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Abstract

Muscle-based systems have the potential to provide both

anatomical accuracy and semantic interpretability as com-

pared to blendshape models; however, a lack of expressiv-

ity and differentiability has limited their impact. Thus, we

propose modifying a recently developed rather expressive

muscle-based system in order to make it fully-differentiable;

in fact, our proposed modifications allow this physically

robust and anatomically accurate muscle model to conve-

niently be driven by an underlying blendshape basis. Our

formulation is intuitive, natural, as well as monolithically

and fully coupled such that one can differentiate the model

from end to end, which makes it viable for both optimiza-

tion and learning-based approaches for a variety of appli-

cations. We illustrate this with a number of examples in-

cluding both shape matching of three-dimensional geome-

try as as well as the automatic determination of a three-

dimensional facial pose from a single two-dimensional RGB

image without using markers or depth information.

1. Introduction

Muscle simulation-based animation systems are attrac-

tive due to their ability to preserve important physical prop-

erties such as volume conservation as well as their abil-

ity to handle contact and collision. Moreover, utilizing an

anatomically motivated set of controls provides a straight-

forward way of extracting out semantic meaning from the

control values. Unfortunately, even though [42] was able

to automatically compute muscle activation values given

sparse motion capture data, muscle-based animation models

have proven to be significantly less expressive and harder to

control than their blendshape-based counterparts [30].

Recently, [14] introduced a novel method that signifi-

cantly improved upon the expressiveness of muscle-based

animation systems. They introduced the concept of “mus-

cle tracks” to control the deformation of the underlying

musculature. This concept gives the muscle simulation

enough expressiveness to target arbitrary shapes, which al-

lowed it be used in high-quality movie productions such

as Kong: Skull Island where it was used both to aid in

the creation of blendshapes and to offer physically-based

corrections to artist-created animation sequences [15, 29].

While [14] alleviates the problems of muscle-based simu-

lation in regards to expressiveness and control, the method

is geared towards generative computer graphics problems,

and is thus not amenable for estimating a facial pose from

a two-dimensional image as is common for markerless per-

formance capture. One could iterate between solving for

a performance using blendshapes and then using a muscle-

based solution to correct the blendshapes; however, this it-

erative method is lossy as the muscle simulation does not

have access to the raw data and may thus hallucinate details

or erase details of the performance.

In this paper, we extend [14] by combining the ease of

use and differentiability of traditional blendshape models

with expressive, physically-plausible muscle track simula-

tions in order to create a differentiable simulation frame-

work that can be used interchangeably with traditional

blendshape models for facial performance capture and an-

imation. Instead of relying on a non-differentiable per-

frame volumetric morph to drive the muscle track defor-

mation as in [14], we instead create a state-of-the-art blend-

shape model for each muscle, which is then used to drive

its volumetric deformation. Our model maintains the ex-

pressiveness of [14] while preserving crucial physical prop-

erties. Furthermore, our new formulation is differentiable

from end to end, which allows it to be used to target

three-dimensional facial poses as well as two-dimensional

RGB images. We demonstrate that our blendshape muscle

tracks method shows significant improvements in anatom-

ical plausibility and semantic interpretability when com-

pared to state-of-the-art blendshape-based methods for tar-

geting three-dimensional geometry and two-dimensional

RGB images.

2. Related Work

Face Models: Although our work does not directly ad-

dress the modeling part of the pipeline, it relies on having

a pre-existing model of the face. For building a realistic

digital double of an actor, multi-view stereo techniques can
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be used to collect high-quality geometry and texture infor-

mation in a variety of poses [5, 6, 16]. Artists can then

use this data to create the final blendshape model. In state-

of-the-art models, the deformation model will include non-

linear skinning/enveloping in addition to linear blendshapes

to achieve more plausible deformations [30]. On the other

hand, more generalized digital face models would be more

useful in cases where the target actor is not known before-

hand. Such models include the classic Blanz and Vetter

model [8], the Basel Face Model (BFM) [36, 37], Face-

Warehouse [11], and the Large Scale Facial Model (LSFM)

[9]. Recent models such as the FLAME model [31] have

begun to introduce non-linear deformations by using skin-

ning and corrective blendshapes. These models tend to be

geared towards real-time applications and as a result have a

low number of vertices.

