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Abstract

This paper is aimed at presenting a new virtual camera
model which can ef�ciently model refraction through �at
housings in underwater photography. The key idea is to em-
ploy a pixel-wise virtual focal length concept to encode the
refractive projection inside the �at housing. The radially-
symmetric structure of the varifocal length around the nor-
mal of the housing surface allows us to encode the refractive
projection with a compact representation. We show that this
model realizes an ef�cient forward projection computation
and a linear extrinsic calibration in water. Evaluations us-
ing synthesized and real data demonstrate the performance
quantitatively and qualitatively.

1. Introduction

The successful development of image-based 3D sensing
techniques in computer vision is based on the well-studied
perspective camera model and the multiple-view geometry
in which light rays are supposed to be straight lines [9].

However, this modeling is not valid for environments
with more than one media such as underwater photography.
In particular, the forward projection via �at housings which
computes the projection of 3D points in water to the image
is known to be a time-consuming process involving highly
non-linear computations [1]. This fact makes applying con-
ventional vision techniques into underwater scenario dif�-
cult, since such inef�ciency makes all the algorithms on top
of 3D-to-2D projections impractical.

To solve this problem, this paper proposes a new virtual
camera model which encodes the refractive projection pro-
cess inside a �at housing by a simple representation, and re-
alizes an ef�cient forward (3D-to-2D) refractive projection
computation and a linear extrinsic calibration. We believe
it will open possibilities for applying computer vision tech-
niques into underwater scene, and its applications include
education and entertainment such as free-viewpoint 3D vi-
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Figure 1. Overview of the setup. (a) Two cameras observing a
chessboard in an octagonal water tank. (b) Calibration result by
our method.

sualization of underwater scenes for digital aquariums, and
3D analysis of underwater objects and events such as fertil-
ized eggs and their development.

The key idea on modeling the refraction by �at housing
is to employ a pixel-wise virtual focal length which encodes
the refraction process inside the �at housing. By exploit-
ing a radially symmetric structure of the pixel-wise focal
lengths, we can describe them with a compact representa-
tion.

The contribution of this paper is twofold. Firstly, our
pixel-wise varifocal camera model realizes a compact and
ef�cient representation of the refractive projection via �at
housings. Secondly our model realizes a linear extrinsic
calibration of cameras in water. To the best of our knowl-
edge, this is the �rst paper which proposes a linear extrinsic
calibration of cameras with �at housings in water.

The rest of this paper is organized as follows. Section 2
reviews related studies. Section 3 de�nes our measurement
model, and Section 4 introduces our pixel-wise varifocal
camera model and a linear extrinsic calibration algorithm.
Section 5 provides qualitative and quantitative evaluations
to demonstrate the advantage of our method. Section 6 con-
cludes this paper with discussions on future work.

2. Related work
While many studies have been proposed for underwater

vision [2–4,7,12,16], most of them do not explicitly model
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Figure 3. Axial measurement model

refractions by housings. This is mainly because such refrac-
tive distortions can be compensated by using dome-shaped
housings carefully tailored for each of the cameras. How-
ever, �at surface housings are also popular because of the
cost, and also because of the fact that regular cameras cap-
turing objects in a water tank via its �at surface are equiva-
lent to underwater cameras with �at surface housings.

In the context of refractions by �at surfaces [1, 6, 10],
Agrawal et al. [1] have proposed a novel calibration tech-
nique based on the axial camera model which estimates the
exact model parameters of the refraction such as the thick-
ness of the refractive surface and its refractive indices w.r.t.
water and the air, etc. By knowing these parameters, Snell’s
law allows computing the light path passing through the re-
fractive media. However, projecting a 3D point in water
to the image involves highly non-linear computations, and
hence can be intractable if used for 3D sensing in water
in practice. We solve this problem by introducing a new
virtual camera model utilizing a pixel-wise varifocal length
concept to improve computational ef�ciency.

Our pixel-wise varifocal length concept de�nes an inci-
dent ray direction for each pixel. Hence it can be seen as
a special case of the raxel concept [8] in general. In this
sense, our contribution is to provide (1) a computationally
ef�cient forward projection algorithm and (2) a linear ex-
trinsic calibration on top of the raxel concept by specializ-
ing it as the pixel-wise focal length.

Our extrinsic calibration also allows the �at housing sur-
faces of the cameras to be located arbitrary in water, while
conventional multi-camera systems with �at refractive sur-
faces [5] assume the cameras to share a single �at surface.

