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Abstract

Information describing the materials that make up scene
constituents provides invaluable context that can lead to a
better understanding of images. We would like to obtain
such material information at every pixel, in arbitrary im-
ages, regardless of the objects involved. In this paper, we
introduce visual material traits to achieve this. Material
traits, such as “shiny,” or “woven,” encode the appearance
of characteristic material properties. We learn convolution
kernels in an unsupervised setting to recognize complex
material trait appearances at each pixel. Unlike previous
methods, our framework explicitly avoids influence from
object-specific information. We may, therefore, accurately
recognize material traits regardless of the object exhibiting
them. Our results show that material traits are discrimi-
native and can be accurately recognized. We demonstrate
the use of material traits in material recognition and image
segmentation. To our knowledge, this is the first method to
extract and use such per-pixel material information.

1. Introduction
Information regarding what an object is made of, i.e.,

its material, can provide crucial cues for image understand-

ing. If a robot detects soft dirt or a smooth metal surface

ahead, it can adjust its movement in advance. Material can

sometimes be the only discerning factor between different

objects. For example, material information can enable an

object detection method to distinguish between a person and

a stone statue despite the similarities in their shapes.

Ideally, we would like to extract information regarding

the underlying materials at each pixel, without any prior

knowledge of what objects are in the scene. This per-pixel

material information may potentially facilitate many im-

age understanding methods including image segmentation,

object detection, and recognition. For this, we argue that

material information should be extracted without higher-

level knowledge of the scene, in particular about the object.

Only by disentangling visual cues of materials and objects

may we exploit material estimates to aid the recognition of

Figure 1. Materials like the plastic in these images exhibit a wide

range of appearances depending on the object and scene, mak-

ing extraction of material information without the use of object

information challenging. We propose to locally recognize visual

material traits, distinct appearances of material properties such as

"translucent," to provide contextual cues for challenging vision

tasks including material category recognition and segmentation.

objects and the scene. If our material estimates depend on

prior knowledge of the object, they are precluded from use

in any object recognition or scene understanding process.

Extracting material information in the form of general

material categories, such as fabric or metal, has proven

difficult [9, 13, 19]. As shown in Figure 1, the appearance

of a single material category exhibits large intra-class vari-

ability. Each image contains a sample of plastic material,

but the material appearance varies based on the object and

scene conditions. Recently, Sharan et al. [19] introduced

a framework that directly recognizes material categories by

extracting features and providing a single prediction for the

material of an entire image. In their work, they show that

material categories are strongly intertwined with features

such as their edge slices and edge ribbons. These features

convey object-specific information, such as boundary con-

tours. In fact, when their method is run on globally scram-

bled images, thus removing object-specific information, ac-

curacy drops from 57.1% to 42.6%. Hu et al. [9] also show
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Input Image Organic Fuzzy

Figure 2. Example material trait recognition. Non-masked pixels

in (b) and (c) correspond to pixels with high probability (p > 0.5)

of exhibiting the given trait. Note that the recognized material

traits appear consistently across regions of related materials.

that explicitly supplying object-specific information (out-

put from object recognition) significantly increases material

category recognition accuracy. Our method achieves 49.2%

accuracy while explicitly excluding object information.

Instead of looking at materials at the category level,

we may view material information as a form of visual

attribute. Patterson and Hays [18] include a variety of

specific materials, e.g. asphalt, in their scene-wide attribute

framework. Existing techniques recognize a single set of

attributes describing an entire image or region. Even in

methods that use local features, the framework makes only

a single global prediction [5].

How can we then extract material information at each

pixel regardless of the object? Looking at the images in

Figure 1, one can see that plastic tends to have properties

that are associated with a distinct visual appearance, such as

“smooth and translucent.” To extract material information,

we exploit the fact that each material exhibits a certain set of

characteristic properties that are shared across appearances

of that material in different objects. These properties can

include tactile ones such as “hard,” or purely visual ones

such as “shiny.” We propose to model the local visual

appearance of these characteristic material properties as a

novel intermediate representation: visual material traits.