Face Capture: A more comprehensive review of facial

performance capture techniques can be found in [53]. To

date, marker based techniques have been the most popular

for capturing facial performances for both real-time applica-

tions and feature films. Helmet mounted cameras (HMCs)

are often used to stereo track a sparse set of markers on the

face. These markers are then used as constraints in an opti-

mization to find blendshape weights [7]. In many real-time

applications, pre-applied markers are generally not an op-

tion so 2D features [10, 12, 50], depth images [12, 26, 49],

or low-resolution RGB images [48] are often used instead.

More recently, methods using neutral networks have been

used to reconstruct face geometry [24, 41] and estimate

facial control parameters [25, 27]. Analysis-by-synthesis

techniques have also been explored for capturing facial per-

formances [38].

Face Simulation: [42] was one of the first to utilize qua-

sistatic simulations to drive the deformation of a 3D face,

especially for motion capture. There has also been inter-

est in using quasistative simulations to drive muscle defor-

mations in the body [23, 45, 46]. However, in general, fa-

cial muscle simulations tend to be less expressive than their

artist-driven blendshape counterparts. More recently, sig-

nificant work has been done to make muscle simulations

more expressive [14, 21]. While these methods can be used

to target data in the form of geometry, it is unclear how

to cleanly transfer these methods to target non-geometry

data such as two-dimensional RGB images. Other work has

been done to try to introduce physical simulations into the

blendshape models themselves [3, 4, 22, 28]; however, these

works do not focus on the inverse problem.

3. Blendshape Model

As discussed in Section 2, there are many different types

of blendshape models that exist and we refer interested

readers to [30] for a more thorough overview of existing lit-

erature. We focus on the state-of-the-art hybrid blendshape

deformation model that is the basis of our method intro-

duced in Section 6. A hybrid blendshape model refers to

a deformation model that uses both linear blendshapes and

linear blend skinning to deform the vertices of the mesh.

Our model contains a single 6-DOF joint for the jaw. We

can succinctly write the model given the blendshape param-

eters b and joint parameters j as

x(b, j) = T (j)(n+Bb) (1)

where n is the neutral shape, B is the blendshape deltas ma-

trix, and T (j) contains the linear blend skinning matrix, i.e.

a transformation matrix due to a change in the jaw joint,

for each vertex. Note that n + Bb is often referred to as

the pre-skinning shape and Bb as the pre-skinning displace-

ments. More complex animation systems include corrective

shapes and intermediate controls and thus we let w denote

a broader set of animator controls which we treat as our in-

dependent variable rewriting Equation 1 as

x(w) = T (j(w))(n+Bb(w)) (2)

where j(w) and b(w) may include non-linearities such as

non-linear corrective blendshapes.

4. Muscle Model

We create an anatomical model of the face consisting of

the cranium, jaw, and a tetrahedralized flesh mesh with em-

bedded muscles for a given actor using the method of [13].

Since we desire parity with the facial model used to de-

form the face surface, we define the jaw joint as a 6-DOF

joint equivalent to the one used to skin the face surface in

Section 3. Traditionally, face simulation models have been

controlled using a vector of muscle activation parameters

which we denote as a. We use the same constitutive model

for the muscle as [45, 46] which consists of an isotropic

Mooney-Rivlin term, a quasi-incompressibility term, and

an anisotropic passive/active muscle response term. The

finite-volume method [45, 47] is used to compute the force

on each vertex of the tetrahedralized flesh mesh given the

current 1st Piola-Kirchoff stress computed using the consti-

tutive model and the current deformation gradient. Some

vertices of the flesh mesh XC are constrained to kinemati-

cally follow along with the cranium/jaw and the steady state

position is implicitly defined as the positions of the uncon-

strained flesh mesh vertices XU which make the sum of all

relevant forces identically 0, i.e. f(XC , XU ) = 0.

