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Abstract

Classification of whole slide image (WSI) cervical cell

clusters traditionally involved two stages including seg-

mentation to crop single cell patches followed by the

classification of single cell patches. Hence the perfor-

mance of classification pipeline depends on segmentation

accuracy. We propose a first-time-right method which is a

segmentation-free direct classification of WSI cervical cell

clusters (without the extraction of single cell patches). The

proposed method is evaluated on SIPaKMeD and Herlev

datasets. Our method significantly outperformed previous

methods and baselines with an accuracy of 96.37% on

WSI patches (cell clusters) and 99.63% on single cell

images.We also propose a PCA based feature interpretation

method to visualize and understand the model to make its

decisions more transparent. Our solution is promising in

the development of automatic whole slide pap smear image

classification system.

1. Introduction

Cervical cancer accounts for 6.6% of the total positive

cases in the world with well over 570,000 cases in 2018

taking it to the fourth spot on the cancer watch list. Ap-

proximately 90% of deaths from cervical cancer occurred in

low and middle-income countries[15]. The high mortality

rate due to cervical cancer can be reduced globally through

an approach that includes prevention, effective screening,

early diagnosis and treatment programmes. Early and ef-

fective screening helps detect precancerous changes which

may develop into cancer.

After the introduction of Papanicolaou (Pap) smear[8],

the standard screening test for cervical cancer and pre-

malignant lesions is cervical cytology. The analysis of

the Pap smear images requires skilled pathologists, and the

screening process is expensive and time-consuming. Thus
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automating this process can help assist the pathologist and

provide a less subjective interpretation of the test. There

has been considerable work done to automate and create an

end-to-end solution for the detection of abnormal cells in

the Pap smear slide images which aides the pathologists.

One of the approaches involved moving k-means clus-

tering and SBRG algorithm[4]. This algorithm detects the

fine edges of multiple cells in the slide (multiple regions

of interest). The algorithm consists of three major steps:

(1) threshold values are found automatically using moving

k-means clustering algorithm, (2) MSBRG (Modified Seed

Based Region Growing) is applied to detect the edges of the

region of interest (ROI) based on thresholds, (3) proposed

technique is applied to Pap smear images to detect the cyto-

plasm and nucleus edges of cervical cells.

Apart from edge detection, certain supervised and unsu-

pervised techniques were also explored [10]. Firstly, the

locations of nuclei were detected, then a refinement step

involving prior information of circumference of the nuclei

was performed, and then classification algorithm is applied

to detect the abnormal cells in the images. Both supervised

techniques such as support vector machines[2] and unsuper-

vised such as fuzzy logic were applied.

All these methods involved preprocessing of the data

which includes localisation of the nuclei in the images and

application of noise removal algorithms before classifica-

tion. Researchers have also used Convolutional Neural Net-

works (CNN) to solve this problem owing to their success

in various applications such as image recognition, object

detection, segmentation, etc. DeepPap [17] involved (1) de-

tection of the nuclei in the images, (2) cropping of single

cell images considering nuclei as the centroid, (3) classi-

fying them using CNNs. This methodology for the detec-

tion of abnormal cells in Pap smear images has the follow-

ing challenges: (1) It depends on the localisation of nuclei,

(2) Involved detection and classification of images of single

cell whereas classification of the whole slide images is more

meaningful and (3) Overlapping cells was a major issue as

cropping was done based on the position of nuclei.



Typically, prior to classification, segmentation of the

cells in WSI patches into cytoplasm and nuclei is done. But

in this paper, we propose a solution by directly classifying

the whole slide image patches from pap smear test into nor-

mal and abnormal cells. Overlapping cells are no longer

a bottleneck to the proposed solution. The inference time

is much lesser than the previous work since our method

doesn’t involve localisation of nuclei and cropping single

cells from WSI patches by considering nuclei as centroid

prior to classification.

Deep learning models are known to have limited inter-

pretability. In fact, interpretability of deep learning models

is a challenging and an active area of research[12, 18]. We

propose the use of principal component analysis (PCA) to

visualize and understand the features learned by our model

to differentiate the classes. We also used saliency maps to

make our model predictions more transparent.

To summarise, our contributions are as follows:

1. To the best of our knowledge, we are the first to present

a segmentation-free classification of whole slide image

patches (without extracting single cell) using convolu-

tional neural networks.

2. We visualize and analyze the feature representations

of the model using PCA to provide interpretability and

transparency.

