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{first.last}@esat.kuleuven.be, {first.last}@kit.edu

Abstract

The deep generative adversarial networks (GAN) re-

cently have been shown to be promising for different com-

puter vision applications, like image editing, synthesizing

high resolution images, generating videos, etc. These net-

works and the corresponding learning scheme can handle

various visual space mappings. We approach GANs with a

novel training method and learning objective, to discover

multiple object instances for three cases: 1) synthesizing a

picture of a specific object within a cluttered scene; 2) local-

izing different categories in images for weakly supervised

object detection; and 3) improving object discovery in ob-

ject detection pipelines. A crucial advantage of our method

is that it learns a new deep similarity metric, to distinguish

multiple objects in one image. We demonstrate that the net-

work can act as an encoder-decoder generating parts of an

image which contain an object, or as a modified deep CNN

to represent images for object detection in supervised and

weakly supervised scheme. Our ranking GAN offers a novel

way to search through images for object specific patterns.

We have conducted experiments for different scenarios and

demonstrate the method performance for object synthesiz-

ing and weakly supervised object detection and classifica-

tion using the MS-COCO and PASCAL VOC datasets.

1. Introduction

Discovering objects in scenes is one of the fundamen-

tal problems in the computer vision field. Deep neural net-

works have been promising for the purpose, but still need

a large-scale, annotated dataset for training. There have

been numerous efforts to work with an unsupervised setup,

e.g. based on generative or, most notably, mixed generative-

discriminative networks (GANs) [14, 35, 48]. Some recent

works have focused on extending the training dataset, us-

ing a supervised dataset to synthesize additional, realistic
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Figure 1. The proposed generative ranking and adversarial net-

works take an image containing different object categories and

synthesize a specific object instance among the other objects in

a scene. The proposed method allows generative models to tackle

recognition and detection problems, and is validated for weakly

supervised object detection.

data [10, 29]. Powered by adversarial learning, supervised

GANs can generate more accurate images based on distin-

guishing different classes and fake from real data.

To tackle the weakly supervised object detection, creat-

ing accurate object templates for each image independently

and finding location of object instances by those templates

is one solution. To the best of our knowledge, our work

is the first to tackle object detection and discovery using

GANs, and that also in a weakly supervised manner. As

a wider context for the work, using a combination of en-

coder based conditional GANs with ranking objective can

be utilized to extract the correct templates of objects in an

image. The image is encoded by a CNN and our genera-

tive network draws a realistic sample of a specific object in

the image using indication of its location. The discrimina-

tor and our ranking network help the generator to synthesize

the most realistic and correct sample. Our scheme combines

conditional GANs, adversarial learning, and a feature space

similarity metric. The objective, i.e. the new ranking loss,

helps the generator at training time to discriminate between

the objects, and to learn the relevant features from the en-

coder network that allows it to draw the object samples (see

Fig. 1). Thus our motivation to propose such a pipeline is to

solve the problem of finding nice object instance templates

for each image and to do so powerful and novel generative

models are promising solutions.



Nguyen et al. [29] showed that adding supervision in-

formation like class labels helps to learn generating more

realistic images. In addition to using object labels, we in-

corporate a similarity ranking between different category of

samples. This strengthens the cooperation between the gen-

erator and discriminator when synthesizing the object in-

stances.

Another advantage of our work is that it exploits deep

generative models to allow for weak supervision. For train-

ing the object detector in weakly labeled setting, we do not

use ground-truth bounding boxes. Instead, the weakly su-

pervised object detector searches itself for the possible lo-

cations of object samples in the training images. Our novel

GAN generates object templates similar to the actual ob-

ject samples present in the image. After this step, it uses

the synthesized templates which look like the real objects

to find the accurate location of object instance. Eventually

these locations are handed over to train the detector as a

pseudo ground-truth. Our GAN and ranking networks use

ImageNet-like categories without bounding boxes to learn

feature space similarity and supervise the ranking process.

Our approach has been evaluated in several scenarios:

realistic image generation, object instance extraction, multi-

class object classification, and object localization with sin-

gle/multi instances per image. Our contributions are as fol-

lows: (1) Presenting a new approach for supervised learn-

ing of generative ranking & adversarial networks to syn-

thesize realistic objects. (2) Proposing a GAN with multi-

ple objective losses to create accurate samples of objects in

an image and to draw realistic-looking images. (3) Train-

ing a weakly supervised generative network as a solution to

weakly supervised object detection and training with hallu-

cinated samples.

The rest of the paper is organized as follows. Section 2

discusses related work. We introduce the GANs in section

3 and explain the core of the work in section 4 and de-

scribe the weakly supervised GAN for object detection in

section 5. The experiments are presented in section 6. Fi-

nally, in section 7 conclusions are drawn.

