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Abstract

We present an efficient approach for leveraging the

knowledge from multiple modalities in training unimodal

3D convolutional neural networks (3D-CNNs) for the task

of dynamic hand gesture recognition. Instead of explicitly

combining multimodal information, which is commonplace

in many state-of-the-art methods, we propose a different

framework in which we embed the knowledge of multiple

modalities in individual networks so that each unimodal

network can achieve an improved performance. In partic-

ular, we dedicate separate networks per available modal-

ity and enforce them to collaborate and learn to develop

networks with common semantics and better representa-

tions. We introduce a “spatiotemporal semantic alignment”

loss (SSA) to align the content of the features from differ-

ent networks. In addition, we regularize this loss with our

proposed “focal regularization parameter” to avoid neg-

ative knowledge transfer. Experimental results show that

our framework improves the test time recognition accu-

racy of unimodal networks, and provides the state-of-the-art

performance on various dynamic hand gesture recognition

datasets.

1. Introduction

Recent advances in computer vision and pattern recog-

nition have made hand gesture recognition an accessible

and important interaction tool for different types of applica-

tions including human-computer interaction [36], sign lan-

guage recognition [7], and gaming and virtual reality con-

trol [22]. In particular, recent developments in deep 3-D

convolutional neural networks (3D-CNNs) with video se-

quences have significantly improved the performance of dy-

namic hand gesture recognition [27, 24, 26].

Most state-of-the-art hand gesture recognition methods

exploit multiple sensors such as visible RGB cameras, depth

camera or compute an extra modality like optical flow

to improve their performances [21, 50, 47, 23]. Multi-
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Figure 1. Training and testing schemes of different types of recog-

nition systems. (a) The system is trained and tested with multi-

ple modalities. (b) The system is trained and tested with a sin-

gle modality. (c) The system leverages the benefits of multimodal

training but can be ran as a unimodal system during testing.

modal recognition systems offer significant improvements

to the accuracy of hand gesture recognition [25]. A multi-

modal recognition system is trained with multiple streams

of data and classifies the multimodal observations during

testing [35, 4] (Figure 1 (a)). On the other hand, a uni-

modal recognition system is trained and tested using only a

single modality data (Figure 1 (b)). This paper introduces

a third type of framework which leverages the knowledge

from multimodal data during training and improves the per-

formance of a unimodal system during testing. Figure 1 (c)

gives an overview of the proposed framework.

The proposed approach uses separate 3D-CNNs per each

stream of modality for primarily training them to recognize

the dynamic hand gestures based on their input modality

streams. The streams of modalities that are available in

dynamic hand gesture recognition systems are often spa-

tially and temporally aligned. For instance, the RGB and
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depth maps captured with motion sensing devices and the

optical flow calculated from the RGB streams are usually

aligned. Hence, we encourage the individual modality net-

works to derive a common understanding for the spatiotem-

poral contents of different modalities. We do this by sharing

their knowledge throughout the learning process by mini-

mizing the introduced spatiotemporal semantic alignment

(SSA) loss.

We further improve the learning process by regularizing

the SSA loss with an adaptive regularization parameter. We

call this regularization parameter, the focal regularization

parameter. This parameter prevents the transfer of negative

knowledge. In other words, it makes sure that the knowl-

edge is transferred from more accurate modality networks

to less accurate networks and not the other way. Once the

networks are trained, during inference, each network has

learned to recognize the hand gestures from its dedicated

modality, but also has gained the knowledge transferred

from the other modalities that assists in providing the better

performance.

In summary, this paper makes the following contribu-

tions. First, we propose a new framework for single modal-

ity networks in dynamic hand gesture recognition task to

learn from multiple modalities. This framework results in a

Multimodal Training / Unimodal Testing (MTUT) scheme.

Second, we introduce the SSA loss to share the knowledge

of single modality networks. Third, we develop the focal

regularization parameter for avoiding negative transfer. In

our experiments, we show that learning with our method

improves the test time performance of unimodal networks.