3. We show that our approach achieves competitive per-

formance on SIPaKMeD whole slide images. The pro-

posed methodology overcomes issues due to overlap-

ping cells and also achieves significantly improved in-

ference time in comparison to previous methods.

2. Methodology

The proposed methodology consists of three stages: (1)

Data preprocessing, (2) Training, (3) Testing.

2.1. Data preprocessing

In our work, we used various data augmentation transfor-

mations that are as follows: (1) Since the cervical cells are

invariant to rotations, we randomly rotated the input images

between -θ to θ with a probability of PA, (2) We flipped

images both horizontally and vertically with a probability

of PB . Unlike most image classification problems, (3) We

randomly cropped the image to H×W size which is also the

input size of our network, (4) We applied a random zoom α

with a probability of PA. After applying the above augmen-

tation techniques, we resize the image to H ×W .

2.2. Training

We used Residual Net [3] with 34 layers pre-trained on

the ImageNet Large Scale Visual Recognition Challenges

dataset with 1000 classes achieving a top-1 accuracy of

73.3%. We removed the final classification layer from the

network and added a final classification block which con-

sists of a layer that concatenates both average pooling and

max-pooling, batch normalization layer, fully connected

layer of 512 units (with ReLU activation), batch normaliza-

tion layer and an output layer with the number of units equal

to the number of output classes in the dataset under consid-

eration and retrained it with the corresponding pap smear

dataset. This was done to leverage the features learned

by the ImageNet pre-trained model. The loss function we

used was categorical cross entropy. We used a weight de-

cay of wd and discriminative learning rates since different

layers capture different types of information with the layers

closer to input capturing low-level features and the layers

closer to output capturing high level features[16]. This al-

lowed us to preserve filters in the layers closer to input that

are learned by ResNet on the ImageNet dataset. The net-

work was trained with AdamW Optimizer[7]. The learn-

ing rates were scheduled using 1cycle policy which enables

Super-convergence allowing faster training of neural net-

works with very large learning rates and give regularization

preventing overfitting[13, 14].

2.3. Testing

During the testing stage, we resized the input image to

H ×W size and passed the resized image through the net-

work for it to predict the output class label. For all the tasks

on SIPaKMeD dataset and Herlev dataset, we used 5-fold

cross-validation with the data splits released along with the

dataset.

2.4. Feature interpretation

To understand which features are responsible for the cor-

rect prediction of the class of pap smear images, we are an-

alyzing the features of the penultimate layer (ignoring the

batch normalization layer and the dropout) of the network

i.e the fully connected layer before the output layer. We

considered the penultimate layer since it the layer which has

the discriminative information which is used by the model

to predict. Since they are several features under consider-

ation, we reduced the dimensionality using principal com-

ponent analysis (PCA). We fit PCA on penultimate layer

feature of training data and transform the penultimate layer

feature of validation data. We then sorted the validation

dataset on the basis of the feature activations obtained by

applying the transform on validation set for each feature in

the reduced set of features. The analysis of these features

can be seen in Figure 2 and Section 4.3.1.

3. Experiments

The following section describes the experimental setup

used along with details on datasets used, training strategy,

etc.



Figure 1. The figure illustrates transfer learning using ImageNet trained ResNet model and the inference pipeline where the model outputs

the confidence score of the input belonging to each of the classes. The figure also shows the activation maps of selected convolutional

layers for the input image.

3.1. Datasets

3.1.1 Sipakmed

The SIPaKMeD dataset[9] consists of 4049 isolated single

cell images which have been manually cropped from 996
cluster cell images of Pap smear slides which we refer to

as Whole Slide Image patches (WSI) in this paper. Hence

the SIPaKMeD dataset consists of two types of images: (1)

whole slide images (2) single cell images. The dataset com-

prises of cells belonging to five categories: (1) Dyskera-

totic, (2) Koilocytotic, (3) Metaplastic, (4) Parabasal and

(5) Superficial-Intermediate. 1-2 classes represent the ab-

normal cervical cells, 4-5 classes represent normal cervical

cells, and 3 represents the benign cells.

3.1.2 Herlev

The Herlev dataset[5] consists of 917 isolated single cell

images, that is the images contain one cervical cell. There

are total of seven classes namely: (1) Superficial squamous

epithelia, (2) Intermediate squamous epithelia, (3) Colum-

nar epithelial, (4) Mild squamous non-keratinizing dyspla-

sia, (5) Moderate squamous non-keratinizing dysplasia, (6)

Severe squamous non-keratinizing dysplasia and (7) Squa-

mous cell carcinoma in situ intermediate. The classes 1-3

are normal cervical cells whereas classes 4-7 are abnormal

cervical cells.