2. Related Work

Generative Models: Recently several attempts have

been made to improve image generation using generative

models. The most popular generative model approaches

are Generative Adversarial Networks (GANs) [14], Varia-

tional Autoencoders (VAEs) [19], and Autoregressive mod-

els [30]. And their variants, e.g. conditional GANs, Invert-

ible Conditional GANs, Deep Convolutional GANs (DC-

GANs) [36], etc. Radford et al. [36] use a Conv-Deconv

GAN architecture to learn good image representation for

several image synthesis tasks. Denton et al. [6] use a Lapla-

cian pyramid of generators and discriminators to synthe-

size multi-scale high resolution images. Mirza and Osin-

dero [28] train GANs by explicitly providing a conditional

variable to both the generator and the discriminator, us-

ing one-hot encoding to control generated image features,

namely conditional GANs (cGANs). Reed et al. [37] use

a DC-GAN conditioned on text features encoded by a hy-

brid character-level convolutional RNN. Perarnau et al. [35]

use an encoder with a cGAN, to inverse the mapping of a

cGAN for complex image editing, calling the result Invert-

ible cGANs. Dumoulin et al. [12] and Donahue et al. [9]

use an encoder with GANs. Makhzani et al [26] and Larsen

et al. [22] use a similar idea to [35], but combining a VAE

and GAN to improve the realism of the generated images.

Also with GANs an appropriate reconstruction loss is

necessary to avoid blurry results, because the distances are

computed in the image space. Solutions have been proposed

to mitigate this problem. One is to measure the similarity in

the feature space, instead of the image space, as proposed

in [22]. Similarly in [10], Dosovitskiy et al. use perceptual

similarity metrics between image features. This results in

sharp and realistic generated images.

Several applications have been based on different types

of GANs. Mathieu et al. [27] predict future frames in

videos, conditioned on previous frames. Larsen et al. [22]

generate realistic images of faces. Dosovitskiy et al. [11]

and Rifai et al. [40] generate images of object categories

given high-level information about the desired object. Reed

et al. [39] generate realistic images from text and land-

marks. Pathak et al. [33] use context encoders to gener-

ate the contents of an arbitrary missing image region condi-

tioned on its surroundings. Isola et al. [16] learn the map-

ping from input images to target images. Nguyen et al. [29]

generate high-resolution, photo-realistic images using text-

to-image generative models. Wang et al. [50] generate im-

ages from the surface normal map. Zhu et al. [54] mod-

ify the appearance of an image while preserving realism,

guided by user constraints. Zhou et al. [53] create depic-

tions of objects at future times in time-lapse videos. Li et

al. [23] efficiently synthesize textures for style transfer. Yoo

et al. [51] show pixel-level domain transfer to generate re-

alistic target images.

Weakly supervised object detection

−Weakly supervised learning: Over the last decade,

several weakly supervised object detection methods have

been studied that were using multiple instance learning

(MIL) [1, 2, 43, 44]. Because of its non-convexity, MIL

tends to get stuck in local optima, thus making it depen-

dent on the initialization of object proposal instances in

the positive/negative bags. To alleviate this shortcoming,

many proposed strategies have been seeking a better initial-

ization [7, 42, 43, 45] or have focused on regularizing the

optimization strategies [1, 2, 4]. The majority [38, 46] used

large and noisy collections of object proposals to train the

object detectors. We took a new way and approach it via



generative networks to deal with weakly supervised object

detection. In our work, we show that providing a level of

supervision to the generative networks is beneficial for an

accurate object localization.

−CNN based weakly supervised object detection: Re-

cently, several efforts have been made to let CNNs clas-

sify objects with weak supervision [18, 3, 24]. Oquab et

al. [31] compute a mid-level image representation for fea-

ture discrimination, employing a pre-trained CNN. In [32],

the same authors modify the CNN architecture to coarsely

localize object instances in images, thus improving the clas-

sification performance. Bilen et al. [3] use CNNs to operate

at the level of image regions, simultaneously selecting re-

gions and classifying. Li et al. [24] address the problem via

progressive domain adaptation for joint classification and

detection, using a pre-trained CNN network. Diba et al. [8]

proposed cascaded stages for both object proposal and de-

tection using multiple loss functions.

The main distinction between the aforementioned work

and ours is that we use GANs for weakly supervised object

detection. To the best of our knowledge it is the first end-to-

end network initializing the location of objects using GANs

for such task. Furthermore, we introduce generative rank-

ing and adversarial networks for the realistic synthesis of

objects.