Though each material trait has an intuitive meaning,

some can be challenging to quantify; for example, what

makes a soft material look soft? Instead of focusing on

hand-tuning a large set of designed features, our framework

learns a set of image features in an unsupervised fashion

to best represent material trait appearance. We supplement

the unsupervised features with a small set of well-known

low-level features to describe the space of material trait

appearance more completely. By using a randomized de-

cision forest for supervised material trait recognition, we

are able to recognize material traits at every pixel in an

image. Figure 2 shows the per-pixel recognition results

for two material traits on two images from the dataset of

Martin et al. [16]. The traits are accurately recognized

everywhere, even in the the Koala image, despite the fact

that the training data included no Koalas or other animals.

Our results show that visual material traits can be rec-

ognized accurately in challenging image datasets, as high

as 93.1% with an average accuracy of 78.4%. To express

more complex concepts, such as material categories, we

may treat the distribution of material traits in a region as an

image descriptor. Furthermore, material traits learned from

one dataset can be recognized and used to extract material

information from an entirely different set. This is in contrast

with past methods [9, 19] that train and test on images

taken from a single source. These results show that the

representation generalizes well. We also demonstrate the

use of material traits in mid-level image understanding tasks

by augmenting segmentation algorithms with per-pixel ma-

terial information. Our results show that material traits

can provide valuable material information to processes for

which it was previously unavailable.

2. Related Work
The recent work of Fleming et al. [7] is most closely

related to our efforts in material trait recognition. In their

experiments, they found that perceptual qualities (material

traits) are highly correlated with the material classes of the

Flickr materials database [20]. Their study, however, relies

on human-provided subjective estimates of the presence of

these qualities. We directly recognize material traits.

Visual attributes have been widely used in object and

scene recognition, but largely at the image or scene level.

Ferrari and Zisserman [6] introduced a generative model

for certain pattern and color attributes such as “dots,” or

“stripes.” The attributes described in their model focus on

texture and color and do not encode any material proper-

ties. The model also requires a segmented image as input;

the attributes thus cannot provide per-pixel information to

applications, such as segmentation, that require it. Ku-

mar et al. [10] propose a face search engine with their

attribute-based FaceTracer framework. FaceTracer uses

SVM and AdaBoost to recognize attributes within fixed

facial regions. Farhadi et al. [5] apply attributes to the

object recognition task. Their results show an improvement

in accuracy over a basic approach using texture features.

Recently, Patterson and Hays [18] showed that they can

recognize a variety of visual attributes, including general

material categories. Lampert et al. [11] show that attributes

transfer information between disjoint sets of classes. In

both cases, these visual attributes are single scene-wide

detections and not localized.

Adelson [1] first proposed material categories as a dis-
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Figure 3. Successfully recognized material traits. These image

patches were recognized by our framework as exhibiting the in-

dicated material traits. Even at the patch level, we can see the

characteristic visual appearances of each material trait.

tinct concept from textures or objects. Sharan et al. [20]

introduced a new image database containing images from

the photo sharing website Flickr; Liu et al. [13] also created

a framework to recognize these material categories using

a modified LDA probabilistic topic model. Hu et al. [9]

showed improved performance on the Flickr database us-

ing kernel descriptors and large-margin nearest neighbor

distance metric learning. Their experiments showed that

providing explicit object detection information to material

category recognition results in a large improvement in accu-

racy. Sharan et al. [19] show that without information asso-

ciated with the objects, performance degrades significantly

(from 57.1% to 42.6%). Specifically, they note that material

category recognition depends heavily on non-local features

such as edge contours. In our framework, we explicitly

avoid relying on this object information.

Wang et al. [22] and Liu et al. [14] demonstrate very

high material classification accuracy and do so at the per-

pixel level. Both methods require a physical measurement

apparatus (a dome of lights in fixed positions) to collect ma-

terial reflectance data. Lombardi and Nishino [15] estimate

BRDF parameters from single images but require geometry

information. Our goal is to achieve passive extraction of

material information from single ordinary images.