3. Measurement model
Figure 2 illustrates the measurement model of this paper.

A pinhole camera C′ at o0 observes the underwater scene
via a �at housing surface (e.g. glass) of dg thick at da dis-

tance from o0. A point pw in water is projected to pg on
the refraction boundary Sg along the segment �w. pg is pro-
jected to pa on the refraction boundary Sa along the segment
�g, and then pa is imaged by the pixel at pc′ along the ray �a
connecting pa and o0.

Notice that we assume the two surfaces Sa and Sg of the
housing are �at and parallel, but the camera is not neces-
sarily front-parallel to them. Instead, we employ the axial
camera concept proposed by Agrawal et al. [1] to simplify
this model without loss of generality.

Consider a virtual camera C such that its projection cen-
ter is placed at o0 and its optical axis is directed along n,
the normal vector of Sa and Sg (Figure 3). Also let C and C′
share a same intrinsic parameter A calibrated beforehand.
Then the relationship between 2D pixels of these two cam-
eras is expressed by a homography matrix which projects
pixels from C′ to C, and the projected point is on the line
connecting o0 and pc′ by de�nition.

Since this homography is bijective, we can use C instead
of C′ without loss of generality. In addition the light paths
described using C have a radially symmetric structure about
the Z-axis by de�nition. Hence we utilize the (r,z)� coor-
dinate system hereafter.

Let rα and zα be the r and z elements of α. Also let vX =
(rvX ,zvX )� denote the direction vector of line �X towards
the water from the camera. Since Snell’s law is expressed
as μarva = μgrvg = μwrvw by using the refractive indices μa,
μg, and μw of the air, housing and water, we can trace the
light path �a − �g − �w as

va =
(

rpa/
√

r2
pa +d2

a , fc/
√

r2
pa +d2

a

)�
, pa =

da
fc
va, (1)

vg =

(
μa
μg

rva ,
√

1 − r2
vg

)�
, pg = pa +

dg

zvg
vg, (2)

vw =

(
μg

μw
rvg ,
√

1 − r2
vw

)�
, (3)

where fc is the focal length of the camera.
These equations allow computing �w, i.e. vw and pg, from

pc. Similarly, computing pc from �w can be done by apply-
ing Snell’s law inversely. Moreover, since only �w can be the
line of the backprojection of �a, the principle of reversibil-
ity of light and the de�nition of the pinhole imaging ensure
that only �w can be imaged by C among other rays incident
at pw on Sg with different angles.

This suggests that knowing the correct direction of pro-
jection is crucial in computing the projection of a point qw
in water. If vw is available, Snell’s law simply provides the
analytical solution to �nd pg, pa, and pc. Otherwise, i.e.,
if vw is not given, it requires solving a 12th degree equa-
tion, and becomes a time-consuming process [1]. Our goal
is to provide a new virtual camera model which realizes an
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Figure 4. Pixel-wise varifocal camera model. The dashed lines
illustrate the correct refractive paths while the straight lines illus-
trate the perspective projections. In order to represent the correct
incident angles of rays in water by a perspective manner, the pro-
jection center opg moves on Z-axis per pixel (pg) basis.

ef�cient computation of the forward projection of the latter
case.

4. The pixel-wise varifocal camera model
Suppose all the model parameters in the previous section

including the homography between C′ and C have been cal-
ibrated beforehand by conventional methods [1]. The goal
of this section is to introduce a new virtual camera model
which realizes a simple and ef�cient computation scheme
of the refractive forward and backward projections by com-
piling the calibrated parameters of Figure 3 into another rep-
resentation.

To this end, we employ pixel-wise virtual focal lengths
and introduce a virtual camera Cv such that the image screen
coincides with Sg and the focal length changes per pixel ba-
sis as shown in Figure 4. That is, we make the projection
center move by f (pcv) along Z-axis according to the posi-
tion of each pixel pcv so that the ray �w in water passing
through a pixel pg of Cv, pa and pc (Figure 4, the green
dashed line) can be represented simply by connecting pg in
question and the pixel-wise projection center (Figure 4, the
green straight line).