3. Generative Adversarial Networks

Generative adversarial networks normally include two

parts: a generator network G and a discriminator network

D. The generator tries to beat the discriminator in a min-

max game to distinguish between real and fake images. If

the network was perfectly modeled, the generator will have

learned the distribution of pdata (real distribution of real im-

ages) so that it can deceive the discriminator network in be-

lieving synthesized patterns to be real ones. The formula-

tion of the min-max game is:

min
G

max
D

v(G,D) = Ex∼pdata(x)[logD(x)]+

Ez∼pz(z)[log(1−D(G(z)))]
(1)

where z is an input vector drawn from the distribution pz . It

can be a noisy sample [11, 14] or a feature vector represen-

tation [29]. When the game reaches convergence pz equals

pdata.

Conditional GAN. Conditional GANs [28, 35] were intro-

duced as a more sophisticated extension of GANs, to widen

their applicability. These networks are useful for cases like

image editing. Formally, we have:

min
G

max
D

v(G,D) = Ex,y∼pdata(x)[logD(x, y)]+

Ez∼pz(z),y′
∼py

[log(1−D(G(z, y′), y′))]

(2)

One can apply different conditions y to control the generator

when training a cGAN. Our method uses a feature represen-

tation extracted from images by an encoder network (CNN)

and combined with a location feature, similar to [10, 33], as

the condition for training. This feature vector needs to be

embedded into the input of our GAN in order to obtain the

distribution of the data.

4. Object Discovery by GAN

In this section, we present our proposed pipeline, i.e. a

new deep generative network which is able to localize dif-

ferent object samples and to draw them at high resolution

on demand. It creates templates identical to the real ob-

jects in an image, where multiple categories may be present

simultaneously. The main motivation of this work is to ef-

fectively localize objects in a scene with or without using

any ground-truth object locations in the training phase of

the deep generative networks. We show that our new train-

ing pipeline of generative networks is capable of object dis-

covery in complex scenes. Since the main application of

this work is its deployment for weakly supervised object de-

tection, we believe our proposed method can help the task

to find accurate object locations for final detector training.

We show through our extensive experiments that the new

proposed generative model can localize the object samples

effectively, and thus the synthesized instances improve the

detection pipeline by a significant margin. Here, we firstly

discuss the feasibility of our method to synthesize object

instances in a supervised setting and later we employ this

solution on weakly supervised task.

Figure 2 illustrates the pipeline of our proposed architec-

ture. Our architecture has three components: 1) a visual and

location encoder, 2) a generator network (can be considered

as a decoder), and 3) a discriminator and ranking networks.

The encoder extracts a high level visual representation of

an input image. Afterwards a regional condition (discussed

later) is added to the encoded features as input for the gen-

erator. The generator takes the entire encoded vector and

produces the object it believes to be present in the specified

region. This part provides information about the visual dis-

tribution of the image and about the location that we are in-

terested in. After a synthetic image (object instance) is pro-

duced, the discriminator (with our novel configuration and

set of losses) keeps correcting the generator in two ways:

(i) by evaluating the similarity between the created sample

and the actual object instance vs another object category,

through the ranking network; and (ii) by maximizing the

benefits from adversarial objective, through the discrimina-

tor network. We also show that image space loss which min-

imizes the difference between the synthesized object image

and the real object instance is beneficial. We use the pre-

trained GAN model from [10], which provides a genera-

tive model to create realistic, synthetic images by percep-
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Figure 2. The end-to-end training pipeline of our generative network, using different types of losses. 1) The encoder network produces the

input of the generator. 2) The generator network synthesizes an object instance. 3) The synthesized object image is fed to the discriminator

block, which is composed of ranking, adversarial and image space objectives. This joint objectives help to improve the generation and

discrimination capabilities of the whole network.

tual similarity metric learning. So in this way, we handle

object instance discovery by a generative network.

4.1. Encoder network

The encoder network in our pipeline is convolutional net-

work, like AlexNet [20] or VGG-16 [41] trained on the Ima-

geNet dataset [5] and in fully supervised cases fine-tuned on

a target dataset of objects (e.g. PASCAL or COCO) which

is not the same case in the weakly supervised method. We

use AlexNet or VGG, both trained by global average pool-

ing [52], but replace their fully connected layers by a new

one, inspired by [33]. The last fully connected layer carries

the object activation neurons, after the conv layers. In the

case of AlexNet, the size of this layer is 6400 (5×5×256).
The weights of this network are updated during training, to

improve the encoder’s ability to distinguish separate object

instances.

Location encoding (Loc encoder): As shown in Fig. 2,

the class activation map (or heat map) of objects is fed to a

small network with a convolution and a pooling layer, fol-

lowed by a fully connected layer to encode the location.

This encoded feature is used as the location condition for

generative network. The location encoded features size is

320.