3. Representing Material Traits
Figure 3 shows examples of the visual material traits

recognized by our framework. Even at the local level of the

example images, each visual material trait corresponds to

the appearance of a characteristic material property. Ideally,

recognition of these material traits will enable us to extract

crucial material information from any image.

The key contribution of our material traits is their ability

to encode per-pixel material information without relying on

object-specific features. Material traits provide a compact,

local, and discriminative encoding of material properties.

To obtain a representation for these material traits, we must

avoid introducing any dependence on object information in

the recognition process. We accomplish this by learning the

best convolutional features to describe material trait patches

in an unsupervised setting. Convolutional features are ideal

for this purpose as they can be applied at any point in an

image, and do not encode object boundary contours. We

supplement these unsupervised features with selected low-

level features to describe appearance patterns that cannot be

learned by the unsupervised model.

3.1. Convolutional Material Trait Features

Expressing the appearance of material traits poses a chal-

lenge. While intuitive, traits such as “fuzzy” can be hard

to quantify. While we may attempt to do so using only

existing designed features, the space of images that may be

represented using these features is incomplete (as shown by

our feature selection results).

Rather than rely solely on handcrafted features, we de-

termine features associated with each material trait through

unsupervised feature learning. Unsupervised learning

builds a generative model for images by finding simple

components that can be combined to reproduce them. Con-

straints, such as sparsity, force optimal model components

to also act as discriminative features for classification.

Our goal is to recognize per-pixel, object-independent

visual material traits. To this end, we choose to learn

convolutional features so that we may extract them at any

pixel in an image. By operating in fixed local neighbor-

hoods, convolutional features ensure that we do not encode

object boundary contours. These boundary contours are the

primary source of undesired object-dependent features in

previous frameworks [9, 19].

We build upon the convolutional auto-encoder (CAE)

model [17] to learn the feature kernels. The model de-

fines images as the weighted sum of convolution kernel

responses. Optimal filters under the model are defined by

the following objective function:

C = Tr + αTw + βTs . (1)

The objective contains three terms: a reconstruction error

term Tr, a weight-decay (smoothness) term Tw, and a spar-

sity term Ts. The weight-decay and sparsity terms have

corresponding weights α and β, and each term acts as a

constraint to help produce useful features.

Reconstruction error for N images is the squared-

difference between the input images I and their reconstruc-

tions R using the learned features,

Tr =
1

N

N∑
i=1

‖Ii −Ri‖22 . (2)

Since the features are convolution kernels, the reconstructed

images R are described in terms of the encoding in feature
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space Ei by

Ei = h (W ∗ Ii + be) , (3)

Ri = W′ ∗Ei + br , (4)

h (xi) =

⎧⎪⎨
⎪⎩
0 if x < 0

xi if 0 ≤ xi ≤ 1

1 if x > 1

(5)

with ∗ representing convolution with a set of filters W,

along with bias terms be and br for the encoding and re-

construction, respectively. Some formulations force the

reconstruction filters W′ to be the transpose of the encoding

filters W. We, however, found that allowing them to be

separately optimized resulted in more diverse features.

The non-linear encoding function h (xi) in Equation 3

contains a linear region between 0 and 1. If allowed, the

combination of small encoding weights and large decoding

weights could force any inputs to encode solely into this lin-

ear region. Such an encoding would result in a trivially per-

fect reconstruction. Weight decay, Tw = ‖W‖22+ ‖W′‖22 ,
is a term that prevents this trivial solution by ensuring that

the weights do not take on exceedingly large values.

