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Abstract

Shift operation is an efficient alternative over depthwise

separable convolution. However, it is still bottlenecked by

its implementation manner, namely memory movement. To

put this direction forward, a new and novel basic compo-

nent named Sparse Shift Layer (SSL) is introduced in this

paper to construct efficient convolutional neural networks.

In this family of architectures, the basic block is only com-

posed by 1x1 convolutional layers with only a few shift op-

erations applied to the intermediate feature maps. To make

this idea feasible, we introduce shift operation penalty dur-

ing optimization and further propose a quantization-aware

shift learning method to impose the learned displacement

more friendly for inference. Extensive ablation studies in-

dicate that only a few shift operations are sufficient to pro-

vide spatial information communication. Furthermore, to

maximize the role of SSL, we redesign an improved network

architecture to Fully Exploit the limited capacity of neu-

ral Network (FE-Net). Equipped with SSL, this network can

achieve 75.0% top-1 accuracy on ImageNet with only 563M

M-Adds. It surpasses other counterparts constructed by

depthwise separable convolution and the networks searched

by NAS in terms of accuracy and practical speed.

1. Introduction

Owing to the amazing performance of convolutional

neural networks (CNNs), it becomes a big trend to apply

CNNs to practical application scenarios. However, it is hin-

dered by their substantial computational cost and storage

overhead, which motivates lots of researchers and engineers

to gush into this subject.

One of the useful solutions to tackle this problem is to

design accurate and compact neural network architectures

directly. A well-designed network topology as well as a

hardware-friendly basic component can bring about sur-

prising breakthroughs. Recently, a popular basic compo-

nent named depthwise separable convolution is welcomed

( a ) Grouped Shift ( b ) Active Shift

( c ) Sparse Shift

Figure 1. The comparison of different shift operations applied to

feature maps.

to design lightweight architectures, such as MobileNet [10]

and ShuffleNet [40]. Despite its lower float point opera-

tions (FLOPs), it is inefficient to implement in practice be-

cause of the fragmented memory footprints. To jump out of

the constraint of depthwise separable convolution, ShiftNet

[37] propose another alternative, say shift operation, to con-

struct architectures cooperated with point-wise convolution.

In this network, shift operation provides spatial information

communication through shifting feature maps, which makes

the followed point-wise convolution layer not only available

for channel information aggregation but also available for

spatial information aggregation.

In order to compare these two basic components, we

decompose the occupied time of each basic component of

ShiftNet for detailed analysis on both compute-bound and

memory-bound computation platforms. As illustrated in

Fig.2 (a) and (b), shift operation occupies 3.6% of runtime

on CPU, but occupies 28.1% on GPU, indicating that shift

operation still occupies considerable runtime on memory-

bound computation platforms due to memory movement.

As for depthwise separable convolution, in MobileNetV2, it

occupies about 36% runtime on GPU. However, it is unfair

to compare these two components in two different architec-
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(a) (b) (c) (d) (e)

Figure 2. The practical runtime analysis. For clear comparison, both batch-normalization and ReLU layers are neglected since they can

be merged into convolutional layer for inference. Also data feeding and preprocessing time are not considered here. Results are achieved

under Caffe with mini-batch 32. They are averaged from 100 runs. (a) ShiftNet-A [37] on CPU (Intel Xeon E5-2650, atlas). (b) ShiftNet-A

on GPU (TITAN X Pascal, CUDA8 and cuDNN5). (c) Shift layers in ShiftNet-A are replaced by depthwise separable convolution layers.

(d) Depthwise separable convolution layers with kernel size 5 are replaced by the ones with kernel size 3. (e) ShiftNet-A with 80% shift

sparsity on GPU (Shift sparsity denotes the ratio of unshifted feature maps).

tures. For fair comparison, we use the same architecture

with ShiftNet and only replace shift operation by depthwise

separable convolution to test its inference time. As shown

in Fig.2 (c), it occupies 79.2% of runtime on GPU which se-

riously mismatches its theoretical FLOPs. From this view-

point, shift operation is significantly superior to depthwise

separable convolution. Also, another attractive character-

istic of shift operation is its irrelevance of computational

cost to kernel size, while the practical runtime of depthwise

separable convolution is strongly influenced by kernel size.