4. Results

4.1. Classification

This subsection describes the experimental setup of clas-

sification tasks. All experiments were run on an NVIDIA

GTX 1070 GPU.

4.1.1 Hyperparameters and training strategy

In data preprocessing, we used a value of θ = 60, α of

1.0 to 1.1, PA = 0.75 and PB = 0.5. After data pro-

cessing step, we resized the image to 224 × 224 (H ×W )

in case of WSI patches and 80 × 80 (H × W ) in case of

single cell images. To train the model, we began by freez-

ing the weights of ResNet block of the model and training

only the final classification block. The learning rate of the

last layer was set 10−2, and each of the previous layers in

the final classification block had their learning rate as 10−3.

The network was trained for 10 epochs. The weights of

the ResNet block were later unfrozen and the training was



Dataset

type
Method Sens (%) Spec (%) H-mean (%) Acc (%) F-score (%)

WSI AlexNet 99.29± 0.40 88.23± 1.21 93.43± 0.60 88.08± 1.45 88.15± 1.26
VGG-16 97.95± 0.83 95.65± 1.79 96.78± 0.87 90.15± 0.63 90.00± 0.92

Our model 98.04± 0.47 99.92± 0.21 98.97.00± 0.22 96.37± 0.53 96.38± 1.97

Single

cell

Deep (Conv)

with SVM

[9]

- - - 93.35± 0.62 -

Deep (FC)

with SVM

[9]

- - - 94.44± 1.21 -

VGG-16 99.36± 0.37 97.33± 1.22 98.33± 0.56 95.17± 1.64 95.23± 0.83
Our model 99.79± 0.19 99.83± 0.40 99.79± 0.20 99.63± 1.1 99.63± 0.19

Table 1. Comparison of the performance metrics of our model with previous methods and baselines. The table consists of metric results for

WSI patches and single cell images of SIPaKMeD dataset. The highest value for each metric is shown in bold. All experiments followed

5-fold cross-validation.

Method k-fold CV Sens(%) Spec(%) H-Mean(%) Acc(%) F-score(%)

Benchmark [5] 10 98.8± 1.3 79.3± 6.3 88.0±NA 93.6± 1.9 -

Bora et al. [1] 5 99.0±NA 89.7±NA 93.1±NA 96.5±NA -

DeepPap [17] 5 98.2± 1.2 98.3± 0.9 98.3± 0.3 98.3± 0.7 98.8± 0.5
Our model 5 99.02± 0.60 99.37± 0.21 99.15± 0.39 98.76± 0.45 99.26± 0.42

Table 2. Comparison of performance metrics, such as Sensitivity(Sens), Specificity(Spec), H-Mean, Accuracy(Acc) and F-score, of our

model with previous methods on Herlev dataset. The highest value for each metric is shown in bold.

resumed with lower learning rates between 10−5 to 10−6

set discriminatively for all the layers. The training of the

network was done for a total of 30 epochs. The faster con-

vergence was due to the super-convergence achieved using

the 1cycle policy for learning rate scheduling [13].

4.1.2 Evaluation Metrics

Five-fold cross-Validation method was used to report

the classification scores for both SIPaKMeD and Herlev

datasets. To analyze the performance of the classification

model, the following metrics are calculated : (1) Sensitivity

(Sens), (2) Specificity (Spec), (3) Accuracy (Acc), (4) H-

Mean Score (H-Mean) and (5) F-score. Sensitivity reports

the proportion of correctly identified abnormal cells, Speci-

ficity reports the proportion of correctly identified normal

cells, Accuracy is the overall percentage of correctly iden-

tified cells, H-Mean is 2 × (Sens×Spec
Sens+Spec

) and F-score is the

harmonic mean of precision and recall.

In this section, we have divided the results into two major

categories: (1) Quantitative Results, (2) Qualitative Results

4.2. Quantitative Results

In this section, we describe the classification results on

two datasets : (a) SIPaKMeD and (b) Herlev.

