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Abstract

Perception systems operating in outdoor scenarios face
challenges due to the high dynamic range of the image, as
different regions are illuminated by varying amounts of sun-
light and skylight. A pre-processing step like image calibra-
tion can be used to convert the pixel values to an illumina-
tion independent domain such as reflectance. Each pixel is
therefore represented by a characteristic material descrip-
tion, instead of an illumination and viewpoint dependent
pixel colour. This assists object identification, segmentation
and classification algorithms [20].

This paper investigates modelling the sky colour through
a number of parametric approaches typically used in
the computer graphics community for rendering purposes,
namely those developed by Preetham et al. [17] and Hosek-
Wilkie [6]. The models are compared in terms of chromatic-
ity with observations taken from a camera and are used
to develop an environment map for the application of in-
verse reflectometry of diffuse objects in an outdoor environ-
ment. This is of particular importance for applications in-
volving imaging objects whose primary illumination source
is skylight. It was found that the Hosek-Wilkie [6] model
produced more robust estimations and was less sensitive to
changes in azimuth, while both models had similar recon-
struction results with angular errors of approximately 0.15
radians.

1. Introduction
Computer vision algorithms that operate consistently in

outdoor situations are important for both the robotics and

remote sensing communities. Algorithms such as feature

extraction and description, and object identification, classi-

fication and tracking, are used in robotic applications for a

number of purposes including mapping and navigation. In

remote sensing, it is important to correct for variations in

observations due to geometry and illumination prior to the

application of any high level processing such as classifica-

tion.

In outdoor imaging scenarios, achieving such a consis-

tency is challenging due to the influence of the illumina-

tion source. The main illumination source in these con-

texts is the sun and this can be split into three components;

sunlight, skylight and indirect illumination. The sun itself

can be considered as a light source emitting light rays in a

(roughly) spherical pattern, but due to the large distances

involved, the rays that strike the earth can be approximated

as being parallel to one another. As these rays pass through

the atmosphere they undergo scattering due to interactions

with particles of different sizes. Those which do not scatter

are called sunlight and have high luminance values, thereby

casting sharp shadows in the scene. Light rays that scatter

off different particles have their frequencies altered thereby

generating the blue colour of the sky, with their luminance

at a significantly lower value. This is known as skylight and

casts soft shadows in the scene. Indirect illumination oc-

curs when light reflects off multiple objects and is highly

dependent on the material properties.

Knowledge of the incident illumination, geometry of the

scene and the captured image, can be used to determine the

characteristic spectra of an object in the scene through a

process known as inverse reflectometry. Once this occurs,

algorithms such as object identification and classification

can operate independently of the conditions. Our main ap-

plication for the use of sky models in outdoor inverse reflec-

tometry scenarios is for the identification and classification

of mineral ores on a mine face. A standard method is to

scan the face with a hyperspectral camera and convert the

radiance measurements to reflectance through the use of a

small reflectance panel placed in the scene in a region illu-

minated by sunlight [19]. However, this is only valid for

one specific point and geometric orientation, and fails when

the illumination varies due to occlusions. By performing in-

verse reflectometry, a per-pixel calibration of hyperspectral

images can take place allowing pixels to be described by

spectra independent of the illumination. Following this, a

number of classification techniques can be utilised to iden-

tify the minerals present in the scene.

The contributions of this paper are the verifications of

various sky models in terms of their colour and the prelim-

inary application of inverse rendering in outdoor environ-
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ments. The focus is on recovering reflectance spectra of ob-

jects whose primary source of illumination is skylight. Sec-

tion 2 presents the different sky models that have been used

in the computer graphics community. Section 3 describes

the methodology to perform a verification of the models

through camera calibration, comparison with observations,

and an application that uses these models. The results of the

experiments are shown in Section 4.