By definition, discriminative image features do not ap-

pear everywhere in an image. Figure 3 shows that certain

material traits, particularly “shiny,” exhibit strong local ap-

pearance cues. Sparsity constraints express this property

well. Sparse features are features that are only present in

a small fraction of the possible locations in each image, as

measured by their presence in the encoding Ei. As in Lee

et al. [12], we enforce sparsity by penalizing the difference

between mean filter activations and a small constant p:

Ts =

∥∥∥∥∥p− 1

N

N∑
i=1

Ei

∥∥∥∥∥
2

2

. (6)

To further constrain the learning process and obtain a

discriminative feature set, we force a fixed number of the

features to be oriented first-order Gaussian filters. Learning

these filters alone will satisfy both sparsity and reconstruc-

tion constraints, but their discriminative power is limited.

As shown in Table 1, edge filters are selected roughly half

as often as the CAE-learned features.

We optimize the full objective function using L-BFGS

with automatically-generated symbolic gradient evaluation.

Figure 4 shows a selection of the top convolution filters

by the CAE, ranked by average presence in the correspond-

ing material trait images. The filters were learned from

whitened material trait image patches. The top filters appear

to represent the presence or absence of specific local texture

patterns. For comparison, the non-ranked features on the

right exhibit far less texture variation.

· · ·

Soft Smooth Liquid Organic Low Ranking

Figure 4. These 7 × 7px. convolution filters learned by the CAE

represent the top three filters for the listed material traits, ranked

by average presence in the testing images. The filters represent

characteristic local texture and color patterns. The six filters on

the right do not rank in the top three for any material trait. They

exhibit significantly less texture variation than the top filters.

3.2. Supplemental Features

Cybenko [3] showed that artificial neural networks, in-

cluding auto-encoders such as the CAE, are capable of ap-

proximating any continuous function defined on R
n. There

are, however, local features such as HOG that are not con-

tinuous and thus cannot be learned by the CAE. These dis-

crete features may encode important properties of material

traits, such as the strong local patterns in woven material.

To address this, we supplement the learned features with

Local Binary Patterns (LBP), HOG features and color his-

tograms. We do not use other low-level features, such as

the edge slices and ribbons of Sharan et al. [19], as they

encode object-specific information and cannot be extracted

on a per-pixel basis.

The results of our feature selection process show that

these additional features supplement rather than replace the

CAE-learned features. As will be shown in Table 1 in the

following analysis of feature selection, CAE features are

selected on average as often as any of the supplemental

features. Furthermore, our analysis in Table 2 shows that

the CAE features play a crucial role in the application of

material traits.

3.3. Groupwise Feature Selection

We would like to obtain a feature set that generalizes

well to new datasets. To avoid overfitting and improve gen-

eralization, we perform feature subset selection on the sup-

plemental and CAE-learned features. Our final feature set

contains a small number of groups of conceptually related

features. Rather than separate the groups into individual

elements, we select the best combination of groups to recog-

nize each trait. This process takes advantage of the fact that

two individually useless features can have predictive power

when grouped together [8]. We are able to exhaustively

evaluate all combinations of groups (CAE features, oriented

edges, HOG, LBP, color histograms), selecting those that

maximize performance on a validation set. Feature groups

are not further divided, thus, for example, either all HOG
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Trait CAE Oriented HOG LBP Color Histograms

Shiny • •
Fuzzy • •

Transparent • • •
· · · (13 Material Traits )

Total Uses 7 4 6 9 7

Table 1. Selected features for material traits. As “fuzziness”

is characterized by fine edge patterns, oriented filters and LBP

are useful. Since we define “shiny” only on areas that exhibit

specular highlights, it follows that color histograms and learned

convolutional filters are important features for this material trait.

features are included or none are.

Table 1 shows the results of our feature selection pro-

cess1. Features are selected fairly evenly and, as the full

table shows, in disjoint sets. A particular case of note is the

“shiny” material trait. Since we focus on recognizing visual

material traits without dependence on object-specific infor-

mation, “shiny” is synonymous with specular highlights.

