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Abstract

Knowing the RGB spectral sensitivities of a camera is
useful for several image processing applications. Howev-
er, camera manufacturers seldom provide this information.
Calibration methods for determining them can be daunt-
ing, requiring either sophisticated instruments or carefully
controlled lighting. This paper presents a quick and easy
method that provides a reasonable approximation of the
camera response functions with only a color chart and ca-
sual unknown illuminations. Our approach is enabled by
careful design of the cost function that imposes several con-
straints on the problem to make it tractable. In the com-
ponents of the cost function, the Luther condition provides
the global shape prior and the commercial lighting systems
with unknown spectra provide narrow spectral windows for
local reconstruction. The quality of reconstruction is com-
parable with other methods that use known illumination.

1. Introduction and Background
While RGB images are the defacto standard format used

in most computer vision and image processing algorithms,

the images are formed from a more complex description of

the scene in the spectral domain. In particular, RGB images

are formed by the integration of the spectral illumination,

spectral reflectivities of the scene, and the spectral response

of the camera itself. The integration can be considered as

a projection onto the camera’s spectral sensitivity at each

color channel (R, G, B). As a result, the resulting RGB im-

age is a spectral intermingling of the surface materials and

the environment lighting that is difficult to resolve without

prior knowledge of the scene and lighting.

Nevertheless, the knowledge of spectral response of the

camera can be useful for several applications, like computa-

tional color constancy [2, 9], scene classification, and spec-

tral tweaking of the scenes. Unfortunately, manufacturers

rarely reveal the camera response functions. As a result,

they must be determined through calibration approaches,

for which several high-end methods have been developed

(e.g. see [8, 13, 12]). These methods use special equip-

Figure 1. Reconstructing camera response functions from casual

lighting

ment setup such as monochromator and spectrophotometer.

While these approaches are successful, they are limited to a

lab environment, making it impractical for widespread ap-

plication or incorporation in commercial image processing

tools.

Other methods use a color chart and controlled illumi-

nation (e.g. [11, 6]). However, determining the illumina-

tion spectrum is another time consuming and costly spectral

measurement problem and assuming loosely defined condi-

tions like day light illumination may introduce its own error

or complications. To overcome this issue, some researchers

proposed the use of special targets like LED based emissive

targets [3] and fluorescence targets [5]. However, their use

is still restrictive due to high cost and precise fabrication

requirements. A recent method [9] estimates the camera

spectral response by using precomputed mathematical basis

from sky model database to predict sky spectrum from gen-

eral images containing sky in the scene while assuming the

geolocation of the captured sky is precisely known.

This paper attempts to make the estimation of camera
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Figure 2. Reconstruction of spectral sensitivity - an illustration.

sensitivity response easier. In particular, we show that the

camera response functions can be reconstructed using a few

images of the MacBeth ColorChecker Digital SG taken un-

der diverse unknown illuminations. The issue of the inher-

ent low dimensionality of cameras’ color space [3, 6, 7, 10]

earlier implied that the reconstruction is restrictive. To tack-

le this, [11] suggested to take multiple images of the target

using different LED illumination spectra with known spec-

tral properties. On the contrary, our method does not need

the illumination spectrum.

Our Contribution: Our work is different since we consid-

er general off-the-shelf available light sources, the spectra

of which are unknown (not available). The only assumption

is that the illuminations are chosen such that together they

cover the entire visible spectrum while each of them has a

different spectrum. For example, in this paper, we have cho-

sen commercial light sources of five varieties: fluorescent

cool light, fluorescent warm light, incandescent bulb, halo-

gen light, and light emitting diodes. Though their spectra

are not available, it is easy to predict that they are spectrally

different and span the entire visible spectrum as well. Our

method can be explained using an analogy of a panoramic

scene of a mountain being viewed from a room. Each illu-

mination provides a window into the spectral response func-

tion, and together with the shape prior imposed by Luther

condition, they provide the whole panoramic view of the

spectral response function. This is pictorially illustrated in

Fig. 2.

The paper is organized as follows. Section 2 details our

approach and the optimization strategy. In section 3, our

results are compared with other methods and the true spec-

tral sensitivities measured using spectral measurement set-

up [8]. Section 4 provides a discussion and summary of our

work.