2. Related Work
Inverse reflectometry is the technique of inferring ma-

terial reflectance given the image, geometry and lighting

conditions. The geometry can be obtained in outdoor sce-

narios through the use of sensors such as laser scanners to

develop three dimensional models [3][11], while the illumi-

nation can be captured through techniques such as environ-

ment mapping. This involves placing reflective spheres in

the scene [3][4] or taking six images and projecting them

onto a cube. These mappings encompass the entire scene

and can be sampled from using informed methods in order

to calculate the illumination at different points in the scene

[1][10]. An issue with techniques such as sphere and cube

mapping is the fact that they require either an object in the

scene or rotating the camera, which for our future applica-

tion of utilising hyperspectral cameras, is not feasible as the

camera only rotates about the vertical axis. A potential solu-

tion to these problems is through the use of an illumination

model.

Sky model approaches involve estimating the luminance

and chromaticity of the sky through a series of equations.

They are typically used in the computer graphics commu-

nity for rendering outdoor scenes and can be split into two

categories based on whether they estimate colour or not.

The luminance only sky model by Perez et al. [15] has

served as the basis for many other models, including those

developed by Preetham et al. [17], and recently Hosek-

Wilkie [6]. This model is a parametrised equation based

on measurements of the sky, with the relative illuminance

being a function of zenith angle, and the angle between the

sun and a sky element. It contains variable coefficients that

can be altered based on the conditions.

This model was extended by Preetham et al. [17] to also

estimate chromaticity by simulating the sky using an ana-

lytical model developed by Nishita et al. [14]. Following

the simulation of the sky, an optimisation process was run

to generate an equation as a function of the sun position and

turbidity. The luminance values for this model were anal-

ysed in [21] and it was found that there were several prob-

lematic cases where negative luminance could be achieved

depending on the magnitude of the turbidity and elevation

angle. Nevertheless, the model has become widely used due

to its simple implementation and computational speed [7].

A model recently proposed by Hosek-Wilkie [6] adds ad-

ditional terms to the Perez et al. [15] model in an attempt to

fix gradient issues around the zenith and a glow around the

sun position. A simulation of the sky was generated from

the scattering equations to build reference datasets and a

model was fitted and Bezier curves are used to estimate the

parameters. The models presented in [17] and [6] (hereby

referred to as the Preetham and Hosek-Wilkie models) are

the most common and recent sky models, and will there-

fore be utilised in this paper to determine their suitability

for outdoor inverse rendering.

3. Methodology
In order to verify the sky models, we compare the ex-

pected chromaticity values at specific angles with those

from a calibrated camera. After a comparison between the

two is made, we utilise these models in a proof of con-

cept application of inverse reflectometry for diffuse mate-

rials in an outdoor scenario. The system we aim to develop

is shown in Figure 1, which shows a hyperspectral camera

and laser scanner being used to develop a geometric model

and spectral description of each point in the scene. Once

these two data sources are registered together, a Global Po-

sitioning System (GPS) receiver and compass gives the re-

quired location information to estimate the illumination at

each point, calibrate the hyperspectral image, and perform

thematic mapping on the mine face. This system is an ex-

tension of those developed in Murphy et al. [12] and Nieto

et al. [13], and should allow more robust classification to

occur.

3.1. Camera Characterisation

In cameras containing a Charge-Coupled Device (CCD)

sensor array, the incident light from the environment is mea-

sured by a sensor after it has passed through a colour filter

array, often in the form of a Bayer pattern. The image that

a user receives is typically a non-linearly transformed rep-

resentation of the radiance in the scene due to the spectral

sensitivities of the sensor, and the application of algorithms

Figure 1: Overview of the proposed image calibration sys-

tem for hyperspectral imagery.
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such as white balancing and gamma correction. These are

applied to produce visually pleasing images, but are incon-

venient when comparing the sky models and observations

as they are in different colour spaces and cannot be com-

pared directly unless we account for these. Therefore, we

use the raw image captured by the camera, which is propor-

tional to the scene radiance. The camera used for the ex-

periments is a Canon Powershot A720 IS and can be made

to store raw images by loading the Canon Hacker Develop-

ment Kit (CHDK). Once the images are captured, they are

decoded and converted to a portable graymap format prior

to demosaicing. Therefore, for each pixel, we have a three

dimensional vector Praw that represents the measurement

in the raw colour domain and is nominally linearly related

to the luminance [9].