Table 1 shows the quantitative comparison of our pro-

posed model with existing methods on WSI patches of

SIPaKMeD dataset. Our model performs better in terms

of accuracy (96.37%) and F-score (96.38%) in compari-

son to the AlexNet and VGG-16 baseline models. AlexNet

baseline model has a higher sensitivity (99.29%) than ours

(98.04%). Although higher Sens is desirable even at the ex-

pense of lower Spec, since WSI patches classified as malig-

nant would be re-examined by human experts, lower Spec

can increase human labour significantly. Significant portion

of WSI patches have normal cells in excess, hence a lower

Spec results in higher false positives. H-mean balances Sens

and Spec with the model achieving 98.97% in comparison

to 93.43 of AlexNet. In experiments conducted on single

cell images, the model achieves an accuracy of 99.63% in

comparison to 94.44% by Plissiti et al. [9].

In Table 2, we observe that our model significantly out-

performs the previous methods on single cells images with

an accuracy of 99.63%. It also has a higher sensitivity and

specificity of 99.79% and 99.83% respectively in compar-

ison to a sensitivity and specificity of 99.36% and 97.33%
respectively achieved using VGG-16. A similar trend is ob-

served for other metrics as well.

We can see in Figure 1 that the model predicts the output

class correctly for the input image with a high confidence

value of 0.98106 for the class Dyskeratotic.



Figure 2. The figure shows the set of images that have maximum and minimum of a feature activation that is extracted using PCA and then

interpreted. The title of each sub-image (a,b,c) is the interpretation of the feature. The sub-image (a) is a WSI patch and (b,c) are single

cell cervical images.

4.2.1 Computational Speed

The average training time for 30 epochs is about 15 minutes.

This is due to the super-convergence achieved using 1cycle

policy[13, 14]. Our proposed method achieves high accu-

racy without relying on any test time augmentation (TTA).

The inference time is 0.0410 sec/image on average which

is significantly lower than the existing state-of-the-art sys-

tem, DeepPap, which has an inference time of 3.5 sec/image

(with TTA) and 0.035 sec/image (without TTA but with 1%

lower accuracy than with TTA). Our experiments were con-

ducted on NVIDIA GTX 1070 GPU (1920 CUDA Cores)

which is less powerful than their NVIDIA GTX TITAN Z

(5760 CUDA Cores).

4.3. Qualitative results

4.3.1 PCA feature interpretation

The reduced set of features obtained after applying PCA

were analyzed on the basis of value of activation. A few

examples are shown in Figure 2. In Figure 2(a), the feature

(Fa) is interpreted as clusters/well-defined cytoplasm. This

is an important and discriminative feature since Superficial-

Intermediate class cells have a clear cytoplasm and nucleus

margin whereas Dyskeratotic and Metaplastic cells are usu-

ally in clusters with overlapping cytoplasm and nuclei mar-

gins. Similarly, (Fb) represents the size of the nucleus

which can be used to distinguish Superficial-Intermediate

cells (small nucleus), Parabasal cells (large nucleus) and the

others intermediate classes. The feature (Fc) represents the

presence of perinuclear cavity (cavity between the nucleus

and the cytoplasm of the cell). Koilocytotic cells have the

presence of perinuclear cavity whereas cells such as Meta-

plastic cells have a thick cytoplasm instead. The patholo-

gists often use this in recognizing the class of the cell[6].

4.3.2 Sailency Maps

To understand the output of the classifier, visual saliency

was explored. Gradient-weighted Class Activation Map

(Grad-CAM)[11] is a type of saliency map highlighting the

important regions in the image for predicting the output of

the given image. In Figure 3(a), we observe that the pro-

posed model focuses on the cell cluster ignoring the back-

ground. In Figure 3(b), it can be seen that the nucleus area

has the highest activation indicating that the model focuses

on the nucleus to output the prediction.



Figure 3. Gradient-weighted Class Activation Maps of (a) WSI

patches and (b) Single cell images of SIPaKMeD. In both (a) and

(b), the input images are on left, saliency maps are in the middle

and the saliency maps overlaid on the input images are shown on

right.

5. Conclusion

This paper proposes an end-to-end segmentation-free

classification of patches of WSI pap smear images using

CNNs. The method is shown to outperform the state-of-

the-art methods for cervical cell classification achieving a

high accuracy and F-score. We also overcome the limita-

tions of previous works through: (1) No segmentation stage

before classification, (2) No bottleneck due to overlapping

cells since we classify the WSI patches directly without

cropping and (3) Fast inference time of only 0.0410 sec-

onds per image in comparison to 3.5 seconds per image of

previous state-of-the-art method [17]. We also showed the

transparency of the model by visualizing the features learnt

using PCA and saliency maps. By analyzing the penulti-

mate layer of the classification pipeline, we were able to in-

terpret remarkable features learnt by the CNN responsible

for the correct prediction.
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