As illustrated in Fig.2 (c) and (d), the occupied runtime of

depthwise separable convolution is lowered to 62.1% after

decreasing the kernel size 51 to 3.

Despite the superiority of shift operation in terms of

practical runtime to depthwise separable convolution, it is

still bottlenecked by its implementation, namely memory

movement. Here naturally comes a question, is each shift

operation really necessary? Those moving memory can be

reduced if the meaningless shifts are eliminated. Bringing

this question, we make a further study about shift operation.

To suppress redundant shift operation, penalty is added dur-

ing its optimization. We surprisingly find that a few shift

operations are actually sufficient to provide spatial infor-

mation communication. It can provide comparable perfor-

mance with shifting a small portion of feature maps. We

name this type of shift layer as Sparse Shift Layer (SSL)

in order to distinguish from other types of shift layers as

shown in Fig.1. As shown in Fig.2 (e), it can significantly

reduce the occupied time of shift operation after inducing

sparsity.

The prerequisite of SSL is to ensure shift operation learn-

able. A common solution is to relax the displacement from

integer to real-value and relax shift operation to bilinear in-

terpolation so as to make it differentiable [16]. However, in-

terpolation cannot bring the same inference benefit as shift

operation. Borrowing the idea from QNN [13], we propose

1In ShiftNet, there are 11 shift layers with kernel size 5.

a quantization-aware shift learning method to enable shift

operation differentiable while avoiding interpolation during

inference.

When designing the compact network architecture, a

straightforward guideline is to ensure the information flow

while maintaining the feature maps diversity. We hope it

can contain label-related information as abundant as pos-

sible in the limited feature space. However, the feature

maps usually tend to collapse into a small subset, which

does not fully exploit the limited feature space. To ease this

problem, we design a novel network architecture FE-Net as

shown in Fig.3, which involves feature maps into compu-

tation progressively as layer increases to impose diversity

while avoiding redundant overhead.

In this paper, we mainly conduct experiments on im-

age classification benchmarks. Extensive ablation studies

on CIFAR-10 and CIFAR100 validate the impact of SSL.

Furthermore, we carry out experiments on a large-scale im-

age classification dataset ImageNet to confirm the efficiency

and the generalization of SSL. With network architecture

improvement, we surpass ShiftNet and AS-ResNet [16] by

a large margin. It is worth highlighting that our network

even surpasses other counterparts composed by depthwise

separable convolution. We achieve 75.0% top-1 accuracy

on ImageNet with 563M M-Adds. This is the first time the

compact networks can achieve such high accuracy in this

level of computational cost without using depthwise sepa-

rable convolution. Equipped with Squeeze-and-Excitation

module [11] in a proper way, our network can be further

boosted to 76.5% top-1 accuracy with 566M M-Adds.

In summary, our main contributions are listed as follows:

• A new basic component named Sparse Shift Layer is

introduced to build fast and accurate neural networks,

which can eliminate meaningless memory movement.

Beyond this, through extensive ablation studies, we

find that only a few shift operations are sufficient

to provide spatial information communication, which
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will inspire more exploration in the development of

compact neural networks.

• A quantization-aware shift learning method is pro-

posed to ensure shift operation learnable while avoid-

ing interpolation during inference.

• An improved compact network architecture is de-

signed to fully exploit the capacity of the limited fea-

ture space. Combining it with SSL, we achieve state-

of-the-art results in classification benchmarks in terms

of both accuracy and inference speed.

2. Related Works

Over the past few years, more and more approaches are

proposed to lighten neural networks in terms of storage,

computation and the practical inference time, while keeping

their performance powerful. We divide these related meth-

ods into the following two parts from the view of whether a

pretrained model is given.