4.1. The pixel-wise focal length
Given a pixel pg = (rpg ,da + dg)

� of the virtual camera
Cv, consider representing the ray �w incident at pg as if Cv
is a pinhole camera and its projection center is on Z-axis.
Obviously its projection center opg = (0,− f (pg))

� is given
as the intersection of the Z-axis and the line �w as illustrated
in Figure 4. Hence by solving opg = tvw + pg using Eq (3),
we have

(
0

− f (pg)

)
= t

( μg
μw

rvg√
1 − r2

vw

)
+

(
rpg
0

)
, (4)

t = − μw
μg

rpg

rvg
, (5)

f (pg) =
μw
μg

rpg

rvg

√
1 − r2

vw , (6)

=
μw
μg

rpg

rvg

√
1 − (

μg

μw
rvg)

2, (7)

HousingAir Water

�qqg

og

Sg
fqg

zqw

rqwrqg

oqg

qw

o0
r

zda dg

fc

Cv

Figure 5. Forward projection by quadratically and globally con-
vergent optimization

=
μw
μa

rpg

rva

√
1 − (

μa
μw

rva)
2. (8)

Once obtained f (pg) for each radial distance of the vir-
tual camera Cv, we can compute �w for each rg without trac-
ing the refraction inside the housing, and can compute the
forward (3D-to-2D) and backward (2D-to-3D) projection
computations (details are given later). Hence we can con-
sider Cv as a virtual camera which models the refractions
inside the housing without loss of generality.

4.2. Backward projection using pixel-wise focal
length

The backward projection using our varifocal camera
model can be done straightforwardly. If a point qg on Sg
is the projection of a 3D point qw in water, then the viewing
ray �w connecting qg and qw is given as

�w : (0,− f (qg))
� + tvw, (9)

using a parameter t.

4.3. Forward projection using pixel-wise focal
length

Consider a 3D point qw in water, and a 3D line �q pass-
ing through qw and intersecting with Sg and Z-axis at qg
and oqg = (0,− fqg)

� as illustrated in Figure 5. Then the
following proposition holds.

Proposition 4.1. f (qg), the pixel-wise focal length stored
at qg, is equal to fqg if and only if �q is identical to the ray
imaged by the camera C.

Proof. The de�nition of the varifocal camera model en-
sures that the line passing through pg on Sg and opg =

(0,− f (pg))
� represents a 3D ray which is projected onto

a single pixel of the camera C. On the other hand, the prin-
ciple of reversibility of light and the de�nition of the pin-
hole imaging ensure that there exists only a ray incident at
pg which can be imaged by the camera C. Hence it is only
the case making f (qg) = fqg that �q is identical to the ray
imaged by C.

This proposition indicates that we can obtain the projec-
tion of qw on Sg, the image screen of the varifocal camera,
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by seeking qg which minimizes the difference between fq
and f (qg).

4.3.1 Forward projection by a recurrence relation

As illustrated in Figure 6, suppose the 3D point qw in
question is �rst projected perspectively to q0 on Sg, the
virtual screen of Cv, by using an initial (or tentative) fo-
cal length fq0 (the green line). By the de�nition of the
pixel-wise varifocal model, the pixel q0 stores its own focal
length fq1 = f (q0) given at the calibration stage. That is,
oq1 = (0,− fq1)

� is the correct virtual projection center for
q0 instead of oq0 = (0,− fq0)

�. By iteratively applying per-
spective projections using (0,− fq0),(0,− fq1), . . . , we have

rqk+1 = rqw f (qk)
/
(zqw + f (qk)) . (10)

By Snell’s law and the fact rqk > rqk′ ⇔ f (qk) > f (qk′),
the following monotonicity conditions hold:

rq1 > rq0 ⇒ rqk+1 ≥ rqk , rq1 < rq0 ⇒ rqk+1 ≤ rqk . (11)

Also, the de�nition of the pixel-wise varifocal model en-
sures

rqk+1 = rqk ⇔ f (qk+1) = fqk , (12)
and, since μa < μg and μa < μw,

da +dg ≤ ∀ fqk . (13)

Since Proposition 4.1 ensures that there exists only one
rqk which satis�es Eq (12), starting the recurrence from
fq0 = da + dg always converges to the correct value satis-
fying Eq (12) as shown in Figure 8.

However, the rate of the convergence becomes slower
and slower by iteration, because the lines by oqk and oqk+1
(the green and the red lines of Figure 6) become nearly par-
allel. To solve this problem, we propose a method based on
the Newton’s algorithm which utilizes this recurrence rela-
tion.