2. Related Work

Dynamic Hand Gesture Recognition: Dynamic hand-

gesture recognition methods can be categorized on the ba-

sis of the video analysis approaches they use. Many hand-

gesture methods have been developed based on extracting

handcrafted features [48, 37, 42, 29]. These methods often

derive properties such as appearance, motion cues or body-

skeleton to perform gesture classification. Recent advances

in action recognition methods and the introduction of vari-

ous large video datasets have made it possible to efficiently

classify unprocessed streams of visual data with spatiotem-

poral deep neural network architectures [9, 44, 38].

Various 3D-CNN-based hand gesture recognition meth-

ods have been introduced in the literature. A 3D-CNN-

based method was introduced in [24] that integrates nor-

malized depth and image gradient values to recognize dy-

namic hand gestures. In [25], a 3D-CNN was proposed

that fuses streams of data from multiple sensors including

short-range radar, color and depth sensors for recognition.

A real-time method is proposed in [26] that simultane-

ously detects and classifies gestures in videos. Camgoz et

al. [6] suggested a user-independent system based on the

spatiotemporal encoding of 3D-CNNs. Miao et al. pro-

posed ResC3D [23], a 3D-CNN architecture that combines

multimodal data and exploits an attention model. Further-

more, some CNN-based models also use recurrent architec-

tures to capture the temporal information [50, 8, 11, 52].

The main focus of this paper is to improve the perfor-

mance of hand gesture recognition methods that are built

upon 3D-CNNs. As will be described later, we assume that

our networks have 4-D feature maps that contain positional,

temporal and channel dimensions.

Transfer Learning: In transfer learning, first, an agent is

independently trained on a source task, then another agent

uses the knowledge of the source agent by repurposing the

learned features or transferring them to improve its learning

on a target task [32, 43]. This technique has been shown

to be successful in many different types of applications

[5, 30, 19, 17, 49, 34]. While our method is closely related

to transfer learning, our learning agents (i.e. modality net-

works) are trained simultaneously, and the transfer occurs

both ways among the networks. Thus, it is better catego-

rized as a multi-task learning framework [10, 31], where

each network has three tasks of providing the knowledge to

the other networks, receiving the knowledge from them, and

finally classifying based on their dedicated input streams.

Multimodal Fusion: In multimodal fusion, the model

explicitly receives the data from multiple modalities and

learns to fuse them [28, 3, 33]. The fusion can be achieved

at feature level (i.e. early fusion), decision level (i.e. late

fusion) or intermediately [35, 2]. Once the model is trained,

during testing, it receives the data from multiple modali-

ties for classification [35, 28]. While our method is re-

lated to multimodal fusion, it is not a fusion method. We do

not explicitly fuse the representations from different modal-

ities. Instead, we improve the representation learning of our

individual modality networks by leveraging the knowledge

from different modalities. During inference, we do not nec-

essarily need multiple modalities but rather each individual

modality network works independently to classify data.

3. Proposed Method

In our proposed model, per each modality, one 3D-CNN

is trained. Assuming that the stream of data is available

in M modalities, we have M classifier networks with sim-

ilar architectures that classify based on their correspond-

ing input. During training, while each network is primar-

ily trained with the data from its corresponding modality,

we aim to improve the learning process by transferring the

knowledge among the networks of different modalities. The

transferred knowledge works as an extra supervision in ad-

dition to the class labels.

We share the knowledge of networks by aligning the se-

mantics of the deep representations they provide for the in-

puts. We do this by selecting an in-depth layer in the net-
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Figure 2. An example of the RGB and optical flow streams from the NVGesture Dataset [26]. As can be seen, while for the stationary

frames RGB provides better representation, optical flow provides better representation for the dynamic frames.

works and enforcing them to share a common correlation

across the in-depth layers of all the modality networks. This

is done by minimizing the distance between their correla-

tion matrices in the training stage. In addition, we regular-

ize this loss by an adaptive parameter which ensures that

the loss is serving as a one-way gate that only transfers the

knowledge from more accurate modality networks to those

with less accuracy, and not the other way.