One can decompose the forces to be a sum of the finite-

volume forces and collision penalty forces

ffvm(X
C , XU , a) + fcollisions(X

C , XU ) = 0. (3)

One can further break down the finite-volume forces into

the passive force fp and active force fa. Then using the
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fact the the active muscle response is scaled linearly by the

muscle activation a [51], we can rewrite the finite-volume

force as

ffvm(X
C , XU , a) = fp(X

C , XU ) + afa(X
C , XU ). (4)

We refer interested readers to [42, 45, 46, 47] for derivations

of the aforementioned forces and their associated Jacobians

with respect to the flesh mesh vertices. Given a vector of

muscle activations and cranium/jaw parameters, Equation 3

can be solved using the Newton-Raphson method to com-

pute the unconstrained flesh mesh vertex positions XU .

5. Muscle Tracks

The muscle tracks simulation introduced by [14] modi-

fies the framework described in Section 4 such that the mus-

cle deformations are primarily controlled by a volumetric

morph [1, 13] rather than directly using muscle activation

values. [14] first creates a correspondence between the neu-

tral pose n of the blendshape system and the outer boundary

surface of the tetrahedral mesh Xb. Then, given a blend-

shape target expression x∗(b, j) with surface mesh displace-

ments x∗ − n, [14] creates target displacements for the

outer boundary of the tetrahedral mesh δXb. Using δXb as

Dirichlet boundary conditions, [14] solves a Poisson equa-

tion for the displacements δX = X −X0, i.e. ∇2δX = 0,

where X0 are the rest-state vertex positions consistent with

the neutral pose n. Neumann boundary conditions are used

on the inner boundary of the tetrahedral mesh. Afterwards,

zero-length springs are attached between the tetrahedralized

flesh mesh vertices interior to each muscle and their corre-

sponding target locations resulting from the Poisson equa-

tion. The muscle track force resulting from the zero-length

springs for each muscle m has the form

ftracks,m = Km(Mm − ImXU ) (5)

where Km is the per-muscle spring stiffness matrix, Im is

the selector matrix for the flesh mesh vertices interior to the

muscle, and Mm are the target locations resulting from the

volumetric morph. Thus the expanded quasistatics equation

can be written as

ffvm + fcollisions + ftracks = 0 (6)

where ftracks includes Equation 5 for every muscle. Since

the activation values a are no longer specified manually,

they must be computed automatically given the final post-

morph shape of a muscle to reintroduce the effects of mus-

cle tension into the simulation. [14] barycentrically em-

beds a piecewise linear curve into each muscle and uses the

length of that curve to determine an appropriate activation

value.

6. Blendshape-Driven Muscle Tracks

The morph from Section 5 was designed in the spirit of

the computer graphics pipeline, and as such, does not allow

for the sort of full end-to-end coupling that facilitates dif-

ferentiability, inversion, and other typical inverse problem

methodologies. Thus, our key contribution is to replace the

morphing step with a blendshape deformation in the form

of Equation 1 to drive the muscle volumes and their center-

line curves thereby creating a direct functional connection

between the animator controls w and the muscle tracks tar-

get locations Mm and activation values a.

For each muscle, we create a tetrahedralized volume M0
m

and piecewise linear center-line curve C0
m in the neutral

pose. Furthermore, for each blendshape in the face sur-

face model, we use the morph from [14] to create a cor-

responding shape for each muscle’s tetrahedralized volume

Mk
m and center-line curve Ck

m, where k is used to denote the

kth blendshape. Alternatively, one could morph and subse-

quently simulate as in Section 5 using tracks in order to cre-

ate Mk
m and Ck

m. In addition, we assign skinning weights to

each vertex in M0
m and C0

m and assemble them into linear

blend skinning transformation matrices TM
m and TC

m . This

allows us to write

Mm(b, j) = TM
m (j)

(

M0
m +

∑

k

Mk
mbk

)

(7)

Cm(b, j) = TC
m(j)