As the final input to the generative network, we combine

the features that were obtained from the visual encoder with

the location feature (6400 + 320).

4.2. Generative network

The generative part of network synthesizes object in-

stances based on the encoded features, obtained from the

previous stage instead of noise input as in regular GANs.

Inspired by [10, 52], our generator network contains multi-

ple up-convolutional (deconvolutional) layers, which were

pre-trained based on [10]. This decoder focuses on a speci-

fied image region and draws the existing object instance.

4.3. DiscriminatorRanking networks

Most of the novelty in our work comes with this block.

It evaluates the object instance synthesized by the generator

to improve both the system’s generating and discriminating

ability. We propose to use multiple new losses to do the

task in the discriminator section. The combined objective

functions (discussed further) together learn to capture the

most important visual relations within and between object

classes in the image. It empowers the generator to draw

more accurate object instances. Exploiting the supervision

that comes with bounding boxes, the ranking loss can vi-

sually compare the synthesized sample with its instance of

origin and another object instance in the image. This loss

function helps to discriminate between the samples in the

encoding feature space. This term increases the probability

of creating samples that activate different neurons for dif-

ferent categories. The discriminator part of the pipeline has

two separate branch: one to calculate the ranking loss and

one for adversarial training.

Ranking Network. Given the synthesized object instance

S, the original object instance x+ and another object in-

stance x− from a different category, we have (S, x+) as a

‘positive pair’ and (S, x−) as a ‘negative pair’. As an ex-

ample: suppose an image shows a cat and a dog, and we

want to draw the cat instance only, so the cat is the positive

and the dog is the negative sample. Using these two pairs,

the ranking loss trains with a new similarity metric to im-

prove the generative model. This network is identical to the

encoder and has the same weights. We extract the features

f from the last layer of ranking network (the network with

ranking loss in Fig. 2) to calculate the loss using the cosine

distance. We have:



Dist(S, x+) = 1−
f(S).f(x+)

‖f(S)‖‖f(x+)‖
(3)

The concept learned by ranking amounts to reducing the

distance between the synthesized image and the positive

sample, and making it smaller than the distance between

the synthesized image and the negative sample. The ob-

jective function makes the feature space of similar objects

correspondent. The hinge loss for the ranking task is given

as:

ℓrank = max{0, Dist(S, x+)−Dist(S, x−)} (4)

Some related works [10, 29] use feature space loss that

helps to minimize the feature distance between synthesized

and real images. Using the proposed ranking loss over-

comes the need for such a feature space loss in the condition

when we have bounding box of object during training.

Adversarial Network. In our pipeline, the adversar-

ial training helps to prevent the network from producing

blurred images and converge to much more realistic object

instances. The discriminator network D tries to distinguish

between fake versus real images, and is trained by minimiz-

ing the objective function given by:

ℓdisc = −
∑

i

log(D(x+
i )) + log(1−D(Si)) (5)

and the generator minimizes the objective function, given

as:

ℓadv = −
∑

i

log(D(Si)) (6)

The discriminator network is composed of 5 convolutional

and two fully connected layers with softmax layer for

fake/real prediction. The network is pre-trained based on

regular GAN training from [10].

Image loss. This loss optimizes the generator’s input vector

(i.e. the output of Encoder and Loc encoder) to produce ob-

ject samples that can stimulate the class activation to distin-

guish between objects effectively. Additionally it also pro-

vides solid gradients to fix unstable behavior of adversar-

ial training. The following function should be maximized,

given as:

ℓimg =
∑

i

‖Si − x+
i ‖

2
2 (7)

Using such a image objective function along with adver-

sarial and ranking helps to improve the image reconstruc-

tion ability of the pipeline.

End-to-End training. The whole encoding-generating

pipeline, with its three objective functions, is learned jointly

by end-to-end stochastic gradient descent optimization. The

total loss function of the network is given as:

ℓTotal = αrankℓrank + αimgℓimg + αadvℓadv (8)

We provide more details about the training parameters such

as loss coefficients α’s in the experiments section.

5. Weakly Supervised GAN

Here, we propose weakly supervised object detection us-

ing our proposed encoder-decoder set of networks, with-

out bounding boxes for training. Hence, instead we need

a method to discover the most probable locations of ob-

jects for training. Since, we do not use object ground-truth

bounding boxes (weakly supervised condition) in our rank-

ing network, that means the object samples are not avail-

able to calculate the ranking objective function, for this rea-

son we use the similar categories of objects from ImageNet

dataset.

In preparation x+ for a category like cat, we pick up a

random image from the same category of ImageNet, and

x− is taken from different category of ImageNet like dog.

So we have the positive and negative samples to evaluate

the synthesized cat using the ranking loss.