2. Calibration Method with Unknown Lighting
2.1. Problem modeling

According to the Lambertian model of camera [4], the

color intensity measured by the camera sensors is given by:

I
{i}
k,x =

∫
Ck (λ)L

{i} (λ)Rx (λ) dλ, k = R,G,B,

(1)

where I, k, x denote the normalized (divided by maximum

value) color intensity, the color channels (R - red, G - green,

B - blue), and the camera pixels (and the corresponding co-

ordinate in the scene), respectively. Further, Ck(λ) denotes

the camera sensor’s response function for the kth channel,

L{i}(λ) denotes the illumination spectrum of the ith light

source, and Rx(λ) denotes the scene reflectance.

In the discretized form, eq. (1) can be written as:

I
{i}
k = R

(
Ck � L{i}

)
, (2)

where I
{i}
k ,Ck, and L{i} are the vectors containing I

{i}
k,x ,

Ck (λ), and L{i} (λ) respectively. R is a matrix containing

the Rx (λ) dλ and the operator � represents element-wise

multiplication. The vectors Ck, k = R,G,B and L{i} are

the unknowns with the constraint of being positive definite.

For the MacBeth digital color checker, we have used the

spectral reflectivities provided in the website [1]. For esti-

mating these unknowns, denoted by Ck and L{i}, we define

the following residue functions:

e
{i}
k =

∣∣∣I{i}k −R
(
Ck � L{i}

)∣∣∣ (3)

fk =

∣∣∣xk −Tk
TCk

∣∣∣
|xk| , (4)

where T =
[
TR TG TB

]T
is computed as:

T =
[
xR xG xB

] [
CR CG CB

]†
. (5)

Here, superscript † represents matrix pseudoinverse and[
xR xG xB

]
represents the color matching functions

of the CIE-1931 color matching functions. Eq. (4) repre-

sents the Luther condition which requires the cameras’ re-

sponse functions to be a linear combination of the CIE color

matching functions. It is notable that the Luther condition

is often weakly satisfied by the commercial camera systems

[8].

We formulate a minimization problem as follows:

min
{Ck,L{i}}

:

{∑
∀i,k

(
e
{i}
k

)2
+
∑
∀k

(fk)
2

}

s.t. : Ck,L
{i} ∈ [0, 1]

, (6)

and reconstruct the camera response functions.
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2.2. Implication of the minimization problem

Note that minimizing eq. (3) for the ith light source

is equivalent to optimizing the product Ck � L{i} for that

light source. Alternatively, Ck � L{i} can be considered as

viewing the function Ck through a window function L{i},
which itself is unknown. Nevertheless, lighting conditions

can be chosen such that each lighting condition provides a

small clear view of the function Ck and together they span

the entire visible spectrum.

Most commercial lights do not have wide spectrum like

daylight and different lights can be chosen to approximate-

ly focus on one or two portions of the spectrum. For ex-

ample, we know that fluorescent warm light has large yel-

low spectral content while fluorescent cool light has peaks

in the blue-green spectral region. Incandescent light’s spec-

trum largely contains yellow-red components. LED lighting

typically has a narrow band spectral response, and so on.

Then for a given commercial light source, minimizing

eq. (3) requires a better reconstruction only in the spec-

tral window(s) of that light source. Thus, the task of re-

constructing Ck is split into simpler tasks of reconstructing

Ck � L{i} in the spectrum of the ith light source’s only.

On the other hand, residue in Luther condition, eq. 4,

imposes that Ck follows the approximate shape of the CIE

spectral function irrespective of the value of Ck � L{i}. In

this way, each illumination contributes to the reconstruction

of a part of Ck, while the CIE spectral functions introduce

the shape prior for Ck. An illustration of the concept dis-

cussed above is shown in Fig. 2.

In other words, there are several equations that Ck

should satisfy, most being concentrated in the spectral

spread of the light sources, and the Luther condition over

the entire spectrum. This enables a good reconstruction of

Ck. On the other hand, each L{i} has only one residue per

light source, which is not a linear function of Ck. Thus, the

reconstruction of L{i} is much more ill-posed than recon-

struction of Ck. As a result, it is unfair to expect that L{i}

can be reconstructed correctly.