3.1. Spatiotemporal Semantic Alignment

In an ideal case, all the M classifier modality networks

of our model should have the same understanding for an in-

put video. Even though they are coming in different modal-

ities, their inputs are representing the same phenomena. In

addition, since we assume that different modalities of the

input videos are aligned over the time and spatial positions,

in an ideal case the networks are expected to have the same

understanding and share semantics for spatial positions and

frames of the input videos across the different modalities.

However, in practice, some spatiotemporal features may be

better captured in one modality as compared to some other

modalities. For instance, in the stream of visible RGB and

optical flow frames shown in Figure 2, it can be observed

that for static frames the RGB modality provides better in-

formation, while for dynamic frames optical flow has less

noisy information. This results in different semantic under-

standing across the individual modality networks.

Thus, it is desirable to design a collaborative frame-

work that encourages the networks to learn a common un-

derstanding across different modalities for the same input

scene. This way, if in a training iteration one of the net-

works cannot learn a proper representation for a certain re-

gion or time in its feature maps, it can use the knowledge

from the other networks to improve its representations. An

iterative occurrence of this event during the training pro-

cess leads the networks to develop better representations in

a collaborative manner.

Let Fm,Fn ∈ R
W×H×T×C be the in-depth feature

maps of two networks corresponding to the mth modal-

ity and nth modality, where W,H, T and C denote width,

heights, the number of frames and channels of the feature

maps, respectively. An in-depth feature map should contain

high-level content representations (semantics) [16]. The el-

ement fmi,j,t ∈ R
C in Fm represents the content for a certain

block of time and spatial position. It is reasonable to expect

the network m to develop correlated elements in Fm for

spatiotemporal blocks with similar contents and semantics

in the input. Thus, in an ideal case, the correlated elements

in Fm should have correlated counterpart elements in Fn.

The correlations between all the elements of Fm is ex-

pressed by its correlation matrix defined as follows

corr(Fm) = F̂mF̂
T
m ∈ R

d×d, (1)

where F̂m ∈ R
d×C contains the normalized elements of

Fm in its rows, and d = WHT is the number of ele-

ments in F
m. The element fmi,j,t is normalized as f̂

m
i,j,t =

f̃
m
i,j,t/‖f̃

m
i,j,t‖ where ‖f̃mi,j,t‖ is the magnitude of f̃

m
i,j,t, and

f̃
m
i,j,t is calculated by f̂

m
i,j,t =

f
m
i,j,t−µi,j,t

σi,j,t
, where µi,j,t and

σi,j,t are respectively the sample mean and variance of the

element. We encourage the networks of the mth and the

nth modalities to share a common correlation matrix for the

feature maps of Fm and Fn so that they can have similar

understanding for the input video while being free to have

different styles. We do this by minimizing their spatiotem-

poral semantic alignment loss defined as

ℓm,n
SSA = ρm,n‖corr(Fm)− corr(Fn)‖

2
F , (2)

where ρm,n is an adaptive regularization parameter defined

in Section 3.2.

The spatiotemporal semantic alignment loss is closely

related to the covariance matrix alignment of the source and

target feature maps in domain adaptation methods [41, 40].

In addition, in some style transfer methods, the Gram ma-

trices of feature maps are aligned [15, 16]. Aligning the

Gram matrices, as opposed to our approach, discards the

positional information and aligns the styles. In contrast, our

method aligns the positional and temporal information and

discards the style.

3.2. Avoiding Negative Transfer

As discussed earlier, some modalities may provide weak

features as compared to the others. In addition, even the

strong modalities may sometimes have corrupted or hard
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Figure 3. The value of focal regularization parameter (ρm,n) when

β = 2 for different values of classification losses, ℓmcls and ℓncls.

Proportional to the classification performances of networks m and

n, this parameter scales the SSA loss to focus on transferring pos-

itive knowledge.

examples in their training set. In these cases, aligning the

spatiotemporal semantics of the representations from the

other networks to the semantics of a week network may lead

to a decrease in the performance. In such a case, a negative

transfer has occurred. It is desirable to develop a method

that produces positive knowledge transfer between the net-

works while avoiding negative transfer. Such a method in

our framework should enforce the networks to only mimic

the semantics of more accurate networks in learning the rep-

resentations for their hard examples. To address this issue,

we regularize our SSA loss with an adaptive regularization

parameter termed as focal regularization parameter. This

parameter is denoted as ρm,n in equation (2).