Since we do not have a good reference to calculate the

image objective function, the feature space loss is added to

the network to boost object instance localization for gener-

ating samples. This loss is a complement to the ranking loss

in the case of weak supervision, as real samples can not be

used to rank the synthesized images. Consequently, we have

to modify the way in which we use the feature space loss in

the current situation. The object proposals [47, 55] are ex-

tracted and based on the resulting object heat map (similar

to the supervised setup), we choose the top K=5 boxes with

the highest heat score. To address the feature space loss,

we average the features extracted from these five boxes as

global representation of the possible object instance. And

the averaged feature vector is applied to the feature space

loss. The loss for features is computed as:

f+
avg =

∑

j

f(x+
ij)/K

ℓfeat =
∑

i

‖f(Si)− f+
avg‖

2
2

(9)

The whole network is trained with the total loss of Eq. 8,

but we replace the image loss by the feature loss.

After the training, we can synthesize realistic object in-

stances as they exist at different image locations. These

synthesized object instances can be used as the likely ob-

ject templates to accurately localize real objects in the input

image. As an example in Figure 3, we compare the differ-

ence between synthesized images in supervised and weakly
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Figure 3. Left: The figure shows an example of synthesizing the

object in image (a) without/with using boxes in (b) and (c). Right:

Finding an object location via template matching across the entire

image, using the synthesized image as an effective template.

supervised methods. To extract the bounding box location,

we run a simple template matching convolving at 3 differ-

ent scales to create an accurate heat map as illustrated in

Figure 3. Once all of the object samples are extracted, they

can be used as pseudo ground-truth. So we train a state-of-

the-art object detector like fast RCNN or SSD [13, 25] with

our pseudo ground-truth object bounding boxes. The exper-

iments section shows our results, which outperform other

weakly supervised methods on PASCAL VOC and MS-

COCO. In some of the images, there exists multiple sam-

ples of the same object category. Similar to [52] where they

apply connected-component method on the object heat-map

to separate the samples, we also employ the same technique

as a pre-processing step. Thus, for the model training we

treat each of these samples as an independent instance.

Synthetic objects for detection. Another idea which im-

proves the weakly supervised object detection, is to use

synthetic data [34] or hallucinated samples. Based on our

model we obtain a set of synthetic images which look quite

similar to object instances and thus is used as an extra image

resource. This is shown to be effective in our weakly super-

vised object detection experiments. In future work, we plan

to investigate it further. More details are provided in the

experiment section.

6. Experiments

In this section, we discuss the experimental details and

evaluations of our proposed method. First, we introduce

the datasets on which the evaluations were performed. In

our experiments, we have two main evaluations: (i) evaluat-

ing the capability of our model to generate single object in-

stance from multiple objects in an image; and (ii) evaluating

the effectiveness of our weakly supervised object detection.

6.1. Implementation details

Our implementation is done in Torch and uses some pre-

trained models from Caffe implementation of [10]. All the

networks are trained on two TitanX GPUs. For the network

optimization, we use ADAM solver.

Architectures.

Encoder. In our experiments, we tested AlexNet and

VGG-16 networks as image encoder to prepare the input

to the generator. These networks are pre-trained on the

ILSVRC’12 ImageNet dataset. In the fully supervised task,

they were fine-tuned on the target datasets PASCAL and

COCO for classification. These networks were trained with

global average pooling to improve their localization ability,

as shown in [8, 52].

Generator. The configuration for this network is based

on [10] which has 3 fully connected layers initially, 6 up-

convolution layers and also 3 convolution layers between

the upconvs.

Discriminator block. This part has two network com-

ponents. The network for the ranking loss is identical to

the encoder and has shared weights. The discriminator net-

work with adversarial loss has 5 layers of convolution and

thereafter a global average pooling, followed by two fully

connected layers. A drop-out of 0.5 is applied before the fc
layers.

Training details. To train the total loss, we set the coef-

ficients of the losses as: αrank = 0.05, αimg = 10−6 ,

αfeat = 10−5 and αadv = 100. For the Adam optimization

parameters, we set the β1 = 0.9, β2 = 0.99 and start with

a learning rate of 0.0001.

6.2. Datasets and evaluation metrics

The two datasets that we targeted for our evaluations

are the PASCAL VOC 2007, 2010 and MS-COCO object

datasets. The VOC datasets contain 20 categories, with al-

most 5K images for training and validation. The MS-COCO

dataset is larger, including 80 categories with 80K training

images, 40K validation images, and 20K testing images.

Experimental metrics. For the object detection evaluation,

average precision (AP) and correct localization (CorLoc)

have been used. Average precision is the standard metric as

used in the PASCAL VOC competition. It takes a bound-

ing box as a true detection when it has an intersection-over-

union (IoU) of more than 50% with the ground-truth box.