(

C0
m +

∑

k

Ck
mbk

)

(8)

which parallel Equation 1. Notably, we are able to obtain

Equations 7 and 8 in part because we solve the Poisson

equation on the pre-skinning neutral as compared to [14]

which uses the post-skinning neutral. In addition, this bet-

ter prevents linearized rotation artifacts from diffusing into

the tetrahedralized flesh mesh. Finally, we can write the

length of each center-line curve as

L(Cm(b, j)) =
∑

i

||Cm,i(b, j)− Cm,i−1(b, j)||2 (9)

where Cm,i(b, j) is the ith vertex of the piecewise linear

center-line curve for the mth muscle.

To justify our approach, we can write the linear system

to solve the Poisson equation as AU (X0)δX = AC(X0)Bb
where AU (X0) is the portion of the Laplacian matrix dis-

cretized on the tetrahedralized volume at rest using the

method of [52] for the unconstrained vertices. Similarly,

AC(X0) is the portion for the constrained vertices post-

multiplied by the linear correspondence between the neutral

pose n of the blendshape system and the outer boundary of

the tetrahedral mesh Xb. Equivalently, we may write

AU (X0)δX =
∑

k

AC(X0)Bekbk (10)
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(where ek are the standard basis vectors) which is equivalent

to doing k solves of the form

AU (X0)δXk = AC(X0)Bek (11)

and then subsequently summing both sides to obtain δX =
∑

k δXkbk. That is, the linearity of the Poisson equation

allows us to precompute its action for each blendshape and

subsequently obtain the exact result on any combination of

blendshapes by simply summing the results obtained on the

individual blendshapes.

In summary, for each of the k blendshapes, we solve

a Poisson equation (Equation 11) to precompute Mk
m and

Ck
m, and then given animator controls w which yield b and

j, we obtain Mm and Cm via Equations 7 and 8. This re-

places the morphing step allowing us to proceed with the

quasistatic muscle simulation using tracks driven entirely

by the animator parameters w.

7. End-to-End Differentiability

In this section, we outline the derivative of the simulated

tetrahedral mesh vertex positions with respect to the blend-

shape parameters b and jaw controls j that parameterize the

simulation results as per Section 6. The derivative of b and

j with respect to the animator controls w depend on the spe-

cific controls and can be post-multiplied. If one cares about

the resulting vertices of a rendered mesh embedded in or

constrained to the tetrahedral mesh, then this embedding,

typically linear, can be pre-multiplied.

Although the constrained nodes XC typically only de-

pend on the joint parameters, one may wish, at times, to

simulate only a subset of the tetrahedral flesh mesh. In such

instances, the constrained nodes can appear on the unsim-

ulated boundary which in turn can be driven by the blend-

shape parameters b; thus, we write XC(b, j) and concate-

nate it with XU (b, j) to obtain X(b, j) for the purposes

of this section. The collision forces only depend on the

nodal positions, and we may write fcollisions(X(b, j)). The

finite volume force depends on both the nodal positions

and activations, and the activations are determined from an

activation-length curve where the length is given in Equa-

tion 9. Our precomputation makes Cm only a function of

b and j and notably independent of X , and so we may

write am(Lm(Cm(b, j))) combining the activation length

curve with Equations 8 and 9. We stress that the acti-

vations are independent of the positions, X . Thus, we

may write ffvm(X(b, j), C(b, j)). Similarly, we may write

ftracks(X(b, j),M(b, j)). Therefore, all the forces in Equa-

tion 6 are a function of X , C, and M which are in turn a

function of b and j.