4.3.2 Forward projection by a quadratically and glob-
ally convergent optimization

Using the 3D point qw in question, we can describe rqg as

rqg = E f (rvw) = rq − rvw

zvw
zq = rq − rvw√

1 − r2
vw

zq, (14)

as shown in Figure 5. On the other hand, the back-
projection of the original corresponding pixel in C gives

rqg = Eb(rvw) =
rva√

1 − r2
va

da +
rvg√

1 − r2
vg

dg

= μwrvw

(
da

/√
μ2

a − μ2
wr2

vw + dg

/√
μ2

g − μ2
wr2

vw

)
,

(15)

as shown in Figure 3. Since these two rqg should be equal to
each other, we can formulate this as a problem �nding rvw
which makes the following E(rvw) be zero.

E(rvw) = Eb(rvw)− E f (rvw). (16)

The best rvw which makes E(rvw) = 0 can be computed
by the Newton’s method ef�ciently, and moreover, it con-
verges globally regardless of the initial value.

Proof. The theorem on Newton’s method for a convex func-
tion ensures that if a function is twice continuously differ-
entiable, increasing, convex and has a zero, then the zero is
unique, and the Newton’s method will converge to it from
any initial value [11].

In case of Eq (16), the �rst and the second derivatives of
E(rvw) are given as

dE(rvw)

drvw
=zqE1 + zq r2

vw E3
1 +dgμwE2

+dg μ3
w r2

vw E3
2 +daμwE3 +da μ3

w r2
vw E3

3 , (17)
d2E
dr2

vw

=3zq rvwE3
1 +3zq r3

vwE5
1 +3dg μ3

w rvw E3
2

+3dg μ5
w r3

vw E5
2 +3da μ3

w rvw E3
3 +3da μ5

w r3
vw E5

3 ,

(18)

where E1 = 1/(1 − r2
vw)

1/2, E2 = 1/(μg
2 − μw

2 r2
vw)

1/2, and
E3 = 1/(μa

2 − μw
2 r2

vw)
1/2. Since rvw is non-negative by

de�nition, d2E(rvw )

dr2vw
≥ 0 holds and E(rvw) is a convex func-

tion. Obviously E(rvw) is twice continuously differentiable,
increasing, and has a zero for rvw ≥ 0, then the Newton’s
method converges globally.

In addition, while this global convergence allows us to
start �nding rvw from any value in [0,μw/μg], the recurrence
relation of Eq (10) can provide a reasonable initial guess of
rvw by projecting �rst by a tentative virtual focal length with
a smaller computational cost as shown in Table 1.

5. Linear Extrinsic Calibration Using 16 Points
Suppose we have two pixel-wise varifocal cameras Cv

and C′
v. The goal of the extrinsic calibration is to estimate

the relative pose R,T of these cameras from a set of corre-
sponding points in their images. Since our virtual camera
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Figure 7. Input images captured by the two cameras in Figure 1(a).

is an axial model, its extrinsic calibration can be seen as a
special form of the one for axial cameras [13].

Given a pixel pc′ in the real image, we can obtain the
corresponding position pg on Sg without loss of generality
as illustrated by Figures 2 and 4. Therefore, given a pair
of corresponding points, we can represent the 3D point in
water as

qw = tqwvw + qg = λqwvw + oqg ,
= R(λ ′

qwv
′
w + o′

qg)+T,

⇔ λqwvw − λ ′
qwRv′w = Ro′

qg +T − oqg ,

(19)

where λqw and λ ′
qw denote the unknown depths of the 3D

point from oqg and o′
qg .

This equation indicates that vw, Rv′w and Ro′
qg +T − oqg

are on a single plane. In other words, they satisfy:

v�w
((

Ro′
qg +T − oqg

)
× (Rv′w))= 0. (20)

By rewriting this as an element-wise formula, we have

l�
w Evl′

w = 0,

lw =
(
xvw yvw zvw fqgxvw fqgyvw

)�
,

l′
w =
(
x′

vw y′
vw z′

vw f ′
qgx′

vw f ′
qgy′

vw

)�
,

Ev =

⎛
⎝ r31yt −r21zt r32yt −r22zt r33yt −r23zt −r12 r11

r11zt −r31xt r12zt −r32xt r13zt −r33xt −r22 r21
r21xt −r11yt r22xt −r12yt r23xt −r13yt −r32 r31

−r21 −r22 −r23 0 0
r11 r12 r13 0 0

⎞
⎠ ,

(21)

where ri j is the (i, j) element of R and T = (xt ,yt ,zt)
�.

(xvw ,yvw ,zvw) and (x′
vw ,y

′
vw ,z

′
vw) represent x, y, z elements

of vw and v′w expressed in their camera coordinate systems
respectively.