2.1. Neural Networks Compression

To compress a given pretrained model into a lightweight

one, there exist four different approaches: 1) Pruning

[6, 20, 5, 35, 21, 27, 8, 25, 24, 1, 2] aims to remove unimpor-

tant parameters and turns weight matrices into sparse ones.

2) Tensor decomposition [3, 15, 19, 17, 36, 34] exploits the

channel or spatial redundancy of weight matrices and seeks

their low-rank approximations. 3) Quantization [4, 13, 28]

adopts low bits instead of float point representation for each

weight parameter. 4) Knowledge distillation [9, 31] trans-

fers the knowledge from teacher models to lightweight stu-

dent models.

These methods can effectively compress neural networks

into small ones. However, their performances heavily de-

pend on the given pretrained model. Without architecture

improvement, the accuracy cannot go a step further.

2.2. Compact Networks Development

How to design a compact neural architecture is a pop-

ular research topic recently. Some related works [14, 39]

used group convolution to construct compact networks. The

most famous work, MobileNet [10], adopts depthwise sep-

arable convolution to build an accurate and lightweight net-

work, which moves forward a big step in this field. Af-

ter that, lots of researchers follow these works and design

more compact and powerful architectures, such as Shuf-

fleNet, MobileNetV2, ShuffleNetV2, IGCV2 and so on

[40, 30, 26, 38]. However, even though depthwise sepa-

rable convolution only needs little theoretical computation

cost, it is difficult to implement efficiently in practice since

the arithmetic intensity is too low.

[37] provide an alternative named shift operation which

only shifts feature maps without computation. A compact

network can be constructed by interleaving this operation

with point-wise convolutions. Before that, a random shift

operation [42] is applied to pooling layer to enhance the

generalization of networks, serving as an alternative of data

augmentation. [16] propose a method to make shift opera-

tion learnable, which means the receptive field of each layer

can be learnt automatically. The existing problem is that this

operation still occupies considerable inference time because

it is implemented by memory movement. This is exactly

what we want to solve in this paper.

3. Background

We first review the standard shift operation, which can

be formulated as follows:

Oc,i,j = Ic,i+αc,j+βc
(1)

where I and O are the input and output feature maps, re-

spectively. c is the channel index. i and j denote the spatial

position. αc and βc denote the horizontal and vertical dis-

placement assigned to cth input feature map. The parameter

number of α and β is separately equivalent to the channel

number of input feature maps, which is almost negligible

compared with the parameters of convolution layer.

Grouped shift. In the work of [37], for a shift opera-

tion with kernel size K, the input feature maps are evenly

divided into K2 groups, and each group is assigned one dis-

placement as illustrated in Fig.1(a). This displacement as-

signment can be formulated as follows:

αc = ⌊⌊c/K2⌋ / K⌋ − ⌊K/2⌋,
βc = ⌊c/K2⌋ mod K − ⌊K/2⌋,

(2)

where ⌊·⌋ denotes floor function. However, the heuristic as-

signment is not task-driven. The kernel size of each shift

operation is set through lots of trial-and-error experiments,

and the uniform distribution of the displacement is not gen-

erally suitable for every task.

Active shift. To solve this problem, [16] proposes a

method to make α and β differentiable, which relaxes the

integer constraint of α and β to real value and relaxes shift

operation to bilinear interpolation. In this manner, Eqn.1

can be relaxed as follows:

Oc,i,j =
∑

(n,m)∈Ω

Ic,n,m·(1−|i+ αc − n|)(1−|j + βc −m|) (3)

where Ω is the neighbor set of (i + αc, j + βc) composed

by four nearest integer points. Hence, α and β can be op-

timized adaptively by gradient descent optimizers through

backpropagation. This shift pattern is illustrated in Fig.1(b).

4. Designing Efficient Convolutional Neural

Networks with a Few Shifts

It demonstrates in the works of [16, 37] that shift opera-

tion can provide receptive field for spatial information com-
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munication in ConvNets. However, not each feature map

is required to shift. Redundant shift operation will bring

redundant memory movement and further impact the infer-

ence time of neural network. Starting from this point, we

develop a method in this section to build efficient ConvNets

with fewer shift operations.