2.3. Optimization details

The minimization of the cost function in eq. (6) is a non-

linear least squares problem and we are solving it with trust-

region algorithm with its default settings in Matlab. The

initial guess is generated by assigning random numbers in

the range [0, 1] to all the unknowns. In general we consider

the frequency range 380 nm to 730 nm, at a step of 10 nm.

However, since the spectral reflectivities of all the patch-

es in the color chart are very low in the low frequencies,

sometimes, it results in unreasonable peaks in either the re-

construction of Ck or Li. In such situations, we clip the first

few frequency points and begin optimization from 410 nm.

Typically, a few hundred iterations are sufficient for conver-

gence. So, we fix the maximum number of iteration to 500.

Further, since the Luther condition is only weakly satisfied

by the commercial cameras, we stop optimization if the val-

ue of the cost function falls below 0.2 (based on the error

in satisfying Luther Condition being less than 0.2 for most

cameras (Fig. 3 of [8])). The method takes ∼ 1 minute

when implemented and executed on a i7-3770 CPU@3.4

GHZ, 16 GB, Windows 8 system using Matlab 2012a.

We note that the above optimization scheme may not be

the best suitable and better scheme can be designed for bet-

ter or faster convergence. Further, a smoothing or addition-

al regularization scheme may help in producing smoother

and less oscillatory reconstruction of the response function-

s. Here, for simplicity and conceptual development, we

have not considered smoothing or regularization operations.

3. Reconstruction results and comparison
In this section, we show reconstruction results of the

camera response functions for 28 cameras, which appear in

the dataset provided in [8]. We compare our results with the

actual spectral response functions (ground truth) presented

in the dataset [8], and the reconstructions obtained by eigen

bases [8], singular value decomposition bases, polynomial

bases, radial basis functions, and fourier bases[13].

3.1. Brief summary of other methods

Singular value decomposition (SVD): Given the spectral

response functions of several cameras (m = 1 to M ) for a

given channel k,

Ck =
[
C1

k C2
k . . . Cm

k . . . CM
k

]
. (7)

The singular value decomposition of the matrix C,

C = [u1 u2 . . . uN ]diag ([s1 s2 . . . sM ])
[v1 v2 . . . vM ]T,

(8)

gives the statistical bases of the response function Ck in un.

Here, N is the number of samples in frequency space. For

s1 ≥ s2 ≥ . . . ≥ sM , Ck can be approximated as:

Ck =
D∑

d=1

adud, (9)

where D is the number of bases chosen and ad are the coef-

ficients to be determined. D = 2 is used for generating the

results [8].

Principal component analysis (PCA): Using the matrix C,

the principal component analysis is done by eigenvalue de-

composition of CCT:

C = [e1 e2 . . . eN ]diag ([ε1 ε2 . . . εN ])
[e1 e2 . . . eN ]T.

(10)
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Then for ε1 ≥ ε2 ≥ . . . ≥ εM , Ck can be approximated as:

Ck =
D∑

d=1

aded, (11)

where D is the number of bases chosen and ad are the coef-

ficients to be determined. D = 2 is used for generating the

results [8].

Fourier bases (FB): Let the camera response function of a

camera be given by:

Ck =
D∑

d=1

adsin(dλπ), (12)

where λ ranges evenly from 0 to 1 (N samples), D is the

number of bases chosen and ad are the coefficients to be

determined. Here fd = sin(dλπ) are the Fourier bases.

D = 8 is used for generating the results [13].

Polynomial bases (PB): Let the camera response function

of a camera be given by:

Ck =

D∑
d=1

ad(λ)
d, (13)

where λ ranges evenly from 0 to 1 (N samples),where D
is the number of bases chosen and ad are the coefficients to

be determined. Here pd = (λ)d are the polynomial bases.

D = 8 is used for generating the results [13].

Radial basis functions (RBF): Let the camera response

function of a camera be given by:

Ck =

D∑
d=1

adexp

(
− (λ− μd)

2

σ2

)
, (14)

where λ ranges evenly from 0 to 1 (N samples),where D
is the number of bases chosen and ad are the coefficients to

be determined. Here rd = exp
(
− (λ−μd)

2

σ2

)
are the radial

basis functions. D = 8 is used for generating the results

[13]. The means μd are chosen as (0.3125, 0.3795, 0.4464,

0.5134, 0.5804, 0.6473, 0.7143, 0.7813) and σ is chosen as

0.125.