The camera saves the measurements of the sky in the raw

colour domain while the two sky models generate colours in

the XY Z colour space with reference to the D65 reference

illuminant (XY ZD65). In order to compare the two data

we transform them to the XY ZD65 colour space, which is

a tristimulus, device independent model [8][9]. The raw

colour domain measurement, where each channel is charac-

terised by the sensor response function of the camera, are

converted by generating a device dependent transformation

matrix. These response functions are found by imaging a X-

Rite ColorChecker board under a known illuminant which

in this case, is a lamp. The raw values for each patch Praw

are obtained by manually selecting a region of interest and

calculating the mean for each channel. The spectra of the

lamp Ilamp(λ) is found by placing a reflectance panel in

the scene and measuring the reflected spectra with an ASD

spectrometer. This spectrometer is also used to measure the

reflectance spectra of each colour patch R(λ). The spec-

tral response functions can be approximated in a number of

ways [2][8], and we use the quadratic fitting method devel-

oped in [16]. The pixel intensity in a raw image is calculated

as:

Pj,raw[k] =

∫ 830nm

380nm

I(λ)Rj(λ)Sk(λ)dλ,

k : {R,G,B}, j ∈ [1, 24],

(1)

where j is the index of the colour patch and k is the

colour channel [8]. We simulate the appearance of the Col-

orChecker board under a D65 reference illuminant light

source by substituting the illumination spectra and camera

response functions into Equation 1. The tristimulus values

for each colour patch in theXY ZD65 are also calculated as:

Pj,xyz[k] =

∫ 830nm

380nm

I(λ)Rj(λ)mk(λ)dλ,

k : {X,Y, Z}, j ∈ [1, 24],

(2)

where m are the colour matching functions [9]. A 3 ×
5 matrix is generated that allows transformation between

the XY ZD65 colour space and the raw colour domain

MXY ZD65→raw.

MXY ZD65→raw = PrawP
+
XY ZD65

, (3)

Mraw→XY ZD65
= PXY ZD65

P+
raw, (4)

where Pc is a 3 × 24 matrix containing the tristimulus val-

ues for each colour patch in the specified colour space c,
and P+ is the pseudo-inverse of matrix P = [r g b rgb 1]T

or P = [x y z xyz 1]T . This polynomial transformation

method was shown to decrease the colour differences be-

tween the two colour spaces [5]. The transformation matri-

ces are utilised for comparing the sky model estimates with

the observations, as well as calculating the total illumina-

tion in the scene.

3.2. Sky Dataset Collection

Comparing the modelled chromaticity of the sky with

observational data involves capturing images of the sky in

raw format. The input parameters into the sky models are

location, orientation, time and turbidity, so these are the

variables we can alter. Sky models fail when clouds are

present in the sky, unless the location and height of these

clouds are known. Unfortunately, we do not have this data

so for this work we focus on clear sky conditions. The im-

ages of the sky are taken from the horizon level to zenith in

ten degree increments at a number of different orientations

and times of day. As Figure 2 shows, images were cap-

tured facing away from the sun in order to minimise arte-

facts brought about by inscattering of sunlight.

After raw images of the sky are captured, a minimal

amount of pre-processing is applied so as not to impact the

measurements. The raw file is converted to a readable im-

age format and saved in 16 bit form. The saturation limit of

the raw image is 10 bits, so no scaling of the data has oc-

curred. The image is demosaiced to produce an image with

three layers in the camera sensor domain. The measure-

ments for a specific angle are taken by sampling a square

region around the centre of the image, which reduces the

influence of vignetting in the image. In order to compare

the observations against the models we first convert the raw

data to the XY ZD65 colour space using the transformation

matrix Mraw→XY ZD65
. This is an approximation of the re-

quired transform as ideally, the conversion matrix should

have been developed using the same illuminant sources [9].

However, this requires the sky spectral information from

each point on the hemisphere and it is therefore not feasible

to compute for each pixel. TheD65 standard illuminant has

a broad band spectrum and approximates daylight, so this is

a reasonable illumination model to use for the estimation.