Using the aforementioned dependencies, we can take

the total derivative of the forces fT = ffvm +
fcollisions in Equation 3 with respect to a single blend-

shape parameter bk to obtain (∂fT /∂X)(∂X/∂bk) +

(∂fT /∂C)(∂C/∂bk) = 0 which is equivalent to

(∂fT /∂X)(∂X/∂bk) + (∂ffvm/∂C)(∂C/∂bk) = 0 since

fcollisions is independent of C. Since our activations are still

independent of X just as they were in [42], ∂fT /∂X here

is identical to that discussed in [42], and thus their qua-

sistatic solve can be used to determine ∂X/∂bk by solv-

ing (∂fT /∂X)(∂X/∂bk) = −(∂ffvm/∂C)(∂C/∂bk). To

compute the right hand side, note that ∂C/∂bk can be ob-

tained from Equation 8. To obtain ∂ffvm/∂C, we compute

∂ffvm/∂C = (∂ffvm/∂a)(∂a/∂L)(∂L/∂C). ∂ffvm/∂a are

simply the active forces fa in Equation 4, ∂a/∂L is the local

slope of the activation length curve, and ∂L/∂C is readily

computed from Equation 9. The ∂X/∂jk are determined

similarly.

One may take a similar approach to Equation 6,

obtaining ∂X/∂bk by solving (∂fT /∂X)(∂X/∂bk) =
−(∂ffvm/∂C)(∂C/∂bk) − (∂ftracks/∂M)(∂M/∂bk). We

stress that the coefficient matrix ∂fT /∂X of the quasistatic

solve is now augmented by ∂ftracks/∂X (see Equation

5) and is the same quasistatic coefficient matrix in [14].

∂ftracks/∂M and ∂M/∂bk are obtained from Equations 5

and 7 respectively. Again, the ∂X/∂jk are found similarly.

In summary, finding ∂X/∂bk and ∂X/∂jk involves solving

the same quasistatics problem of [42] with the slight aug-

mention to the coefficient matrix from [14] merely with dif-

ferent right hand sides. Although this requires a quasistatic

solve for each bk and jk, they are all independent and can

thus be done in parallel.

8. Experiments

We use the Dogleg optimization algorithm [35] as im-

plemented by the Chumpy autodifferentation library [33] in

order to target our face model to both three-dimensional ge-

ometry and two-dimensional RGB images to demonstrate

the efficacy of our end-to-end fully differentiable formu-

lation. Other optimization algorithms and/or applications

may similarly be pursued. Our nonlinear least squares opti-

mization problems generally have the form

minw||F
∗ − F (xR(w))||

2
2 + λ||w||22 (12)

where w are the animator controls that deform the face,

x(w) are the positions of the vertices on the surface of the

face deformed using the full blendshape-driven muscle sim-

ulation system as described in Section 6, F (xR(w)) is a

function of those vertex positions, and F ∗ is the desired out-

put of that function. R(θ) and t are an additional rigid ro-

tation and translation, respectively where θ represents Euler

angles, i.e. xR(w) = R(θ)x(w) + t . We use a standard L2

norm regularization on the animator controls ||w||22, where

λ is set experimentally to avoid overfitting.
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Figure 1. The eight viewpoints used to reconstruct the facial ge-

ometry for a particular pose.

8.1. Model Creation

The blendshape system is created from the neutral pose

n as well as FACS-based expressions [17] using the meth-

ods of [5, 6]. Eight black and white cameras from varying

viewpoints (see Figure 1) are used to reconstruct the geom-

etry of the actor. Artists clean up these scans and use them

as inspiration for a blendshape model and to calibrate the

linear blend skinning matrices for the face surface (see Fig-

ure 3). Of course, any reasonable method could be used

to create the blendshape system. A subset of the full face

surface model with 52,228 surface vertices is used in the

optimization.

We use the neutral pose of the blendshape system and

the method of [13] to create the tetrahedral flesh mesh X0,

tetrahedral muscle volumes M0
m, and muscle center line

curves C0
m by morphing them from a template asset. Our

simulation mesh has 302,235 vertices and 1,470,102 tetra-

hedra. We use 60 muscles with a total of 50,710 vertices and

146,965 tetrahedra (some tetrahedra are duplicated between

muscles due to overlap). The linear blend skinning weights

used to form Tj on the face surface are propagated to the

(a) Neutral (b) Jaw Open

Figure 2. The underlying anatomical model of the face in the neu-

tral pose as well as the jaw open pose using linear blend skinning.