4.1. Sparsifying Shift Operation

To avoid meaningless memory movement, we add dis-

placement penalty to eliminate useless shift operation in

loss function. Also, it can avoid diffusion of shift learning

since a big displacement will induce useful boundary in-

formation loss especially for those feature maps with lower

resolution. To this end, we add L1 regularization to α and β
to penalize redundant shifts, which is formulated as follows:

Ltotal=
∑

(x,y) L(f(x | W,α, β), y) + λR(α, β)

R(α, β) =‖ α ‖1 + ‖ β ‖1
(4)

where (x, y) is the input data and its corresponding label,

W denotes the trainable parameters except α and β, f(·)
outputs the predicted label, L(·) is the loss function of neu-

ral networks, and λ balances these two terms.

With such sparsity-induced penalty, we can adopt mini-

mum memory movement to build an accurate and fast neu-

ral network. We name this new component as sparse shift

layer (SSL), which is illustrated in Fig.1(c), to distinguish

from the previous shift operations .

4.2. Quantization­aware Shift Learning

Despite flexibility and sparsity are introduced, some

problems remain unsolved. Although the integer constraint

of α and β is relaxed to real value for the sake of learning

shift operation, it weakens the inference advantage of shift

operation to some extent since interpolation still needs mul-

tiplications while standard shift operation only needs mem-

ory movement during inference.

Inspired by the method of training quantization neural

networks [13], we propose a quantization-aware shift learn-

ing approach to make these problems tractable. In this ap-

proach, we aim to quantize the displacement back to inte-

ger during feed-forward, while keeping shift operation still

learnable.

Feed-forward. We use integer approximation of α and

β to recover shift operation instead of interpolation, which

can be formulated as follows:

Oc,i,j = Ic,i+|αc|†,j+|βc|†
(5)

where |·|† denotes the rounding approximation of real value.

In this way Eqn.3 is actually converted back to Eqn.1

through quantization, meaning that we apply shift operation

instead of interpolation to compute the loss of network.

Back-propagation. Different from feed-forward phase,

real-valued shift is required to compute their gradients and

optimized through Stochastic Gradient Descent (SGD). Ac-

cording to Eqn.3, the gradients of loss with respect to α and

β are formulated as follows:

∂L

∂αc

=

w∑

i

h∑

j

∂L

∂Oc,i,j

∑

(n,m)∈Ω

Ic,n,m·

(1− |j + βc −m|) · Sign(n− i− αc)

∂L

∂βc

=

w∑

i

h∑

j

∂L

∂Oc,i,j

∑

(n,m)∈Ω

Ic,n,m·

(1− |i+ αc − n|) · Sign(m− j − βc)

(6)

where w and h are the spatial size of input feature maps.

And Sign(·) is a function to output +1 or −1 according to

the sign of input value.

As to back-propagate the gradients of loss with respect

to the feature maps from higher layers to shallow layers,

both Eqn.3 and 5 work to compute the partial derivation.

Consider Eqn.5 is the actual feed-forward process we apply

instead of Eqn.3. It is more reasonable and efficient to adopt

Eqn.5 to compute the gradients, which is formulated as:

∂L

∂Ic,i,j
=

∂L

∂Oc,i−|αc|†,j−|βc|†

(7)

This is an inverse memory movement compared with Eqn.5.

Discussion. After training, the rounding approximation

of displacement is preserved and only shift operation is ex-

ecuted during inference. What’s more, another surprising

by-product is that this method turns L1 regularizer into a

truncated regularizer, which will shrinks more small dis-

placement towards exact zero.

4.3. Network Architecture Improvement

The network capacity is not always fully exploited. As

demonstrated in the works of cross-channel decomposition

[41], feature maps usually tend to collapse into a small sub-

set. From this perspective, not each feature map is neces-

sary to be involved into the next layer’s convolution. Ac-

cording to this insight, we redesign an improved network

architecture to ease this problem.