3.3. Diffuse Inverse Reflectometry

As a proof of concept for an outdoor image calibration

system, we investigate the use of sky models to perform
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Figure 2: Collection of sky data is done by imaging at ten

degree increments in elevation at a fixed azimuth. To avoid

inscattering, datasets are captured facing away from the sun.

inverse reflectometry for diffuse materials. In order for this

to occur we need information about the illumination source

and scene structure, as well as an observation of the scene.

In this context the illumination source is described by

first finding the location and orientation of the scene using a

GPS receiver and a compass respectively. The latitude, lon-

gitude, time and time-zone of the the experiment are used as

inputs into a solar position algorithm [18] that calculates the

azimuth and elevation angle of the sun. The location of the

sun is used in the sky model, along with the turbidity fac-

tor which we assume to be between one and two for a clear

sky scenario [17]. The models are then used to generate a

hemispherical environment map that can be used to illumi-

nate the scene. In this experiment we uniformly sample the

hemisphere 100 times to generate the incident illumination

at a point in the scene:

〈L(x)〉 = 1

N

N∑
i=1

Lm(x← ψi)V (x, ψi)cos(ψi, Nx)

p(ψi)
(5)

where L(x) is the illumination at a point x in the scene,

N is the number of samples, Lm(x ← ψi) is the illumi-

nation from direction ψi determined from sampling the sky

models, V (x, ψi) is the binary visibility function that deter-

mines whether point x is occluded from the light sample,

Nx is the normal of the object and p(ψi) is the probability

density function for the environment map.

This paper is focused on utilising the sky models and

their chromaticity predictions, so we minimise indirect illu-

mination by imaging inside a cube with one side left open

as shown in Figure 3. The inside of the cube is lined with a

thick black fabric in order to minimise light from reflecting

off the sides, thereby re-illuminating the object. The diffuse

object that will be imaged is the ColorChecker board and

this is placed at the bottom of the cube. The camera is situ-

ated directly above it and the positions of the object, camera

and cube are measured and modelled. This is analogous to

obtaining the geometry of the scene through the use of a

laser scanner as shown in Figure 1. In order to obtain only

skylight as the illumination source, we orientate the cube

Figure 3: An image is taken of a ColorChecker board inside

a black box that is exposed to skylight. Inverse rendering

is then used to calculate material properties using the sky

models as the illumination source.

such that the opening side faces away from the sun and then

take a picture. After imaging the scene, the solar position

is calculated and we are able to perform inverse rendering

in the raw colour domain. This domain is chosen as other

colour spaces such asXY Z or sRGB are non-linearly sen-

sitive to a number of frequencies and the observations are

already captured in the raw format. To verify consistency

amongst the sky models, we compare the material charac-

teristics they infer to ground truth values found by integrat-

ing the reflectance spectra with the spectral response func-

tions for the three channels.

The inverse reflectometry method generates an approx-

imation to the material reflectance spectra as the raw pixel

intensity P is calculated according to Equation 1. Through

discretisation:

P [k] =

830nm∑
i=380nm

I(i)R(i)Sk(i), k : R,G,B (6)

where I is the illumination spectra, R is the reflectance

spectra of a material and S is the sensor sensitivity function.

For a particular sensor, the sensor response shows that not

all frequencies influence the measurement and so we may

approximate the raw intensity by sampling a smaller num-

ber of wavelengths with lower bound l and upper bound u.

P [k] =

u∑
j=l

I(j)R(j)Sk(j) (7)

Assuming that the reflectance is constant over the region of

interest between l and u, then:

P [k] = R[k]

u∑
j=l

I(j)Sk(j), (8)

R[k] =
P [k]

u∑
j=l

I(j)Sk(j)
. (9)
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This means that the reflectance can be approximated by di-

viding the raw pixel intensity by the illumination in the raw

colour domain. The approximation is highly dependent on

how wide band the sensor response is and is more suited

for hyperspectral sensors as the spectral response is narrow

band, allowing the reflectance spectra to be sampled at a

higher degree.

Therefore, in order to perform inverse reflectometry for

the different colour patches in the scene, we generate a mask

that captures the pixels that are associated with a partic-

ular object. This mask is used to generate the associated

illumination values in the raw colour domain. We then

divide the pixel values by the illumination to get a num-

ber of reflectance estimates, of which we take the median

value. This is because the sampling strategy induces a large

amount of noise in the illumination estimates, while there is

also noise present in the image itself.