The Corloc is the fraction of images for which the method

obtained the correct location for at least one object instance,

cf. MS-COCO. Average precision is also used for the clas-

sification evaluation.

For quantitative evaluation of synthesized images, we

measure pixel-level similarity error i.e. RMSE and SSIM.

The similarity error is calculated between the generated ob-

ject instance and the real object.

6.3. Synthesizing quantitative evaluation

Since there has been no other work very similar to ours,

we have designed a new experiment on the PASCAL VOC

dataset. We have evaluated the synthesizing power to pro-

duce object instances from test sets with 1000 samples. The

object instances were cropped from the original images and



Table 1. Quantitative performance: object synthesis on 1000 sam-

ples of PASCAL VOC objects.

Method SSIM RMSE

Dosovitskiy et al. [10] 0.16 0.36

Ours AlexNet 0.25 0.30

Ours VGG 0.28 0.27

Ours (whole img, box) 0.22 0.32

Ours (whole img) 0.20 0.34

Table 2. Evaluation for the ablation study on losses by quantitative

results.

Method SSIM RMSE

Ours (adv & img & ranking loss) 0.25 0.30

Ours (adv & img loss) 0.21 0.34

Ours (adv & ranking loss) 0.23 0.32

Ours (img & ranking loss) 0.19 0.39

Table 3. The ablation study on losses for object detection perfor-

mance in mean average precision (%).

Method VOC 2007

Ours (adv & feature & ranking loss) 45.3

Ours (adv & feature loss) 40.1

Ours (adv & ranking loss) 43.7

Ours (feature & ranking loss) 34.2

we then generate the synthesized version of them using our

pipeline and [10]. We also measure the synthesis perfor-

mance when other objects are present in the scene. In such

a case, we have results with and without bounding box po-

sitions. Table 1 summarizes the quantitative evaluations. It

is shown that under the same conditions as used by [10], our

network can reproduce images with a higher quality.

6.4. Ablation study of losses

We have evaluated different combinations of losses, with

results shown in Table 2 and combining three losses per-

forms the best. We have tested several mixes too, combin-

ing: (i) adversarial & image space; (ii) adversarial & rank-

ing; and (iii) image space & ranking losses. As also shown

in [10, 29], removing the adversarial objective results to

blurry images, and also drops the quantitative performance.

Table 3 shows the impact of different losses on weakly

supervised object detection performance. We can clearly

observe that, Table 2 relates very well to that of its indi-

vidual performance of image reconstruction quantitatively

shown in Table 3. We observe that the best case in the im-

age reconstruction performs the best in the detection too.

6.5. Weakly supervised detection and classification

Comparison with the state-of-the-art. Here we eval-

uate the weakly supervised detection performance of our

generative model. Different methods with deep learn-

ing [3, 24], clustering [2] and multiple instance learning [4]

Table 4. Weakly supervised object detection performance in aver-

age precision (%) comparison on the VOC 2007, 2010, and COCO

test set.

Method VOC2007 VOC2010 MS-COCO

Cinbis et al. [4] 30.2 27.4 −
Wang et al. [49] 30.9 − −
Li et al., AlexNet [24] 31 21.4 −
Li et al., VGG16 [24] 39.5 30.7 −
WSDDN [3] 39.3 36.2 11.5

WCCN AlexNet [8] 37.3 − 10.1

Jie et al [17] 41.7 38.3 −
WCCN VGG16 [8] 42.8 39.5 12.3

Ours AlexNet (FRCNN) 39.3 38.1 10.9

Ours VGG (FRCNN) 44.3 41.5 12.8

Ours VGG (SSD) 45.4 43.2 13.6

approaches are compared with our work. Once our model

is trained, it produces the templates for each object instance

and the corresponding object heat-maps are extracted via

template matching. Using these maps, each object bound-

ing box can be retrieved by looking for the maximum score

based on a connected-component method like that of [52].

After finding the boxes, Fast-RCNN or SSD object detector

is trained based on our pseudo ground-truth boxes.

Table 4 and Table 5 present average precision results on

PASCAL VOC 2007, 2010 and MS-COCO for object detec-

tion. As can be seen, our method outperforms others for this

task that use different methods. The CorLoc localization

performance is also shown in Table 6, for PASCAL VOC

2007. Our best performances are 45.3% and 46.4 (with ex-

tra synthesized objects) which is achieved with VGG-16 as

the encoder. When using AlexNet, our approach works bet-

ter than other methods using this network. As to the ob-

ject proposals EdgeBox [55] and SelectiveSearch [47] are

compared based on the Fast-RCNN detector trained by our

boxes, we found that Edgebox performs better.