Network architecture. In this section, we propose a

Fully-Exploited Network (FE-Net) composed by the block

as shown in Fig.3. In this block, only a subset of feature

maps are involved into computation, and the remaining ones

directly propagate to the next layer to ensure information

flowing which can be formulated as follows:

I1, I2 ⇐ I
O = f(I1) ‖ I2

(8)

where I and O mean the input and output feature maps.

⇐ denotes channel-wise split and ‖ denotes channel-wise
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Input 
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Single scale

feature maps
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Three scales mixed 
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Figure 3. Fully-Exploited computational Block (FE-Block). Only

a subset of feature maps is involved into optimization at each

basic computational unit. For each resolution, the feature maps

are progressively mixed in as layer increases. For a computa-

tional block with n = 3 basic units as shown in this figure, we

evenly divide the input feature maps into 2n−1 parts, and involve
2
l−1

2n−1 (l = 1, . . . , n) feature maps into optimization each layer.

In this paper, the computational unit is implemented as inverted

bottlenecks [30].

1x1 Conv

SSL

1x1 Conv

BN+ReLU

BN

1x1 Conv

2x2 AVG Pool

(stride=2)

1x1 Conv

BN+ReLU

BN+

1x1 Conv

SSL

1x1 Conv

BN

(a) IB-SSL (b) Res-IB-SSL (c) IB-Pool

BN+ReLU

Figure 4. The basic computational units for FE-Block. (a): the

basic unit without skipping connection; (b): the basic unit with

skipping connection; (c): the basic unit for spatial down sampling

(2×). Note that in (a) and (b), it is SSL that provides receptive

fields. (IB is short for inverted bottleneck.)

concatenation. In practice, this computational pattern can

be implemented for efficiency as that I1 joins into compu-

tation and its output f(I1) is rewritten back to the origi-

nal memory position of I1. The remaining feature maps I2
do not require any operations. As layer increases, we mix

more feature maps into computation. In this way, each in-

put feature map is involved into optimization at last, and

multi-scale feature maps are obtained for prediction. We

empirically prove its validation in section 5.4.

Basic computational unit. In this paper, we adopt in-

verted bottlenecks [30] as basic computational units to build

our efficient networks as shown in Fig.4. Without any spe-

cific statement, their expansion rate is always set to 6 by

default, which means the first 1×1 Conv is always used to

expand the input channel by 6 times. To combine the advan-

tages of residual learning [7], for each computation block

as shown in Fig.3, we mainly adopt Fig.4(b) as the basic

computational unit except the last one. For the last com-

putational unit at each computation block, we use Fig.4(a)

to change the channel number for the next computational

block, or use Fig.4(c) for spatial down sampling.

5. Experiments

In this section, we first carry out several ablation ex-

periments on CIFAR10 and CIFAR100 [18] to demonstrate

the effect of SSL. In these experiments, we prove that it is

enough to provide spatial information communication and

build compact ConvNets with only a few shift operations.

Then we conduct experiments on ILSVRC-2012 [29] to as-

sess its generalization ability to a large-scale dataset.

5.1. Benchmarks and Training Settings

CIFAR10 / CIFAR100 [18] are the datasets for 10-

categories and 100-categeories image classification, respec-

tively. Both of them consist of 50k images for training and

10k images for testing with resolution 32 × 32.

In the experiments on CIFAR, we choose ShiftResNet

[37] which is built by CSC modules to evaluate the ability

of SSL. Note that a CSC module is composed by a shift

layer sandwiched between a 1×1 Conv layer for dimension

ascending and a 1×1 Conv layer for dimension descending.

Only the shift layer in this module is leveraged for spatial

information communication. Replacing shift layer by SSL,

through adjusting hyperparameter λ in Eqn.4, we study how

many shift operations are required at least to maintain the

performance of ShiftResNet.