4. Results
4.1. Camera Characterisation

Figure 4a shows the spectrum of the illumination source

as measured by the ASD spectrometer. The two sharp peaks

at approximately 546nm and 611nm are indicative of the

presence of both mercury and europium in either the lamp

used for the experiment, or the external fluorescent lights

that were illuminating the area.

All camera images used in these experiments are taken

with a shutter speed of 1
200 seconds in the raw colour do-

main. The image of the ColorChecker board is used to gen-

erate mean raw values for each colour patch and together

with the measured reflectance spectra, we can approximate

the sensor response functions. These are shown in Figure

4b and have not been normalised in order to avoid a channel

dependent scaling factor being introduced into the calcula-

tions. The functions show that the red channel has a wider

band than the blue and green channels, and is also less sen-

sitive.

The transformation matrix between raw and XY ZD65

is generated by estimating the raw values under a D65 illu-

minant and calculating the tristimulus XY ZD65 values for

each patch as discussed in Section 3.1. The camera depen-

dent transformation matrix MXY ZD65→raw were found to

be:
⎡
⎣39.61 −14.54 −4.79 −8.24 0.89
−0.05 0.19 0.02 −10.11 0.92
0.00 0.02 0.13 −2.36 0.62

⎤
⎦ , (10)

while Mraw→XY ZD65
was calculated as:

⎡
⎣ 0.02 0.00 0.05 0.00 −0.02
−0.01 0.03 0.03 0.00 −0.02
0.00 −0.03 0.25 0.00 −0.09

⎤
⎦ . (11)

4.2. Sky Dataset Collection

A total of 18 datasets were captured between June and

August at times ranging from mid-morning to afternoon.

The azimuth angles were varied between 12◦ and 292◦ with

all images taken facing away from the sun. The images

were taken on what were classified as ‘clear skies’ and an

example of this can be seen in Figure 5.

As we are comparing the chromaticity values generated

by the sky models with the observations from the exper-

iments, we need to convert the images from raw to the

XY ZD65 colour space using the empirically derived trans-

formation matrix MXY ZD65→raw. This is further trans-

formed into the xyY colour space in order to isolate the

luminosity Y , from the two chromaticity channels x and y.

Figure 6 shows the errors when comparing the models

with the observations. The datasets were grouped based on

their azimuth angles and are represented by different mark-

ers. The results reveal that the Preetham model errors are

highly dependent on the azimuth angle as shown by the

varying error curve shapes. On the other hand, the Hosek-

Wilkie model is more robust to these changes, with all error

curves tightly grouped together. In terms of y chromatic-

ity, the Hosek-Wilkie model has a non-linear relationship

with the elevation angle. Based on these results, the Hosek-

Wilkie model has been shown to produce more stable and

reliable estimations when compared to the Preetham model,

though further improvement could be achieved by focusing

on the influence of elevation angle upon y-chromaticity.

4.3. Diffuse Inverse Reflectometry

The ColorChecker Board was imaged inside a dark box

with one side left open and facing the sky as shown in Fig-

ure 3. The illumination at various points in the scene is

calculated by utilising the sky models as an environment

map and sampling it 100 times. This simple sampling strat-

egy is not optimal and yields a high amount of noise in the

illumination map. As a result of this, we use the median

value of the inferred reflectance calculated using Equation

Figure 5: Sample image from experiment 6, elevation 20

degrees. The square indicates the area used to calculate

chromaticity of the sky.
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Figure 4: Illumination source spectra and sensor response functions.
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Figure 6: Mean errors for each elevation angle between the sky models and the observations. Errors are calculated by

subtracting the sky model from the observations. Each marker represents an azimuth group - circles (< 82◦), triangles

(82-194◦) and crosses(> 194◦), and the Preetham y-chromaticity error has been offset by 0.04 for clarity.