Table 5 shows the effect of adding synthesized samples

to a weakly supervised object detection. For each object

sample found, we add one synthesized instance to increase

the training dataset. With this extra augmentation method

the results are improved by 1.1% and achieved 46.4%.

Object classification. The proposed method is also

tested for classification. The classification results for PAS-

CAL VOC’07 are given in Table 6. Once the training for the

generative model is completed, the encoder network is fine-

tuned for classification with pseudo ground-truth boxes.

The main competitor to our work is [8], which used cas-

caded CNNs to train an object detector and classifier. We

can clearly see that our method performs better than [8].

7. Conclusion

Our novel encoder-generator network contributes to

solving important problems in visual recognition, like ob-

ject discovery and weakly supervised detection. Synthesiz-

ing a particular object among the other objects present in



Table 5. Weakly supervised object detection average precision (%) on the PASCAL VOC 2007 dataset test set.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

Bilen et al. [2] 46.2 46.9 24.1 16.4 12.2 42.2 47.1 35.2 7.8 28.3 12.7 21.5 30.1 42.4 7.8 20.0 26.8 20.8 35.8 29.6 27.7

Cinbis et al. [4] 39.3 43.0 28.8 20.4 8.0 45.5 47.9 22.1 8.4 33.5 23.6 29.2 38.5 47.9 20.3 20.0 35.8 30.8 41.0 20.1 30.2

Wang et al. [49] 48.8 41.0 23.6 12.1 11.1 42.7 40.9 35.5 11.1 36.6 18.4 35.3 34.8 51.3 17.2 17.4 26.8 32.8 35.1 45.6 30.9

Li et al., VGG16 [24] 54.5 47.4 41.3 20.8 17.7 51.9 63.5 46.1 21.8 57.1 22.1 34.4 50.5 61.8 16.2 29.9 40.7 15.9 55.3 40.2 39.5

WCCN AlexNet [8] 43.9 57.6 34.9 21.3 14.7 64.7 52.8 34.2 6.5 41.2 20.5 33.8 47.6 56.8 12.7 18.8 39.6 46.9 52.9 45.1 37.3

HCP [17] 52.2 47.1 35.0 26.7 15.4 61.3 66.0 54.3 3.0 53.6 24.7 43.6 48.4 65.8 6.6 18.8 51.9 43.6 53.6 62.4 41.7

WCCN VGG16 [8] 49.5 60.6 38.6 29.2 16.2 70.8 56.9 42.5 10.9 44.1 29.9 42.2 47.9 64.1 13.8 23.5 45.9 54.1 60.8 54.5 42.8

SGWSOD [21] 48.5 63.2 33.2 31.0 14.5 69.4 61.7 56.6 8.5 41.3 37.6 50.0 54.1 62.7 22.9 20.6 42.1 50.7 54.3 55.2 43.9

Ours AlexNet 45.7 58.1 37.2 24.8 19 64.8 53.7 35.2 9.7 44.8 22.6 33.7 50.4 57.8 15.9 21.7 40.8 48.2 55.4 45.8 39.3

Ours VGG 50.9 61.2 40.5 31.4 21.1 71.6 58.1 42.9 11.7 46.4 30.7 44.5 48.3 64.9 16.8 24.8 47.1 55.7 61.7 55.8 44.3

Ours VGG (SSD) 51.7 62.7 40.6 33.8 22.3 71.4 59.8 43.3 12.5 48.1 32.5 44.8 49.1 64.7 17.4 25.8 48.9 56.7 63.5 57.1 45.3

Ours(+Synthesized data) 52.4 63.8 41.8 35.1 22.9 72.3 61.1 44.7 13.9 48.6 32.9 46.1 50.7 66.3 18.5 27 49.7 56.9 64.8 58.6 46.4

Table 6. Classification average precision (%) on the PASCAL VOC 2007 test set.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

WSDDN [3] 95.0 92.6 91.2 90.4 79.0 89.2 92.8 92.4 78.5 90.5 80.4 95.1 91.6 92.5 94.7 82.2 89.9 80.3 93.1 89.1 89.0

Oquab et al. [31] 88.5 81.5 87.9 82.0 47.5 75.5 90.1 87.2 61.6 75.7 67.3 85.5 83.5 80.0 95.6 60.8 76.8 58.0 90.4 77.9 77.7

SPPnet [15] − − − − − − − − − − − − − − − − − − − − 82.4

AlexNet [3] 95.3 90.4 92.5 89.6 54.4 81.9 91.5 91.9 64.1 76.3 74.9 89.7 92.2 86.9 95.2 60.7 82.9 68.0 95.5 74.4 82.4