In order to measure the performance of the network

modalities, we can use their classification loss values. As-

sume ℓmcls and ℓncls are the classification losses of the net-

works m and n that respectively correspond to the mth and

nth modalities. In addition, let ∆ℓ = ℓmcls − ℓncls be their

difference. A positive ∆ℓ indicates that network n works

better than network m. Hence, in training the network m,

for large positive values of ∆ℓ, we want large values for

ρm,n to enforce the network to mimic the representations of

the network n. As ∆ℓ → 0+, network n becomes less an

assist. Hence, we aim to have smaller ρm,ns to focus more

on the classification task. Finally, negative ∆ℓ indicates that

the network n does not have better representations than the

network m, and therefore ρm,n should be zero to avoid the

negative transfer. To address these properties, we define the

focal regularization parameter as follows

ρm,n = S(eβ∆ℓ − 1) =

{

eβ∆ℓ − 1 ∆ℓ > 0
0 ∆ℓ ≤ 0

(3)

where β is a positive focusing parameter, and S(·) is the

thresholding function at zero.

Figure 3 visualizes values of ρm,n for various ℓnclss and

ℓmcls ∈ [0, 2], when β = 2. As can be seen, the parameter

is dynamically scaled, where the scaling factor decays to
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Figure 4. Training network m with the knowledge of network n.

Training network m, is primarily done with respect to its classifier

loss (ℓmcls), but comparing with ℓncls, ρm,n determines if involving

the SSA loss is necessary, and if yes, it regularizes this loss with re-

spect to the difference between the performances of two networks.

Note that in the test time, both networks perform independently.

zero as confidence in the classification performance of the

current network modality increases (measured using ∆ℓ).
This scaling factor can automatically down-weight the con-

tribution of the shared knowledge if the performance of the

modality network n is degraded (measured by ℓncls).

The focal regularization parameter ρm,n is used as the

regularization factor when aligning the correlation matrix

of Fm in mth modality network to the correlation matrix of

F
n in nth modality network.

3.3. Full Objective of the Modality Networks

Combining the aforementioned objectives, our full ob-

jective for training the network corresponding to the mth

modality in an M -modality task is as follows

ℓm = ℓmcls + λ

M
∑

n=1

ℓm,n
SSA (4)

where λ is a positive regularization parameter. Note that for

n = m, ρm,n = 0 and thus ℓm,n
SSA = 0.

Figure 4 shows an overview of how the representations

for the nth modality affects on learning the representation in

the mth modality. Since ρm,n is differentiable, the training

can be done in an end-to-end manner.

Our model encourages the networks to improve their rep-

resentation learning in the training stage. During testing,

each network performs separately. Thus, once the networks

are trained, one can use an individual modality network to

acquire efficient recognition. However, it is worth men-

tioning that with our framework, applying a decision level

modality fusion in the test stage is also possible. In fact,

our experiments show that the proposed method not only

improves the performance of unimodal networks, but it can

also improve the fusion performance.
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Figure 5. Sample sequences from different modalities of used datasets. (a) VIVA hand gesture dataset [29]. (b) NVGesture dataset [26].

(c) EgoGesture [8, 51]. As can be seen, the modalities in VIVA and EgoGesture datasets are well-aligned, while the depth map is not quite

aligned with RGB and Optical flow maps in NVGesture.

4. Experimental Results

In this section, we evaluate our method against state-of-

the-art dynamic hand gesture methods. We conduct our ex-

periments on three publicly available multimodal dynamic

hand gesture datasets. The following datasets are used in

our experiments.

• VIVA hand gestures dataset [29] is a multimodal dy-

namic hand gesture dataset specifically designed with

difficult settings of cluttered background, volatile illu-

mination, and frequent occlusion for studying natural

human activities in real-world driving settings. This

dataset was captured using a Microsoft Kinect device,

and contains 885 visible RGB and depth video se-

quences (RGB-D) of 19 hand gesture classes, collected

from 8 subjects.

