features. Then the Martin distance is utilized to

map the none-Euclidean distance between two LDSs to Eu-

clidean space.

To reduce computational cost in clustering process, we

firstly embed the LDSs from high order to low dimension

space. We compute the pairwise Martin distance matrix

D ∈ R
l, where l is the dimension of embedding, such

that Dij = d(Mi,Mj). After that, Multidimensional S-

caling(MDS) works with pairwise distances matrix to make

dimensional reduction. When the MDS procedure is done,

we get low dimensional points {Wi}Ti=1, which are all in

Euclidean space. All these points correspond to the LDSs

in high dimensional space respectively, which means Wi

and Mi are one-to-one correspondence for all i from 1 to T .

Then, K-means clustering method is applied to {Wi}Ti=1.

After clustering, we have K cluster centers {ki}Ki=1.

However, this cluster centers do not correspond to the orig-

inal space LDSs. In order to form our codewords {Zi}Ki=1,

we find the LDSs whose corresponding words in low di-
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mension space has the least distance to the cluster centers,

such that

Zi = Mb, b = argmin
j

‖Wj −Ki ‖2 (8)

In this way, we get our codebook Z = {Z1, Z2, ..., ZK},
where Zi = (Ai, Ci).

3.3. Video Representation

Once the codebook is formed, every video sequence can

be represented by a histogram H = [h1, h2, h3, ..., hK , l],
where hi is a weight value of the ith codeword in the video

sequence, l is the class label of the video sequence. The

label l has been assigned by professionals before the exper-

iment. To calculate hi, the easiest way is to calculate the

count of occurrence of the ith codeword. More sophisticat-

ed ways are the Term Frequency defined by equation 9 and

the Term Frequency Inverse Document Frequency (TF-IDF)

defined by equation 10.

hik =
cik∑K
k=1 cik

, k = 1, ...,K and i = 1, ..., N (9)

hik = (
cik∑K
k=1 cik

)ln(
N

Nk
) (10)

where N is the total number of video sequences in the video

set, Nk is the number of video sequences in which code-

word k appears at least once, cik represents codeword k ap-

pears cik times in the ith video sequence, hik is the weight

of codeword k in the ith video sequence.

Once a histogram H is computed, we normalize it by its

L1 norm.

3.4. Classification

Given the training set, we can model video sequences

as {(hi, li)}Ni=1, where hi is a histogram extracted from

ith video sequence and li is the class label assigned. The

classification problem can be concluded as given a query

histogram h, infer the class label for this histogram. One

simple approach to obtain the label is to use the k-nearest

neighbors(k-NN) classifier [5], where query video se-

quence is assigned the majority class label of its k closest

histograms from the training database. Another approach

is to use a discriminative classification method like kernel

SVM. The effectiveness of these two classifiers is compared

in our experiment. To calculate the distance between two

histogram, we use the χ2 distance, which is define as

dχ2(h1,h2) =
1

2

K∑
k=1

|h1k − h2k|2
h1k + h2k

(11)

where hik denotes the kth element of the histogram vector

hi.

(a) C1: healthy and dense oceani-

ca seagrass

(b) C2: patchy oceanica seagrass

(c) C3: sandy and muddy sub-

strate

Figure 3. Sample snapshots from underwater scenes

4. Experiment and Results

The purpose of our work is to investigate feasible ap-

proaches to categorize underwater scenes into differen-

t habitat types. In our experiment, we compare the per-

formance of the space-time interesting points(STIPs)-based

approach with the dynamic textures-based approach on our

video set. In order to test the effectiveness of the Bag-of-

System approach, we compare the performance of the BoSs

with the single LDS approach. In particular, we investigate

the impact of the volume size of dense sampling and alter-

native experimental choices for the BoSs, such as TF-IDF

versus TF weights, as well as the role of classifiers, SVM

versus K-NN, on the categorization performance.

4.1. Data Set

The underwater video data set is provided by Archipela-

gos, Institute of Marine Conservation. Approximately 100

hours of video footage was recorded via a high resolution

underwater cartographic HD camera, visualizing the benth-

ic habitat of Posidonia oceanica seagrass meadows in the

Aegean Sea of the Mediterranean Sea. The endemic sea-

grass species forms extensive meadows which extend from

intertidal zones to depths of 50-60m and are estimated to

colonize between 25,000 and 45,000 km2 of the Mediter-

ranean basin. Video sequences were taken from different

viewpoint and scales, with various noises(e.g. subtitles and

floating of the mobile camera), causing increased difficulty

in categorization..

We select relatively representative annotations from our
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Approach Truth

STIPs 0.40

single LDS 0.63

2× 2 0.78

4× 4 0.88

Table 1. Average Categorization Performance for different ap-

proaches

C1 C2 C3

C1 0.89 0.11 0

C2 0.17 0.83 0

C3 0.07 0.00 0.93

Table 2. Confusion matrix of BoS for approach(4× 4).

date set, which contains 3 major underwater habitat type-

s: (C1) healthy and dense oceanica seagrass; (C2) patchy

oceanica seagrass; (C3) sandy and muddy substrate. Fig-

ure 3 shows some sample frames from this database. For

each class, we extract 80 video subsequences from the w-

hole video sequences, and each of the video subsequence is

of size 720 × 480 × 3, which 720(pixels) and 480(pixels)

are the scale of video frames and 3(seconds) is the length

for each video clip.

Our experiment is conducted on the middle portion in

the video of size 720× 360. We cut off the top and bottom

part since they are covered by noisy information like the

subtitles describing the time, depth and coordinates.