This may be seen clearly in Figure 3. While there are visual

cues, such as contoured reflections on a car body, that may

lead an observer to call a material “shiny,” these features are

specific to the object and do not directly indicate the mate-

rial trait. As a result of this, color histograms and learned

convolutional filters prove to be more useful features for this

material trait.

4. Recognizing Material Traits
For training and testing, we annotate images in the Flickr

Materials Database (FMD) [20] with masks indicating re-

gions that exhibit each material trait. From these regions,

we extract 45,500 annotated patches2. We use balanced

sets of positive and negative examples to train randomized

decision forest (RDF) classifiers for each material trait.

Though we use the same dataset as methods that include

object information, our feature set and recognition process

explicitly avoid object dependence.

Figure 2 shows the recognition results for two material

traits on an image from the Berkeley Segmentation Dataset

(BSDS) [16]. Note that the main object in the image, a

Koala, was not present in the Flickr dataset. The FMD

does not, in fact, contain any animals or any examples of

animal fur. Despite this, characteristic properties of the fur

and plants are accurately recognized.

Figure 5 contains recognition accuracies for each of the

13 material traits. Since we predict material traits inde-

pendently, and the training and testing data are balanced,

random chance performance is 50% accuracy. Most ma-

terial traits are recognized very accurately, however, some

are challenging. “Metallic” and “transparent” have the two

1A full list of all material traits and their corresponding features may

be found in our supplemental material.
2Our implementation uses, but is not restricted to, 32× 32px. patches.
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Figure 5. Visual material trait recognition accuracy. Material traits

are recognized via binary classification on a balanced training and

testing set, thus random chance accuracy is 50%. Most traits are

recognized well. Difficult material traits, such as metallic and

transparent, are challenging due to their object- and environment-

dependent appearances. Average accuracy is 78.4%.
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Figure 6. Material trait distributions. We compute the class-

conditional distributions for each material trait given each material

category. These are stored as histograms, examples of which

are shown above. Plastic is most often smooth, while stone is

extremely rarely smooth.

lowest recognition rates (66.4% and 67.0%). The appear-

ance of these material properties depends heavily on the

environment surrounding the object. In the case of a reflec-

tive metal surface or a clear glass sphere, the appearance is

determined entirely by the object and its environment. As

we explicitly avoid object dependence, we cannot expect to

model these particular material traits with the same level of

accuracy as others. Despite this, “metallic” and “transpar-

ent” are still recognized better than chance.

Material traits, as a form of visual attribute, should repre-

sent a discriminative set of appearances. To investigate this,

we compute the class-conditional distributions of material

traits given material categories. We use the ten categories of

the FMD for this test. For each image in each category, we

sample material traits uniformly across the masked material

region in the image. Figure 6 shows selected distributions
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Shiny Fuzzy Metallic Soft Smooth Liquid Rough Woven

Figure 7. Our framework produced false-positive detections of

material traits in these patches. For the challenging metallic trait,

it is clear that color plays a strong role. The misclassifications

generally have a metallic color even though the material is not

metal. In some rare cases such as “smooth” there are missing

annotations and thus the false positives are actually true positives.

from the set {p (ti|mj) |i ∈ 1 . . . 13, j ∈ 1 . . . 10}3. The re-

sulting distributions do, in fact, represent the characteristic

properties of their respective material categories. Stone is

often rough but very rarely smooth (there are a small num-

ber of polished stone examples in the training data), plastic

is smooth, and foliage is organic. As material traits are

purely visual, they can occasionally produce false positives,

as seen in p (soft|stone). While stone is not soft, porous

stones may have a soft appearance.

Figure 7 shows a set of false positive material trait

recognition results. “Shiny,” with its characteristic bright

highlights, is prone to be recognized in over-exposed image

regions. Results for “metallic” show that color is a strong

cue for this material trait. Though the patches are metallic

in color, the material is not in fact metallic. These are lim-

itations of the representation. There are a few cases where

the material trait annotations are incomplete, generally for

the pervasive “smooth” material trait.