VGG16-net [41] − − − − − − − − − − − − − − − − − − − − 89.3

WCCN AlexNet [8] 93.1 91.1 89.6 88.9 81 89.6 90.7 91.2 76.4 89.2 80.8 92.2 90.1 89 92.7 82 89.3 78.1 92.8 89.1 87.8

WCCN VGG16 [8] 94.2 94.8 92.8 91.7 84.1 93 93.5 93.9 80.7 91.9 85.3 97.5 93.4 92.6 96.1 84.2 91.1 83.3 95.5 89.6 90.9

SGWSOD [21] 98.3 97.4 96.5 95.7 79.6 93.9 97.5 96.9 79.7 92.3 82.7 97.6 97.2 95.9 99.1 84.2 92.5 83.7 97.3 92.7 92.5

Ours AlexNet 93.9 91.8 90.1 89.2 82.7 89.9 91.4 91.6 77.8 90.5 81.7 92.6 91 90.5 92.8 83.4 89.9 79.6 93 90.3 88.7

Ours VGG16 94.8 95 93.2 91.9 85 93.4 94.1 94.8 83 92.6 86.7 97.6 94 93.5 96.4 85.9 92.7 85 95.7 90.7 91.8

Ours(+Synthesized data) 94.9 95.2 93.7 92.7 85.7 93.8 94.7 94.7 84.3 92.8 87.5 98 94.5 93.6 96.7 86.4 93 86.8 96 91.1 92.3

Table 7. Weakly supervised correct localization (%) on PASCAL VOC 2007 on positive (CorLoc) trainval set.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

Bilen et al. [2] 66.4 59.3 42.7 20.4 21.3 63.4 74.3 59.6 21.1 58.2 14.0 38.5 49.5 60.0 19.8 39.2 41.7 30.1 50.2 44.1 43.7

Cinbis et al. [4] 65.3 55.0 52.4 48.3 18.2 66.4 77.8 35.6 26.5 67.0 46.9 48.4 70.5 69.1 35.2 35.2 69.6 43.4 64.6 43.7 52.0

Wang et al. [49] 80.1 63.9 51.5 14.9 21.0 55.7 74.2 43.5 26.2 53.4 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.9 48.5

Li et al., AlexNet [24] 77.3 62.6 53.3 41.4 28.7 58.6 76.2 61.1 24.5 59.6 18.0 49.9 56.8 71.4 20.9 44.5 59.4 22.3 60.9 48.8 49.8

Li et al., VGG16 [24] 78.2 67.1 61.8 38.1 36.1 61.8 78.8 55.2 28.5 68.8 18.5 49.2 64.1 73.5 21.4 47.4 64.6 22.3 60.9 52.3 52.4

WSDDN [3] 65.1 63.4 59.7 45.9 38.5 69.4 77.0 50.7 30.1 68.8 34.0 37.3 61.0 82.9 25.1 42.9 79.2 59.4 68.2 64.1 56.1

WCCN AlexNet [8] 79.7 68.1 60.4 38.9 36.8 61.1 78.6 56.7 27.8 67.7 20.3 48.1 63.9 75.1 21.5 46.9 64.8 23.4 60.2 52.4 52.6

WCCN VGG16 [8] 83.9 72.8 64.5 44.1 40.1 65.7 82.5 58.9 33.7 72.5 25.6 53.7 67.4 77.4 26.8 49.1 68.1 27.9 64.5 55.7 56.7

Ours AlexNet 83.5 70.9 65.4 42.4 39 63.9 80.8 58.6 30.2 69.5 24.8 51 66.2 78.4 25.2 48.7 66.6 26.7 63.3 55.9 55.6

Ours VGG16 85.5 75 66.9 47.5 43.6 67.4 83.6 61.7 36.8 75.1 29.8 55.9 70.4 80.6 29 52.9 71 31.2 66.9 58.1 59.4

an image has been rarely touched upon before. We propose

to use different configurations of objective functions to train

the visual encoder and generative network, and to utilize the

resulting pipeline to separate the objects in an image from

each other and the rest of the image. Our approach is a new

method to synthesize object categories and to exploit that

capability for object detection.

Combining supervision at the level of object locations

and category labels with a ranking hypothesis was shown to

be beneficial for training. We have demonstrated the power

of our method through different experiments on the PAS-

CAL VOC and MS-COCO datasets. Another important op-

portunity offered by our method is to train weakly super-

vised object detectors with the help of object discovery. In

future work, we plan to use our proposed pipeline to anno-

tate object bounding boxes for large-scale datasets, such as

ImageNet.
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Alexei A Efros. Generative visual manipulation on the natu-

ral image manifold. In ECCV, 2016.

[55] C Lawrence Zitnick and Piotr Dollár. Edge boxes: Locating

object proposals from edges. In ECCV, 2014.