We use ShiftResNet-20 and ShiftResNet-56 with expan-

sion rate 6 as two representatives for ablation study. We

train these networks by two GPUs with mini-batch 128 and

base learning rate 0.1. As the same with [37], the learning

rate decays by a factor of 10 after 32k and 48k iterations,

and the training stops after 64k iterations. Specifically, we

stop the training of SSL after 48k iterations in order to fix

the learned shift pattern. For data augmentation, only hori-

zontal flipping and random cropping are adopted. We use

L2 regularization to shift values in the following experi-

ments since we find that the result of L2 regularization is

slightly better than L1.

ImageNet2012 [29] is a large-scale image classification

benchmark with 1.28 million images for training and 50k

images for validation. As is known, it is challenging to

perform well on such large-scale dataset with lightweight

neural networks. In order to boost the performance of the

networks built with SSL by a further step, we redesign the

neural network architecture as shown in Fig.3 to fully ex-

ploit the limited network capacity.
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depth Networks λ
Accuracy

CIFAR10 / CIFAR100
Params / FLOPs

Shift Sparsity

CIFAR10 / CIFAR100

20

ResNet [37] - 91.4% / 66.3% 0.27M / 81M -

ShiftResNet (GroupedShift) [37] - 90.6% / 68.6%

0.16M / 53M

11.1%

ShiftResNet (SSL)

0 91.7% / 69.2% 12.1% / 10.3%

1e-4 91.1% / 69.2% 66.6% / 41.2%

4e-4 90.4% / 67.7% 91.7% / 80.0%

5e-4 89.8% / 67.7% 93.5% / 86.1%

ShiftResNet (1x1 only) - 81.5% / 56.7% 100%

56

ResNet [37] - 92.0% / 69.3% 0.86M / 251M -

ShiftResNet (GroupedShift) [37] - 92.7% / 72.1%

0.55M / 166M

11.1%

ShiftResNet (SSL)

0 93.8% / 72.4% 12.8% / 11.4%

1e-4 92.9% / 71.7% 87.8% / 73.8%

4e-4 91.9% / 71.1% 97.4% / 94.6%

5e-4 91.8% / 69.9% 98.0% / 96.1%

ShiftResNet (1x1 only) - 82.5% / 56.1% 100%

Table 1. The analysis of SSL on CIFAR10 and CIFAR100

In the experiments on ImageNet, we use SGD to train the

networks with mini-batch 1024, weight decay 0.00004 and

momentum 0.9. Training is started by a learning rate 0.6

with linear decaying policy and is stopped after 480 epochs,

while the training of SSL is stopped after 240 epochs. The

entire training iteration is comparable with [32, 22, 30, 26].

For data augmentation, we scale the short-side of images to

256 and adopt 224× 224 random crop as well as horizontal

flip to augment the training dataset. Also, to further rich the

training images, more image of distortions are provided as

used in Inception training [33, 10]. But it will be withdrawn

in last several epochs. At the validation phase, we only cen-

ter crop the feeding resized images to 224×224 and present

the results with single-view approach.

5.2. Ablation Study

We explore the characteristic of SSL from three terms:

(i) grouped shift vs. sparse shift; (ii) deep networks vs. shal-

low networks; (iii) the settings of λ.

Grouped shift vs. sparse shift. As shown in Tab.1,

without shift penalty, the results of shift learning are supe-

rior to that of heuristic setting on both CIFAR10 and CI-

FAR100. Through shift learning, the network can adap-

tively adjust the displacement and direction of shift opera-

tion according to different tasks and different datasets. With

shift penalty, it can eliminate a great portion of shift opera-

tions while keeping the accuracy of the network comparable

with original network. Even with more than 90% sparsity to

shift operation, the network can maintain a quite good per-

formance, which suggests that only a few shift operations

play crucial roles on communicating spatial information for

image classification.

Deep networks vs. shallow networks. We analyze

the sparsity of SSL on CIFAR10 / CIFAR100 with a shal-

low network and a deeper one, say ShiftResNet-20 and

ShiftResNet-56. As shown in Tab.1, the shift sparsity on

ShiftResNet-56 is more than ShiftResNet-20. It can provide

good performance on CIFAR10 / CIFAR100 with even over

95% sparsity on ShiftResNet-56. Increasing depth brings

more redundancy in the shift layer.