5. Using Visual Material Traits
Our analysis shows that we may accurately recognize

material traits. The material trait distributions also show

that material traits encode discriminative material informa-

tion. Each material category exhibits characteristic class-

conditional material trait distributions. From these results,

we expect to be able to inform higher-level processes with

material information from material traits. Material trait

distributions allow us to recognize material categories in

arbitrary images without dependence on prior object knowl-

edge. We also demonstrate a preliminary application of

material traits to the problem of segmentation.

5.1. Material Categories from Visual Material
Traits

Sharan et al. [19] showed that material category recog-

nition depends on object-specific information. Despite this,

3Please see our supplemental material for a full visualization of all

class-conditional material trait distributions.
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(b) ImageNet

Figure 8. Confusion matrices showing true class vs. predicted class

on the Flickr Material Database and ImageNet images. Average

accuracy is 49.2% in (a) and 60.5% in (b). Though metal and glass

both have an appearance that is environment-dependent, glass is

more accurately classified. This is likely due to the tendency of

glass to create characteristic local distortions.

our class-conditional trait distributions suggest that the in-

formation encoded in material traits does provide a discrim-

inative set of features for material category recognition. We

rely on these visual material trait distributions to encode and

recognize material categories.

We recognize material categories via material traits by

training a randomized decision forest (RDF) classifier on

the material trait distributions. Distributions are computed

from material traits recognized in uniformly sampled ran-

dom patches. We select features and train material trait

classifiers using half of the FMD for training, then predict

their class-conditional distributions. We further supplement

the distributions, in a cascade fashion, with the output of a

RDF classifier trained to directly predict the material cate-

gory of a patch using our feature set. The cascade process

is responsible for improvements in the more recognizable

categories such as foliage (11% improvement), with minor

changes in other categories. Accuracy without the cascade

process is 46.5%, only a 2.7% reduction.

Using the computed class-conditional distributions, we

train an SVM classifier with a histogram intersection kernel

to recognize material categories. The histogram intersection

kernel, defined as

k (x,y) =
∑
i

min (xi, yi) , (7)

for histogram feature vectors x and y with elements xi

and yi, measures the similarity between the two normal-

ized histograms [2]. As the material trait distributions

are histograms, they are ideally suited for the histogram

intersection kernel SVM.

Figure 8 shows the average and per-class accuracy for

our method on the FMD. We split the dataset of 1000

images in half for training and testing. Our accuracy

(49.2%) does not surpass the final results of Sharan et al.
(57.1%) but again, their method relies heavily on features

that encode the shape of the objects. We do find that our
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Wood (Stone) Plastic (Glass) Paper (Foliage)

Figure 9. Three misclassified ImageNet images, with true classes

for each prediction is in parentheses. The left two are a result

of confusing appearances (striped and translucent are more often

associated with wood and plastic respectively) while the rightmost

is due to the bounding box poorly fitting the object.

method achieves higher accuracy than that of theirs (42.6%)

when object context is removed. These results show that

material traits provide important information to the material

recognition process.

To demonstrate the ability of material traits to generalize

well between datasets, we collected a second set of material

images from a different source: ImageNet [4]. ImageNet

obtains images from a variety of sources; they are thus more

diverse than solely Flickr images. We collected 3480 im-

ages from ImageNet via searches for each material category.

Images without bounding boxes were discarded.

To evaluate the use of material traits for material recog-

nition on this ImageNet dataset, we first train material trait

classifiers on the full set of FMD images. We then split

the ImageNet images evenly into training and test sets and

compute the distributions of recognized material traits on

the training and test sets. We train an SVM classifier with

the histogram intersection kernel of Equation 7 using the

distribution of material traits on the training set.

Figure 8 shows the average accuracy for our method on

this dataset. The average accuracy of 60.5% on ImageNet

images shows that material traits encode material informa-

tion that depends on neither the particular type of object

exhibiting a material, nor the scene context in which that

material appears. While Hu et al. [9] do not provide an

exact value, visual inspection of their results indicates an

accuracy of roughly 60% as well.