Figure 3. The geometry reconstructed by applying the multi-view

stereo algorithm described in [5, 6] to the input images shown in

Figure 1.

surface of the tetrahedral mesh and used as boundary con-

ditions in a Poisson equation solve again as in [1, 13] to ob-

tain linear blend skinning weights throughout the volumet-

ric tetrahedral mesh as well as for the muscles and center-

line curves, thus defining skinning transformation matrices

TM
m and TC

m . Figure 2 shows the muscles in the neutral pose

M0
m as well as the result after skinning with the jaw open,

i.e. Equation 7 with all bk identically 0.

Finally, for each shape in the blendshape system, we

solve a Poisson equation (Equation 11) for the vertex dis-

placements δXk which are then transferred to the muscle

volumes and center-line curves to obtain Mk
m and Ck

m. This

allows us full use of Equations 7 and 8 parameterized by the

blendshapes bk. Figure 4 shows some examples of the mus-

cles evaluated using Equation 7 for a variety of expressions.

8.2. Targeting 3D Geometry

Oftentimes, one has captured a facial pose in the form

of three-dimensional mesh; however, this data is generally

noisy, and it is desirable to convert this data into a lower di-

mensional representation. Using a lower dimensional rep-

resentation facilitates editing, extracting semantic informa-

(a) Smile (b) Pucker (c) Funneler

Figure 4. The anatomical model of the face peforming a variety of

expressions using only the blendshape deformation from Equation

7.
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tion, and performing statistical analysis. In our case, the

lower dimensional representation is the parameter space of

the blendshape or simulation model.

In general, extracting a lower dimensional representation

from an arbitrary mesh requires extracting a set of corre-

spondences between the mesh and the face model. How-

ever, for simplicity, we assume that the correspondence

problem has been solved beforehand and that each vertex of

the incoming mesh captured by a system using the methods

of [5, 6] has a corresponding vertex on our face surface. We

can thus use an optimization problem in the form of Equa-

tion 12 to solve for the model parameters where F ∗ are the

vertex positions of the target geometry, and F (x) = x is the

identity function.

While a rigid alignment between the F ∗ and the neu-

tral mesh n, i.e. R(θ) and t, is created as a result of [5, 6],

we generally found it to be inaccurate. As a result, we also

allow the optimization to solve for θ and t as well. Our opti-

mization problem for targeting three-dimensional geometry

thus has the form

minw,θ,t||F
∗ − xR(w)||

2
2 + λ||w||22 (13)

where λ = 1× 10−6 is set experimentally.

We demonstrate the efficacy of our method on a pose

where the actor has his mouth slightly open and is making

a pucker shape. We compare the results of targeting three-

dimensional geometry when it is driven using simulation

(a) Blendshape (b) Simulation (c) Target

Figure 5. We target the geometry shown in (c) using purely blend-

shapes shown in (a) versus the blendshape driven muscle simula-

tion model shown in (b). While neither method exactly matches

target geometry, in general, we found that the simulation re-

sults preserve key physical properties such as volume preservation

around the lips. A close-up of the lips is shown in the bottom row

where it is more apparent how the pure blendshape inversion has

significant volume loss around the lips.

via the blendshape muscle tracks as described in Section 6

versus when it is driven using the pure blendshape model

described in Section 3. Traditionally, pucker shapes have

been difficult for activation-muscle based simulations to hit.

See Figure 5. Although neither inversion quite captures the

tightness of the mouth’s pucker, the muscle simulation re-

sults demonstrate how the simulation’s volume preservation

property significantly improves upon the blendshape results

where the top and bottom lips seem to shrink. This prop-

erty is also useful in preserving the general shape of the

philtrum; the blendshape models’s inversion causes the part

of the philtrum near the nose to incorrectly bulge signifi-

cantly. Furthermore, the resulting muscle activation values

are easier to draw semantic meaning from due to their spar-

sity and anatomical meaning as seen in Figure 6.