• EgoGesture dataset [8, 51] is a large multimodal hand

gesture dataset collected for the task of egocentric ges-

ture recognition. This dataset contains 24,161 hand

gesture clips of 83 classes of gestures, performed by

50 subjects. Videos in this dataset include both static

and dynamic gestures captured with an Intel RealSense

SR300 device in RGB-D modalities across multiple in-

door and outdoor scenes.

• NVGestures dataset [26] has been captured with mul-

tiple sensors and from multiple viewpoints for study-

ing human-computer interfaces. It contains 1532 dy-

namic hand gestures recorded from 20 subjects inside

a car simulator with artificial lighting conditions. This

dataset includes 25 classes of hand gestures. The ges-

tures were recorded with SoftKinetic DS325 device

as the RGB-D sensor and DUO-3D for the infrared

streams. In addition, the optical flow and infrared dis-

parity map modalities can be calculated from the RGB

and infrared streams, respectively. We use RGB, depth

and optical flow modalities in our experiments. Note

that IR streams in this dataset do not share the same

view with RGB, depth and optical flow modalities.

The optical flow is calculated using the method pre-

sented in [14].

Figure 5 (a), (b), and (c) show sample frames from the

different modalities of these datasets that are used in our

experiments. Note that the RGB and depth modalities are

well-aligned in the VIVA and EgoGesture datasets, but are

not completely aligned in the NVGestures dataset.

For all the datasets, we compare our method against two

state-of-the-art action recognition networks, I3D [9] and

C3D [44], as well as state-of-the-art dynamic hand gesture

recognition methods that were reported on the used datasets.

In the tables, we report the results of our method as “Multi-

modal Training Unimodal Testing” (MTUT).

Implementation Details: In the design of our method, we

adopt the architecture of I3D network as the backbone net-

work of our modality networks, and employ its suggested

implementation details [9]. This network is an inflated ver-

sion of Inception-V1 [18], which contains several 3D con-

volutional layers followed with 3D max-pooling layers and

inflated Inception-V1 submodules. The detailed architec-

ture can be found in [9]. We select the output of the last in-

flated Inception submodule, “Mixed 5c”, as the in-depth

feature map in our modality networks for applying the SSA

loss (2). In all the experiments λ is set to 50 × 10−3, and

β = 2. The threshold function in the focal regularization

parameter is implemented by a ReLu layer. For all the ex-

periments with our method and I3D benchmarks, unless

otherwise stated, we start with the publicly available Ima-

geNet [12] + Kinetics [20] pre-trained networks.

We set the momentum to 0.9, and optimize the objective

function with the standard SGD optimizer. We start with

the base learning rate of 10−2 with a 10× reduction when

the loss is saturated. We use a batch size of 6 containing

64-frames snippets in the training stage. The models were

implemented in Tensor-Flow 1.9 [1]. For our method, we

start with a stage of pretraining with only applying the clas-

sification losses on the modality networks for 60 epochs,

and then continue training with the SSA loss for another 15
epochs.

We employ the following spacial and temporal data aug-

mentations during the training stage. For special augmen-

tation, videos are resized to have the smaller video size of

256 pixels, and then randomly cropped with a 224 × 224
patch. In addition, the resulting video is randomly but con-

sistently flipped horizontally. For temporal augmentation,
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Testing modality

Method RGB Depth

HOG+HOG2 [29] 52.3 58.6

CNN:LRN [24] 57.0 65.0

C3D [44] 71.26 68.32

I3D [9] 78.25 74.46

MTUT (ours) 81.33 81.31

Table 1. 8-fold cross-subject average accuracies of different hand

gesture methods on the VIVA hand gesture dataset [29]. The top

performer is denoted by boldface.

64 consecutive frames are picked randomly from the videos.

Shorter videos are randomly padded with zero frames on

both sides to obtain 64 frames. During testing, we use

224 × 224 center crops, apply the models convolutionally

over the full video, and average predictions.

Note that we follow the above mentioned implementa-

tion details identically for the experiments with both the I3D

method [9], and our method. The only difference between

the I3D method and our MTUT is in their learning objec-

tive. In our case, it consists of the introduced constraints as

well.