Figure 9 contains three misclassification examples from

ImageNet images. The stone in the first image has brown

color stripes characteristic of wood. The glass in the second

image looks translucent due to condensation, and translu-

cent is a trait associated with plastic more than glass. The

final image is a misclassification due to localization. The

ImageNet database only provides object bounding boxes,

not masks. This box contains mostly smooth regions and

light colors, traits representative of paper.

We ran a set of tests, summarized in Table 2, to examine

the impact of each major component of the material trait and

category recognition process. The first row, accuracy when

performing direct category recognition, with all features,

without material traits, shows that the trait representation

provides crucial information for the material recognition

FS Traits SF CAE Accuracy

• • 34.2%

• • • 43.5%

• • 42.5%

• • • • 49.2%

Table 2. Performance breakdown. FS: feature selection, SF: sup-

plemental features, CAE: convolutional auto-encoder features. For

the first row we performed direct material category recognition

using the concatenation of all feature sets. This shows that the

trait representation is indeed providing crucial information.

process. By excluding either CAE-learned features or sup-

plemental features (HOG, LBP, Color Histograms) from the

trait recognition process, we see that both feature sets are

necessary in order to best represent material categories.

5.2. Segmenting Images with Visual Material Traits

Segmenting images is a challenging process partially

because the concept of a good segmentation is subjective. In

the Berkeley Segmentation Dataset (BSDS) benchmark of

Martin et al. [16], evaluation relies on multiple human seg-

mentations as ground truth, since each one is a potentially

correct solution. Visual material traits, with their accurate

encoding of characteristic and intuitive material properties,

should contribute valuable contextual cues to this process.

As an investigation of the potential for image segmen-

tation via material traits, we augment the Normalized Cuts

(NCuts) algorithm of Shi and Malik [21] with material trait

information. In their method, they treat image segmentation

as a graph partitioning problem and show that the optimal

solution can be obtained from the solution to a generalized

eigensystem (specifically, the eigenvector y2 corresponding

to the second-smallest eigenvalue):

(D−W)y = λDy , (8)

where W is a matrix of weights representing pairwise pixel

similarities and D is a diagonal matrix containing the sum

of all weights for a given pixel. We add an additional term,

exp

{
−‖ti − tj‖22

σT

}
, (9)

to the similarity score function used to obtain W. ti
represents the predicted per-trait probabilities for pixel i in

the image and σT is a scaling parameter. This term should

cause pixels that exhibit similar material traits to be grouped

together in the segmentation.

Figure 10 shows images segmented using the original

NCuts algorithm and our modified version. The first exam-

ple shows that material traits can help discriminate between

regions exhibiting different material properties (fuzzy grass

and rocks). The expanded border around the penguin in

the second segmentation is likely due to the fact that the
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Figure 10. Comparing segmentation with and without material

traits. Images on the left were segmented using the original NCuts

algorithm, while those on the right were segmented with our mod-

ified version. Material traits can indicate the difference between

fuzzy grass in the foreground and rocks in the background, despite

the fact that they have similar colors.

traits are recognized in part using learned convolution ker-

nels. The size of these kernels is likely to be an important

parameter for good segmentations. These results show that

contextual cues from material traits can indicate regions

of similar materials that should be merged, or regions that

should be split despite similar color or texture.

6. Conclusion
We introduce the recognition of visual material traits as

a representation of object-independent, per-pixel material

information. Our results show that material traits contribute

useful information to the material category recognition pro-

cess. Furthermore, we show that material traits generalize

well to new and diverse datasets.

Our preliminary image segmentation results show that

the per-pixel recognition of material traits can contribute

useful material information to new applications in which it

was previously unavailable.

Results from material category recognition, segmenta-

tion, and from recognition of the material traits alone,

demonstrate that visual material traits form a compact and

discriminative representation for crucial object-independent

material information. We expect material traits to prove

useful in future exploration of image understanding.
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