Note that errors in the method of [5, 6] in performing

multi-view reconstruction will cause the vertices of the tar-

get geometry to contain noise and potentially be in physi-

cally implausible locations. Additionally, errors in finding

correspondences between the target geometry and the face

surface will result in an inaccurate objective function. Fur-

thermore, there is no guarantee that our deformation model

x(w) is able to hit all physically attainable poses even when

the capture and correspondence are perfect. This demon-

strates the efficacy of introducing physically-based priors

into the optimization. Additional comparisons and results

are shown in the supplementary material and video.

8.3. Targeting Monocular RGB Images

To further demonstrate the efficacy of our approach, we

consider facial reconstruction from monocular RGB im-

ages. The images were captured using an 100mm lens at-

tached to an ARRI Alexa XT Studio running at 24 frames-

per-second with an 180 degree shutter angle at ISO 800.

(a) Blendshape Weights (b) Muscle Activations

Figure 6. The blendshape solve results in blendshape weights that

are dense, overdialed, and hard to decipher. Whereas all 129 (of

146; shapes for the neck, etc. were not used) blendshapes used

have non-zero values, only 13 of the available 60 muscles have

non-zero activation values. The top four most activated muscles

are related to the frontalis indicating that the eyebrows are raised

[43]. The activations of the incisivus labii superioris and orbicu-

laris oris muscles are also among the top activated muscles prop-

erly indicating a compression of the lips [20, 43].
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We refer to images captured by the camera as the “plates.”

The original plates have a resolution of 2880 × 2160, but

we downsample them to 720 × 540. The camera was cali-

brated using the method of [19] and the resulting distortion

parameters are used to undistort the plate to obtain F ∗.

F (x) renders the face geometry in its current pose with

a set of camera, lighting, and material parameters. We use

a simple pinhole camera with extrinsic parameters deter-

mined by the camera calibration step. The rigid transforma-

tion of the face is determined by manually tracking features

on the face in the plate. The face model is lit with a sin-

gle spherical harmonics light with 9 coefficients γ, see [39],

and is shaded with Lambertian diffuse shading. Each vertex

i also has an RGB color ci associated with it. We solve for

γ and all ci using a non-linear least squares optimization of

the form

minγ,c||F
∗ − F (xR(0), γ, c)||

2
2 + λ||S(c)||22 (14)

where the per-vertex colors is regularized using S(c) =
∑

i

∑

j∈N(i) ci − cj where N(i) are the neighboring ver-

tices of vertex i. This lighting and albedo solve is done

as a preprocess on a neutral or close to neutral pose with

λ = 2500 set experimentally. OpenDR [34] is used to dif-

ferentiate F (x) to solve Equation 14; however, any other

differentiable renderer (e.g. [32]) can be used instead. Then

we assume that γ and c stay constant throughout the perfor-

mance. See Figure 7.

We solve for the parameters w in two steps. Given curves

around the eyes and lips on the three-dimensional neutral

face mesh, a rotoscope artist draws corresponding curves

on the two-dimensional film plate. Then, we solve for an

initial guess ŵ by solving an optimization problem of the

form

minŵ||E1(ŵ)||
2
2 + λ1||ŵ||

2
2 (15)

where λ1 = 3600 is set experimentally. E1(ŵ) is the two-

dimensional Euclidean distance between the points on the

rotoscoped curves on the plate and the corresponding points

(a) Plate (b) Lighting/Albedo

Figure 7. Before estimating the facial pose, we first estimate light-

ing and albedo on a neutral or close to neutral pose.

on the face surface x(w) projected into the image plane. See

Figure 8. We then use ŵ to initialize a shape from shading

solve

minw||E2(w)||
2
2 + λ1||E1(w)||

2
2 + λ2||w − ŵ||22 (16)

to determine the final parameters w where λ1 = 1× 10−4

and λ2 = 1 are set experimentally. Here, E2 = G(F ∗ −
F (xR(w), γ, c)) is a three-level Gaussian pyramid of the

per-pixel differences between the plate and the synthetic

render.