4.1. VIVA Hand Gestures Dataset

In this set of experiments, we compare our method

on the VIVA dataset against a hand-crafted approach

(HOG+HOG2 [29]), a recurrent CNN-based method

(CNN:LRN [24]), a C3D [44] model which were pre-

trained on Sports-1M dataset [19] as well as the I3D method

that currently holds the best results in action recognition [9].

All the results are reported by averaging the classification

accuracies over 8-fold cross-subject cross-validation.

Table 1 shows the performance of the dynamic hand ges-

ture methods tested on the visible and depth modalities of

the VIVA dataset. As can be seen from this table, the I3D

network performs significantly better than HOG+HOG2

and CNN:LRN. This is in part due to the knowledge that

I3D contains from its pretraining on ImageNet and Kine-

matic datasets. Nonetheless, we observe that our method

that shares the same architecture and settings with the I3D

networks and only differs in the learning procedure has sig-

nificantly improved the I3D method by a 3.08% boost in the

performance of RGB’s network and 6.85% improvement on

the performance of the depth’s network. This experiment

shows that our method is able to integrate the complemen-

tary information between two different modalities to learn

efficient representations that can improve their individual

performances.

4.2. EgoGesture Dataset

We assess the performance of our method along with

various hand gesture recognition methods published on the

Testing modality

Method RGB Depth

VGG16 [39] 62.5 62.3

VGG16 + LSTM [13] 74.7 77.7

C3D [44] 86.4 88.1

C3D+LSTM+RSTTM [8] 89.3 90.6

I3D [9] 90.33 89.47

MTUT (ours) 92.48 91.96

Table 2. Accuracies of different hand gesture methods on the

EgoGesture dataset [8]. The top performer is denoted by boldface.

large-scale hand gesture dataset, EgoGesture [8]. Table 2

compares unimodal test accuracies of different hand ges-

ture methods. VGG16 [39] is a frame-based recognition

method, and VGG16+LSTM [13] combines this method

with a recurrent architecture to leverage the temporal infor-

mation as well. As can be seen, the 3D-CNN-based meth-

ods, C3D, C3D+LSTM+RSTMM [8], and I3D, outperform

the VGG16-based methods. However, among the 3D-CNN-

based methods, our method outperforms the top performers

in the RGB domain by 2.15% and in the Depth domain by

1.09%.

time time
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Figure 6. Visualization of the feature maps corresponding to the

layer “Mixed 5c” in different networks for a sample input from

EgoGesture dataset. These figures show the sequence of average

feature maps (over 1024 channels) in (a) the RGB and depth net-

works trained with the I3D method. (b) the RGB and depth net-

works trained with our method. Intensity displays the magnitude.

In Figure 6, we visualize a set of feature maps from

the RGB and depth networks trained with the I3D and our

method. We feed a given input from the EgoGesture dataset

to different networks and calculate the average of feature

maps over the channels in the layer “Mixed 5c”. We dis-

play the resulting sequence in four 7 × 7 blocks. Here the

temporal dimension is four and the spatial content is 7× 7.

Layer “Mixed 5c” is the layer in the I3D architecture in

which we apply the SSA loss to. We observe that the net-

works trained with our model have learned to detect sim-

ilar structures for the given input (Figure 6 (a)). On the

other hand, the networks trained with the I3D model are not

bounded to develop similar structures. Thus, even though

the input of the two modalities represent the same content,

the feature maps may detect different structures (Figure 6

(b)).
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Figure 7. The confusion matrices obtained by comparing the

grand-truth labels and the predicted labels from the RGB network

trained on the NVGesture dataset by (a) I3D [9] model, and (b)

our model. Best seen on the computer, in color and zoomed in.

4.3. NVGesture Dataset

In order to test our method on tasks with more than two

modalities, in this section, we report the classification re-

sults on the RGB, depth and optical flow modalities of the

NVGesture dataset [26]. The RGB and optical flow modali-

ties are well-aligned in this dataset, however, the depth map

includes a larger field of view (see Figure 5 (b)).