Different settings of λ. We increase λ from 0 to 5e-

4 and find that a majority of shift operation is eliminated

progressively while the accuracy of the networks decline a

little. Here SSL (λ=0) is actually equivalent to quantization-

aware Active Shift. When we increase λ significantly, we

shrink all displacement to zero, which means the basic mod-

ules are all composed by 1×1 Conv layers and only three

pooling layers in the network provide for spatial informa-

tion communication. In this case, the accuracy drops a lot,

which reflects from another side that such a few shifts really

matter a lot for spatial information communication. Let us

take ShiftResNet-56 on CIFAR100 as an example. Its accu-

racy can be boosted from 56.1% to 69.9% with only 3.9%

feature maps shifted.

5.3. Case Study

We take ShiftResNet-20 on CIFAR10 and CIFAR100

with λ = 5e-4 for more detailed study. In Tab.2, we show the

shift sparsity of each layer in detail. In some of the blocks,

almost all feature maps stay unshifted which indicates the

shift layers in these positions are unimportant. Actually, the

sparsity of shift layer can be taken as a metric to measure the

importance of these layers. It can decide which shift layer

is unimportant and can be removed without accuracy de-

cline. For examples, the shift layer in block2 1 is the most

unimportant while the one in block2 2 is the most impor-

tant in ShiftResNet-20. We take the shift layer in block2 2

for visualization as shown in Fig.5. Although the major-
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Sparse

Learning

(a) Initialization (b) Result

Figure 5. The visualization of shift values in the shift layer from

block2 2 of ShiftResNet-20 on CIFAR100. The area of each point

denotes the channel number of the feature maps with the same

shift pattern. x-axis and y-axis denote the horizontal and vertical

displacement, respectively. (Best viewed in color)

Block
CIFAR10 CIFAR100

Unshifts/

Channels

Shift

Sparsity

Unshifts/

Channels

Shift

Sparsity

block1 1 93 / 96 96.9% 82 / 96 85.4%

block1 2 87 / 96 90.6% 84 / 96 87.5%

block1 3 94 / 96 97.9% 92 / 96 95.8%

block2 1 96 / 96 100% 96 / 96 100%

block2 2 161 / 192 83.9% 146 / 192 76.0%

block2 3 181 / 192 94.3% 164 / 192 85.4%

block3 1 190 / 192 99.0% 189 / 192 98.4%

block3 2 331 / 384 86.2% 316 / 384 82.3%

block3 3 382 / 384 99.5% 319 / 384 83.1%

Total 1615 / 1728 93.5% 1488 / 1728 86.1%

Table 2. The shift sparsity of each layer in ShiftResNet-20 (λ =
0.0005) on CIFAR10 and CIFAR100.

Removed shift layer number

(ShiftResNet20-SSL, λ=0)

Accuracy

CIFAR10/CIFAR100

0 91.7% / 69.2%

4 91.5% / 68.2%

6 91.4% / 67.0%

8 89.4% / 66.0%

9 (All removed) 81.5% / 56.7%

Table 3. The performance of ShiftResNet-20 on CIFAR10 and CI-

FAR100 after removing the most unimportant shift layers.

ity of channels stay unshifted, the remaining ones can learn

a meaningful shift pattern and provide multiple receptive

fields. Actually, a shift layer cooperated with point-wise

convolution can take a role of an Inception module. This

is also a major advantage of shift layer over conventional

convolution layer.

To take a further analysis, we carry out several exper-

iments with ShiftResNet-20 on CIFAR10 and CIFAR100

by removing the most unimportant shift layers according to

their sparsity in Tab.2. As shown in Tab.3, when we pro-

gressively remove the most unimportant shift layers, the ac-

Input Operator t n c s

2242 × 3 conv 3×3+BN - - 16 2

1122 × 16 IB-SSL 4 - 16 1

1122 × 16 IB-Pool 2×2 5 - 32 2

562 × 32 FE-Block 6 3 64 2

282 × 64 FE-Block 6 4 128 2

142 × 128 FE-Block 6 4 128 1

142 × 128 FE-Block 6 4 256 2

72 × 256 FE-Block 6 3 256 1

72 × 256 conv1×1+BN+ReLU - - 1380 1

72 × 1380 GAP 7×7 - - 1380 -

12 × 1380 Dropout 0.2 - - 1380 -

12 × 1380 conv 1×1 - - 1000 1

Table 4. Network configuration. t denotes expansion rate. n means

the computational unit number of FE-Block. c denotes the output

channels. And s means stride.