We demonstrate the efficacy of our approach on 66
frames of a facial performance. As in Section 8.2, we

compare the results of solving Equations 15 and 16 using

x(w) driven by a simulation model versus a blendshape

model. In particular, we choose four frames with partic-

ularly challenging facial expressions (frames 1112, 1160,

1170) as well as capture conditions such as motion blur

(frame 1134). We note that a significant portion of the

facial expression is captured using the rotoscoped curves

and the shape-from-shading step primarily helps to refine

the expression and the contours of the face. Both E1 and

E2 (Equations 15 and 16) require end-to-end differentiabil-

ity through our blendshape driven method. See Figure 9.

While the general expressions are similar, we note that the

simulation’s surface geometry tends to be more physically

plausible due the simulation’s ability to preserve volume,

especially around the lips. This regularization is especially

prominent on frame 1134. As shown in supplementary ma-

terial, the resulting muscle activation values are also com-

paratively sparser which leads to an increased ability to ex-

tract semantic meaning out of the performance. Additional

comparisons and results are shown in the supplementary

material and video.

9. Conclusion and Future Work

Although promising anatomically based muscle simula-

tion systems have existed for some time and have had the

ability to target data as in [42], they have lacked the high-

end efficacy required to produce compelling results. Al-

(a) Blendshapes (b) Simulation (c) Roto Curves

Figure 8. We use rotoscoped curves on the plate to solve for an

initial estimate of the face pose.
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(a) Blendshapes (b) Simulation (c) Plate

Figure 9. We target the raw image data using our face model x(w)
using both simulation and blendshapes on a number of frames of

an actor’s performance. Both sets of results suffer from some

depth ambiguity due to only using monocular two-dimensional

data in the optimization.

though the recently proposed [14] does produce quite com-

pelling results, it requires a full face shape as input and is

not differentiable. In this paper, we alleviated both of the

aforementioned difficulties, extending [14] with end-to-end

differentiability and a morphing system driven by blend-

shape parameters. This blendshape-driven morph removes

the need for a full face surface mesh as a pre-existing tar-

get. We demonstrate the efficacy of our approach by target-

ing three-dimensional geometry and two-dimensional RGB

images. To the best of our knowledge, we are the first to

use quasistatic simulation of a muscle model to target RGB

images. We note that methods such as [42] could be used in

the optimizations presented in this paper (as outlined in the

second to last paragraph of Section 7); however, the result-

ing simulation results would be less expressive and would

not be able to effectively reproduce the desired expressions.

Although the computer vision community expends great

efforts in regards to identifying faces in images, segmenting

them cleanly from their surroundings, and even identifying

their shape, semantic understanding of what such faces are

doing or intend to do or feel is still in its infancy consisting

mostly of preliminary image labeing and annotation. The

ability to express a facial pose or image using a muscle acti-

vation basis provides an anatomically-motivated way to ex-

tract semantic information. Even without extensive model

calibration, our anatomical model’s muscle activations have

shown to be useful for extracting anatomically-based sme-

natic information. This is a promising avenue for future

work. Additionally, muscle activations could also be used

as a basis for statistical/deep learning instead of semanti-

cally meaningless combinations of blendshape weights.

Finally, one of the more philosophical questions in deep

learning seems to revolve around what should or should not

be considered a “learning crime” (drawing similarities to

variational crimes [44]). For example, in [2], the authors

learn a perturbation of linear blend skinning as opposed to

the whole shape, assuming that the perturbation is lower-

dimensional, spatially correlated, and/or easier to learn.

The authors in [18, 40] use spatially correlated networks

for spatially correlated information under the assumption,

once again, that this leads to a network that is easier to

train and generalizes better. It seems that adding strong

priors, domain knowledge, informed procedural methods,

etc. to generate as much of a function as possible before

training a network to learn the rest is often considered pru-

dent. Our anatomically-based physical simulation system

incorporates physical properties such as volume preserva-

tion, contact, and collision so that a network would not need

to learn or explain them; instead the network only needs to

learn what further perturbations are required to match the

data.
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