Intensity computation for the other methods: In all the

other methods [8, 13], the spectrum of D65 illumination,

the spectral reflectivities of Macbeth ColorChecker Digital

SG [1], and the ground truth of the spectral response func-

tions of a camera [8] are used to generate the intensity cor-

responding to each color patch in the color chart using the

Lambertian model (eq. (1) and (2) of the main paper). 3%

additive Gaussian noise is added to the intensity values to

simulate the intensity variation often present in true images

in the area of each patch.

Computation of camera response function: The

bases functions are collected in the matrix B =

Figure 3. Illumination spectra of the sources considered in synthet-

ic illumination experiment.

[b1 b2 . . . bD] and the coefficients of the bases in

A = [a1 a2 . . . aD]T. Then the Lambertian model

in eq. (1) can be written as:

I
{i}
k = Rdiag(LD65)BA, (15)

and A is derived as:

A = (Rdiag(LD65)B)
†
I
{i}
k , (16)

where LD65 is the spectrum of D65 lighting and † denotes

the pseudoinverse.

3.2. Experiments

We split our comparison into two parts: Real illumina-

tion experiment and synthetic illumination experiment.

Real illumination experiment: We had four cameras,

Canon EOS 1D Mark III, Canon EOS 5D Mark II, Nikon

D40, and Sony NEX-5N, which were included in the spec-

tral response dataset in [8]. For each of these cameras, we

took the pictures of the color chart in five different illumi-

nations, which we roughly label as fluorescent cool light

(FCL), fluorescent warm light (FWL), incandescent bulb

(IB), halogen light (HL), and light emitting diodes (LED).

The exact spectra of the light sources are unknown and the

sources have been picked from general retail stores. The

reconstructed color response functions for four cameras us-

ing the proposed method, the other methods, and the ground

truth are shown in Fig. 4 and 5.

Synthetic illumination experiment: For the remaining 24

cameras in [8], five synthetic illuminations shown in Fig.

3 are considered. For each illumination, the intensity cor-

responding to each patch is computed using the Lamber-

tian model (eq. (1) and (2)). 3% additive Gaussian noise is

added to the intensity values to simulate the intensity vari-

ation often present in true images in the area of each patch.
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Canon EOS 1D Mark III Canon EOS 5D Mark II Nikon D40 Sony NEX 5N
Figure 4. Comparison of reconstruction results of the proposed method (Our), other methods (SVD: singular value decomposition, PCA:

principal component analysis), and the ground truth (GT) for the 4 cameras used in real illumination experiment.

Canon EOS 1D Mark III Canon EOS 5D Mark II Nikon D40 Sony NEX 5N

Figure 5. Comparison of reconstruction results of the proposed method (Our), other methods (FB: Fourier bases, RBF: radial basis func-

tions, PB: polynomial bases), and the ground truth (GT) for the 4 cameras used in real illumination experiment. The span of vertical axis

is kept between -0.5 and 1 for clarity of the plots.

Using these illuminations, the measured spectra of the cam-

eras, and the spectral reflectivities of the patches in the col-

or chart, we synthetically compute the expected intensity of

each patch. These intensities are then used for reconstruct-

ing the spectral sensitivities of the camera. The comparison

of the reconstructed spectral sensitivities, results of other

methods, and the ground truth are shown in Fig. 6 and 7.

The proposed method uses five unknown illumination con-

ditions while the other methods [8, 13] assume D65 illumi-

nation condition.

3.3. Observations

The comparison of the proposed method (with unknown

illuminations) with other methods (with known D65 illumi-

nation) is provided in Figs. 4 − 7. Further, for quantitative

comparison, we define the reconstruction error of the kth

channel as follows:

errk =
∑(

Ck �
∣∣Ctrue

k − Ck

∣∣), (17)

where Ctrue
k is the true spectral sensitivity vector (ground

truth) taken from the dataset of [8]. The statistics of the

above reconstruction error for all the 28 cameras considered

in this paper are plotted in Fig. 8.