4.2. Implementation Details And Quantitative
Comparisons

1)Training and Validation. In the experiment, the

method we use to test the effectiveness of our approach

is cross-validation. Given the dataset composed of 240

labeled video subsequences(80 for each class), we divide

it into two parts as training and validation sets. We train

our model on 192 randomly picked samples(64 from each

class), and test the truth on the validation set left.

2)STIPs and Dynamic Textures. We firstly test the

performance of space-time interest points(STIPs)-based ap-

proach. This approach seeks to find space-time salient

points in video sequences and then do categorization based

on these ”interesting” points. In our experiment, we on-

ly extract 16 salient points within a 3-second video sub-

sequence using the code from Ivan Laptev’s website1 by

default setting. The STIPs are sparse because our video

sequences show a stationary property of moving scenes.

Within continuous frames, the change of objects or scenes

is very slow and smooth, which makes the STIPs detector

hard to recognize local space-time salient points. In order

1http://www.irisa.fr/vista/Equipe/People/Laptev/download.html#stip

to get enough points, we lower down the threshold of con-

fidence which represents the degree of space-time saliency

and do categorization by the Bag-of-Feature approach. Re-

sult is shown in table 1.

It is very obvious that dynamic textures-based approach

has better performance. In our scenario, the STIPs-based

approach fails to get compelling result since we are inter-

ested in the motion of the whole scene in which every point

may contribute to the identification of the scene.

3)Effectiveness of Bag-of-System and Dense Sam-
pling. We compare the performance of the single LDS

approach with the BoSs approach and investigate the im-

pact of the size of dense sampling. For the single LDS ap-

proach, no BoSs method is utilized for categorization. Giv-

en a test video sequence, the Martin distance between the

testing LDS and LDSs in the training set is firstly calculat-

ed and then the label of its nearest neighbor is chosen as

the label for this video sequence. For the BoSs approach,

we vary the dense sampling volume size by dividing the

720 × 360 video sequence into 2 × 2 , 4 × 4 spatial cells,

and the size in temporal direction is not changed and then

model each cell as a LDS. We introduce TF-IDF representa-

tion for each video and finally use K-NN classifer with k=1

to do the classification.

The overall result is shown in table 1. As the result

shows, the BoS approach performs more effectively than

the Single LDS approach. In the meanwhile, it shows that

the dense sampling size is a crucial factor to overall perfor-

mance. In our experiment, we do not do the optimization

work on the cell size.

Table 2 depicts a confusion matrix of the BoS approach

when we select 4×4 spatial cells (in the following analysis,

all the results are based on this size setting). The entry value

is the ratio of the column class label in the result while its

actual class label should be the row index(e.g. 0.11 means

that when we have 100 test video sequences whose actual

class label is C1 but 11 of them are assigned class label C2

in the experiment). The result is reasonable since it is easier

to mix up healthy grass with patch grass than confuse it with

the barren muddy surface.

4)Representation and Classification: As mentioned

above, we choose k = 1 in the k-NN classifier and we

use radial basis kernel in the SVM classifier. In addition,

since our data set is relatively small, we did not use cross-

validation to tune the parameters in the classifiers. Table 3

displays the categorization performance against the choice

of classifiers and representations. Figure 4 gives a more

detailed performance demonstration on the effect of repre-

sentations and classifiers as a function of the codebook size

from 3 to 12. We can see that the k-NN classifier performs

a little better than the SVM classifier(less than 10% in table

3). In addition, the choice of the representation has little

effect on the overall result(less than 5%). We can verify the
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Method Average Performance

SVM + TF 0.8333

SVM + TF-IDF 0.8095

k-NN + TF 0.8667

k-NN + TF-IDF 0.8852

Table 3. Average Categorization Performance of SVM and k-NN

with TF and TF-IDF representation

Figure 4. Categorization performance of BoS as a function of the

codebook size.

above conclusion using the result in figure 4. The figure

also shows that the performance of classifiers is consistent

with the scale of codebook size. Consequently, consider-

ing the scale of our data set, the performance of different

classifiers and representations is not necessarily statistically

significant. Our framework is not particularly dependent on

the choice of the representation and the classifier.

5. Conclusion and Future Work
In this paper, we proposed a machine learning system

capable of categorizing different habit types. Most of pre-

vious works for categorizing underwater objects and scenes

are based on the analysis of isolated images. We investi-

gated a new approach to make use of temporal information

in underwater video sequences for categorization. This task

is very challenging because the underwater scene is contin-

uously changing in the appearance, illumination, artifact-

s from surface deformations (waves), light scatter, as well

as the viewpoints. According to the property of underwa-

ter video sequences, we selected dynamic textures and con-

struct the whole framework by the approach of the Bag-

of-Systems. The experimental results show that our BoS

system is feasible and effective to do categorization on our

video data, in contrast to the more common STIP video rep-

resentations that fail to provide appropriate descriptors for

our underwater video scenes.

In our experiment, we only use small part of video se-

quences, which has relatively representative features and is

less noisy than other video sequences. But in reality, most

of video footage is more complex and there are much more

underwater habitat types. In the future, we need to expand

the experimental data set. Additional experimental factors

such as the optimization of patch and segmentation size,

codebook size should be investigated. Moreover, it will be

interesting to try the generalised bag-of-features techniques,

such as spare coding for classification introduced in [14],

to compare its performance with BoSs.From the perspective

of methodology, we can combine the isolated image textural

analysis with temporal information and also combine STIPs

with dynamic textures to do classification. Another interest-

ing issue is to investigate other dynamic systems(e.g. kernel

dynamic systems) to model the dynamic textures.
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