Table 3 tabulates the results of our method in comparison

with the recent state-of-the-art methods: HOG+HOG2, im-

proved dense trajectories (iDT) [46], R3DCNN [26], two-

stream CNNs [38], and C3D as well as human labeling ac-

curacy. The iDT [46] method is often recognized as the best

performing hand-crafted method [45]. However, we ob-

serve that similar to the previous experiments the 3D-CNN-

based methods outperform the other hand gesture recogni-

tion methods, and among them, our method provides the top

performance in all the modalities. This table confirms that

our method can improve the unimodal test performance by

leveraging the knowledge from multiple modalities in the

training stage. This is despite the fact that the depth map

in this dataset is not completely aligned with the RGB and

optical flow maps.

Figure 7 evaluates the coherence between the predicted

labels and ground-truths in our method and compares it with

I3D for the RGB modality of the NVGesture dataset. This

coherence is calculated by their confusion matrices. We ob-

serve that our method has less confusion between the input

classes and provides generally a more diagonalized confu-

sion matrix. This improvement is better observed in the first

six classes.

4.4. Effect of Unimodal Improvements on Multi­
modal Fusion

As previously discussed, our method is designed for em-

bedding knowledge from multiple modalities in unimodal

networks for improving their unimodal test performance. In

this section, we examine if the enhanced unimodal networks

trained by our approach can also improve the accuracy of a

Testing modality

Method RGB Depth Opt. Flow

HOG+HOG2 [29] 24.5 36.3 -

Two Stream CNNs [38] 54.6 - 68.0

C3D [44] 69.3 78.8 -

iDT [46] 59.1 - 76.8

R3DCNN [26] 74.1 80.3 77.8

I3D [9] 78.42 82.28 83.19

MTUT (ours) 81.33 84.85 83.40

Human labeling accuracy: 88.4

Table 3. Accuracies of different unimodal hand gesture methods

on the NVGesture dataset [26]. The top performer is denoted by

boldface.

decision level fusion that is calculated from the average of

unimodal predictions. The decision level fusion of differ-

ent modality streams is currently the most common fusion

technique in the top performer dynamic action recognition

methods [9, 44, 38].

In Table 4 and Table 5 we compare the multimodal-

fusion versions of our method (MTUTF) to state-of-the-art

multimodal hand gesture recognition systems tested on the

VIVA hand gesture and EgoGesture datasets, respectively.

As can be seen, our method shows the top multimodal fu-

sion performance on both datasets. These tables show that

if multiple modalities are available at the test time, the im-

proved performance of unimodal networks gained by train-

ing with our model can also result in an improved multi-

modal fusion performance in the test time.

Similarity, in Table 6 we report the multimodal fusion

results on the NVGesture dataset. Note that since this

dataset includes three modalities, based on the modalities

we include in the training stage, we report multiple ver-

sions of our method. We report the version of our method

that includes all three modalities in the training stage as

MTUTF
all, and the versions that only involve (RGB+Depth)

and (RGB+Optical-Flow) in their training as MTUTF
RGB-D

and MTUTF
RGB-OF, respectively. While all versions of our

method outperform the other multimodal fusion methods in

Table 6, the performances of MTUTF
RGB-D and MTUTF

all in

the fusion of RGB+Depth is worth highlighting. MTUTF
all

in this experiment has also been trained on the absent

modality, the optical flow, while MTUTF
RGB-D has been only

trained on the RGB and Depth modalities. We observe that

MTUTF
all has successfully integrated the knowledge of the

absent modality and provided a better performance at the

test time.

4.5. Analysis of the Network

To understand the effects of some of our model choices,

we explore the performance of some variations of our model

on the VIVA dataset. In particular, we compare our method

with and without the focal regularization parameter and the
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Method Fused modalities Accuracy

HOG+HOG2 [29] RGB+Depth 64.5

CNN:LRN [24] RGB+Depth 74.4

CNN:LRN:HRN [24] RGB+Depth 77.5

C3D [44] RGB+Depth 77.4

I3D [9] RGB+Depth 83.10

MTUTF (ours) RGB+Depth 86.08

Table 4. Accuracies of different multimodal fusion-based hand

gesture methods on the VIVA dataset [29]. The top performer is

denoted by boldface.