Since l and l′ are given by each of corresponding pairs,
we can linearly estimate 17 unknown elements of Ev up to
a scale, by using 16 or more corresponding pairs. Once Ev
is given, R and T can be obtained linearly from Ev conse-
quently.

6. Evaluation
Figures 1 and 7 show the evaluation setup and a pair of

input images. We used two cameras (Pointgrey Chameleon)
in front of an octagonal water tank, and observe the scene
inside the tank via a �at acrylic surface tank of 35mm thick.
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Figure 8. Comparison of the rate of convergence. Notice that
errors are lower bounded by 10−12, the default precision of the
�oating-point computations in our implementation.

Notice that this con�guration is equivalent to having two
cameras with housings of 35mm thick in water. The model
parameters of Section 3 are calibrated by [1] beforehand,
and we used the same parameters to synthesize data for
quantitative evaluation1.

6.1. Forward projection

The following evaluations focus on showing the ef�-
ciency of the model rather than comparing the accuracy
with state-of-the-arts since the proposed model does not im-
prove the accuracy by de�nition.

Rate of convergence To evaluate the rate of convergence
of our iterative methods for the forward projection in Sec-
tion 4.3, Figure 8 shows the projection error Ep against the
number of iterations k. By using a synthesized data set, the
reprojection error is de�ned as

Ep = ‖P′(r̂q)− P′(rqk)‖, (22)

where r̂q is the ground-truth and rqk is the value returned by
the algorithm at the k-th iteration in Cv. P(rqk) denotes the
pixel position in the original image of C′ corresponding to
rqk in Cv. Notice that P(·) is employed only for evaluating
Ep in pixels, and is not required for the forward projection
to Cv.

From these results, we can observe that (1) the rates
of convergence of the recurrence relation and the Newton-
based one are linear and quadratic respectively, and (2) our
Newton-based algorithm with 3 times iterations achieve a
sub-pixel accuracy.

Computational ef�ciency Table 1 reports computational
costs of our methods computing up to the subpixel accuracy
and the state-of-the-art solving the 12th degree of equation

1Our implementation is available online at http://vision.kuee.
kyoto-u.ac.jp/˜nob/proj/pvcm/.

823823



Table 1. Average computational costs of single forward projections
Analytical [1] By Recurrence By Newton

Runtime 1.39 msec 0.14 msec 0.27 msec
FLOPS 1512 113 250
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Figure 9. Quantitative evaluations of our extrinsic calibration

analytically [1]. They are the average values of 6400 for-
ward projections run in Matlab on an Intel Core-i5 2.5GHz
PC. The FLOPS are counted using Lightspeed Matlab tool-
box [14].

From these results, we can conclude that our method
runs much faster than the analytical method while main-
taining the sub-pixel accuracy.

Linear extrinsic calibration Figure 9 shows calibration
errors under different noise levels. Given a set of 160 points
synthesized in water, we randomly select 16 points for each
trial, and add Gaussian noise with zero-mean and standard
deviation σ = 0.1,0.2, . . . ,2.0 to their 2D projections. The
three plots report the average errors of 100 trials at each
noise level. Here the estimation error of R is de�ned as the
Riemannian distance to the ground truth [15], and the esti-
mation error of T is de�ned as the RMS error normalized by
|T |. These results indicate that our linear method performs
robustly against observation noise.

Figure 1(b) shows the calibration result using the real
images shown in Figure 7. In this calibration, the average
reprojection error was 0.3522 pixels, and the angle of the
refractive surfaces in front of the two cameras is estimated
as 134.7◦ while it is designed to be 135.0◦ because of its
octagonal structure. These numbers indicate that our cali-
bration method performs reasonably well in practice.

7. Conclusion
In this paper, we proposed a new camera model which

employs pixel-wise virtual focal length in order to encode
the refraction compactly. Based on the proposed varifocal
camera model, we proposed (1) an ef�cient algorithm for
the ef�cient forward (3D-to-2D) projection, and (2) a linear
extrinsic calibration for cameras in water. The evaluations
by synthesized and real data demonstrate that (1) our for-
ward computation requires only a few steps to achieve a

sub-pixel accuracy and reasonably robust against noise, and
(2) our extrinsic calibration well performs in practice.

We believe this method helps us to establish a robust and
practical 3D sensing of objects in water that depend on for-
ward (3D-to-2D) projections. Future work includes further
studies on the extrinsic calibration, in particular about its
degenerated cases, and also on the full 3D surface recovery
by multiple cameras in water, etc.
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