In Figs. 5 and 7, it is seen that Fourier, RBF, and poly-

nomial bases are more oscillatory and less accurate in rep-

resenting the camera response functions. The lesser accu-

racy is verified in the error statistics plotted in Fig. 8 for

all the channels. In general, SVD and PCA bases are more

accurate in representing the camera response functions, as

verified in Figs. 4, 6, and 8. This effect is expected since

these bases were derived statistically using the data collect-

ed from the same 28 cameras. The accuracy may be poorer

if the concerned camera’s response functions are not a part

of this database of Ck [8]. Their accuracy for other cameras

may be poorer. The proposed method represents the camer-

a response reasonably well despite the illumination spectra

being unknown, though it also demonstrates slight oscilla-

tions in the edges. Further, for some industrial cameras like

Point Grey cameras (Fig. 6, last row), the proposed method

is unable to represent the camera response functions well.

It is interesting to note that for such cases, even the statisti-

cal PCA and SVD bases also result into poor reconstruction

(see Fig. 6). We attribute poor accuracy of the proposed

method for these cameras to their response functions satis-

fying the Luther condition very weakly (see Fig. 3 of [8]).

Further, for the statistical bases, the accuracy for these cam-

eras is poor because their deviation from other cameras in

the database is very large. In essence, our method may per-

form poorer if the camera satisfies the Luther condition very

weakly.

We highlight that in our method, no apriori information

like the spectral dataset of the cameras or the illumination

spectrum is used while other methods with orthogonal bases

assume daylight condition, still our method shows more

versatility and reasonable performance.
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Canon 20D Canon 300D Canon 40D Canon 500D

Canon 50D Canon 600D Canon 60D Hasselblad-H2

Nikon D3X Nikon D200 Nikon D3 Nikon D300S

Nikon D50 Nikon D5100 Nikon D700 Nikon D80

Nikon D90 Nokia N900 Olympus E-PL2 Pentax K-5

Pentax Q Point Grey Grasshopper 50S5C Point Grey Grasshopper2 14S5C Phase One
Figure 6. Comparison of reconstruction results of the proposed method (Our), other methods (SVD: singular value decomposition, PCA:

principal component analysis), and the ground truth (GT) for the 24 cameras used in synthetic illumination experiment.
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Canon 20D Canon 300D Canon 40D Canon 500D

Canon 50D Canon 600D Canon 60D Hasselblad-H2

Nikon D3X Nikon D200 Nikon D3 Nikon D300S

Nikon D50 Nikon D5100 Nikon D700 Nikon D80

Nikon D90 Nokia N900 Olympus E-PL2 Pentax K-5

Pentax Q Point Grey Grasshopper 50S5C Point Grey Grasshopper2 14S5C Phase One
Figure 7. Comparison of reconstruction results of the proposed method (Our), other methods (FB: Fourier bases, RBF: radial basis func-

tions, PB: polynomial bases), and the ground truth (GT) for the 24 cameras used in synthetic illumination experiment. The span of vertical

axis is kept between -0.5 and 1 for clarity of the plots.
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Red channel Green channel Blue channel

Figure 8. Reconstruction error statistics (for error defined in eq. 17) of the proposed and other methods for the three channels. max:

maximum error, std: standard deviation. The data of max errors is clipped in some cases for better representation. The actual max errors

are written in the text for such cases.

4. Discussion and Conclusion

Despite the popular belief that the camera spectral re-

sponsivities cannot be reconstructed well using images of

only reflective color targets under unknown illuminations,

we show that a reasonable reconstruction of the camera re-

sponse functions is possible. In addition to the usually used

linear difference equations, we incorporate Luther condition

in the minimization problem, which introduces an indirect

shape constraint while minimizing the other residues. On

the other hand, the reconstruction task is distributed among

various illuminations due to their inherent spectral charac-

teristics even if the illumination spectra are unknown. In

this manner, we show that cameras spectral responsivities

can be estimated with reasonable accuracy using simple im-

ages of reflective color charts in few casual indoor light-

ing conditions without requiring sophisticated and expen-

sive spectral lab facilities.

In the future, it shall be interesting to study whether

the illumination spectrum can also be reconstructed well,

though no apriori information about the camera and light

source may be available. Subject to its accuracy, such illu-

mination reconstruction may enable illumination engineer-

ing in the image processing realm. For example, it may al-

low photography community to artificially simulate the de-

sired illumination conditions without sophisticated equip-

ment.
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