Method Fused modalities Accuracy

VGG16 [39] RGB+Depth 66.5

VGG16 + LSTM [13] RGB+Depth 81.4

C3D [44] RGB+Depth 89.7

C3D+LSTM+RSTTM [8] RGB+Depth 92.2

I3D [9] RGB+Depth 92.78

MTUTF (ours) RGB+Depth 93.87

Table 5. Accuracies of different multimodal fusion hand gesture

methods on the EgoGesture dataset [26]. The top performer is

denoted by boldface.

Method Fused modalities Accuracy

HOG+HOG2 [29] RGB+Depth 36.9

I3D [9] RGB+Depth 83.82

MTUTF
RGB-D (ours) RGB+Depth 85.48

MTUTF
all (ours) RGB+Depth 86.10

Two Stream CNNs [38] RGB+Opt. flow 65.6

iDT [46] RGB+Opt. flow 73.4

I3D [9] RGB+Opt. flow 84.43

MTUTF
RGB-OF (ours) RGB+Opt. flow 85.48

MTUTF
all (ours) RGB+Opt. flow 85.48

R3DCNN [26] RGB+Depth+Opt. flow 83.8

I3D [9] RGB+Depth+Opt. flow 85.68

MTUTF
all (ours) RGB+Depth+Opt. flow 86.93

Human labeling accuracy: 88.4

Table 6. Accuracies of different multimodal fusion hand gesture

methods on the NVGesture dataset [8]. The top performer is de-

noted by boldface.

SSA loss. Beside our I3D-based method, we analyze these

variations on a different backbone network, C3D [44] as

well. C3D is another recently proposed activity recognition

architecture. We name this method MTUTC3D. Besides,

we use C3D+SSA and I3D+SSA to refer to versions of our

method with C3D and I3D backbones that contain a vari-

ation of the SSA loss that does not have the focal regular-

ization parameter. For MTUTC3D and C3D+SSA, we apply

the SSA loss on feature maps of the last maxpooling layer

(“MaxPool3d 5” ).

To provide a fair comparison setting, we train these net-

works from scratch on the VIVA dataset, and report their

performances in Table 7. As can be seen, the top performer

is our I3D-based network with both SSA and focal regular-

Testing modality

Method RGB Depth

C3D 53.05 55.65

C3D+SSA 53.73 54.52

MTUTC3D 56.56 58.71

I3D 65.72 67.30

I3D+SSA 65.83 66.96

MTUT 68.43 71.26

Table 7. Comparison of variations of MTUT with C3D and I3D

backbones trained from scratch.

ization parameter. Several interesting observations can be

made from the results in Table 7. As the table reveals, the

I3D-based methods generally perform better than the C3D-

based methods. This coincides with the previous reports [9].

In addition, C3D+SSA and I3D+SSA methods in the case of

RGB networks show improvements and in the case of depth

modality have comparable results as compared to their base

networks C3D and I3D, respectively. However, the top per-

formers in both modalities are the full version of our method

applied on these base networks. This clearly shows the im-

portance of our focal regularization parameter in avoiding

negative transfer when transferring the knowledge between

the modalities. Note that C3D, I3D and MTUT are trained

from scratch in this experiment, while in the Table 1 we re-

ported their performance on the networks trained with pre-

trained weights.

5. Conclusion

We presented a new framework to leverage the knowl-

edge of multiple modalities when training unimodal net-

works that can independently work at the test time infer-

ence with improved accuracy. Our model trains separate

3D-CNNs per available modalities, and shares their knowl-

edge by the introduced spatiotemporal semantic alignment

loss. We also regularized this loss with a focal regulariza-

tion parameter that ensures that only positive knowledge

is transferred between the modality networks, and nega-

tive transfer is avoided. Our experiments confirmed that

our method can provide remarkable improvements to the

unimodal networks at the test time. We also showed that

the enhanced unimodal networks that are trained with our

method can contribute to an improved multimodal fusion

performance at test time as well.

The incorporation of our method for multimodal learning

in other applications is a topic of further research.
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