9. Figure 7 shows the inferred reflectance for both models

for each channel. The inferred reflectance has been scaled

by a channel dependent factor αk, k = R,G,B calculated

by:

αk = [R1,t[k], . . . R24,t[k]][R1,i[k], . . . R24,i[24]]
+, (12)

where Rj,t[k] and Rj,i[k] are the ground truth and in-

ferred reflectance values respectively for colour patch

j in channel k. The per-channel scaling values were

found to be (1.41, 0.60, 0.40) for the Preetham model, and

(1.91, 0.70, 0.44) for the Hosek-Wilkie model.

The scaling values are a combination of multiple factors

including a constant scaling factor that exists across all the

channels due to the exposure function of the camera. The

main error though, exists due to the radiance calibration

of the camera, and the luminance estimations made in the

models.

The two models provide similar results for all channels

which is not unexpected as they both use the Perez et al.
[15] model as a basis. The inferred reflectance for the red

channel shows that the Preetham model outperforms the

Hosek-Wilkie model for colour patch 19 (white), but does
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not perform as well for colour patch 12 (orange-yellow).

The results show that both models fail to detect the drop in
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(a) Red channel.
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(b) Green channel.
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(c) Blue channel.

Figure 7: Comparison between the inferred reflectance for

each colour patch using the two sky models and the ground

truth.

intensity from colour patch 5 to 6 (blue flower and bluish

green).

Both the green and blue channels showed extremely sim-

ilar inferred reflectance values for both the Preetham and

Hosek-Wilkie models. Across the channels, it is clear that

the last row of the ColorChecker Board (patches 19-24),

which represents a decrease in intensity from white to black,

is only correctly inferred by both the green and blue chan-

nels.

The results show that despite the models not capturing

the exact chromaticity of the sky, they can still be used to

extract pseudo-reflectance for each channel. One reason for

this is the fact that we are using an object parallel to the

ground, so illumination from the sky is weighted according

to the cosine of the angle between the normal of the object

and the angle of incidence, as shown in Equation 5. This

gives a higher impact to large elevation angle samples from

the environment map.

To compare the three dimensional reflectance spectra in-

ferred by the models we use the Spectral Angle Mapper

(SAM) metric [19]. This metric is utilised in the remote

sensing community for comparing spectral data and calcu-

lates the angle between two vectors by evaluating the dot

product between them. For the current application of in-

verse reflectometry, we are generating reflectance spectra

that should retain the relative magnitude differences be-

tween the colour patches. Therefore, we analyse the SAM

error metric across all the colour patches for each channel:

SAM [k] = arccos
RT [k] ·RI [k]

|RT [k]||RI [k]| , (13)

where RT is the ground truth reflectance, RI is the inferred

reflectance and k is the channel. The results for the SAM
error metric are shown in Table 1 and reveal that despite the

Hosek-Wilkie model attempting to improve the sky model

developed by Preetham, the inferred reflectance errors are

slightly higher in the green channel.

5. Conclusion

In this paper, a chromaticity analysis of two sky models

commonly used in the computer graphic community was

presented. The purpose of this was to determine whether

Model SAMR SAMG SAMB μ
Preetham 0.17 0.15 0.09 0.14

Hosek-Wilkie 0.17 0.18 0.10 0.15

Table 1: Error between the inferred reflectance and the

ground truth measured using the Spectral Angle Mapper

measured in radians.
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such sky models could be used for image calibration in or-

der to utilise computer vision algorithms using reflectance

instead of pixel values. This is extremely important as pix-

els are dependent on illumination and geometry, while re-

flectance is characteristic of the material. This has a number

of useful applications, especially in remote sensing where

thematic mapping of mine faces requires a camera calibra-

tion method to take place. We have shown that the Hosek-

Wilkie model improves upon the Preetham model by pro-

ducing robust chromaticity estimates in the presence of az-

imuth changes. However, there is an angular dependency

between the y-chromaticity estimate and the elevation an-

gles which needs to be investigated in order for the model

to be used accurately. Despite these errors, inverse reflec-

tometry for a flat diffuse object in the outdoor environment

has been shown to work well for both models in that it is

able to retain the relative intensity variations amongst many

different colours. Current work includes development of an

iterative and spatial propagative system that allows inverse

reflectometry to occur for objects ranging from horizontal

to vertical orientations, using both RGB and hyperspectral

cameras.
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