Networks MAdds Params Top-1

MobileNetV1 0.75x [10] 325M 2.6M 68.4%

MobileNetV2 1.0x[30] 300M 3.4M 72.0%

ShuffleNetV1 1.5x(g=3)[40] 292M 3.4M 69.0%

ShuffleNetV2 1.5x[26] 299M 3.5M 72.6%

IGCV3-D [32] 318M 3.6M 72.2%

CondenseNet(G=C=8)[12] 274M 2.9M 71.0%

ShiftNet-B [37] 371M 1.1M 61.2%

AS-ResNet-w50 [16] 404M 1.96M 69.9%

FE-Net (ours) 1.0x 301M 3.7M 72.9%

MobileNetV1 1.0x[10] 569M 4.2M 70.6%

MobileNetV2 1.4x[30] 585M 6.9M 74.7%

ShuffleNetV1 2x[40] 524M 5.4M 70.9%

ShuffleNetV2 2x[26] 591M 7.4M 74.9%

IGCV3-D 1.4x[32] 610M 7.2M 74.55%

CondenseNet(G=C=4)[12] 529M 4.8M 73.8%

PNASNet[22] 588M 5.1M 74.2%

DARTS [23] 595M 4.9M 73.1%

ShiftNet-A [37] 1400M 4.1M 70.1%

AS-ResNet-w68 [16] 729M 3.42M 72.2%

FE-Net (ours) 1.375x 563M 5.9M 75.0%

Table 5. The performance comparison of several compact neural

architectures on ImageNet.

curacy only declines a little. Even when we preserve only

one shift layer in block2 2, the accuracy still maintains in a

considerable level.

5.4. Performance on ImageNet

Our redesigned network architecture for ImageNet2012

classification task is described in Tab.4, which is mainly

composed by FE-Block equipped with SSL. We use width

multiplier as a hyperparameter to tune the tradeoff between

accuracy and computational cost.
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Comparison with other counterparts. As shown in

Tab.5, with network architecture improvement, our results

surpass ShiftNet and AS-ResNet by a large margin. What’s

more, before our work, the best performance in terms of

FLOPs/accuracy is always dominated by the networks built

by depthwise separable convolution in the past few years.

We are the first one to build a compact neural network

without using depthwise separable convolution which can

achieve superior results to other counterparts constructed

by depthwise separable convolution. As shown in Tab.5,

our network surpasses MobileNet series networks and Shuf-

fleNet series networks, as well as the networks automati-

cally searched by NAS technique [22, 23], indicating that

SSL can be taken as an alternative choice over depthwise

separable convolution. This can provide a new basic com-

ponent for NAS and inspire more exploration in this direc-

tion.

As for practical runtime, we mainly compare our net-

work with MobileNetV2, which is the most representative

compact network constructed by depthwise separable con-

volution. As illustrated in Tab.6, our networks achieve

higher accuracy with significantly faster inference time on

GPU and CPU, which proves that SSL is a more friendly

basic component for practical application scenarios.

An ablation study of FE-Net. We also train the FE-

Nets equipped with depthwise separable convolution (DW)

on ImageNet so as to decompose the benifit of SSL from

the improved network design. As shown in Tab.6, the gap of

accuracy between SSL and DW based FE-Net is small while

their practical runtime is significant larger, which further

validates the superiority of SSL and FE-Net.

Compatibility with other methods. Our network can

also be combined with other methods for further perfor-

mance exploration. For instance, our network can be

equipped with SE module (Squeeze-and-Excitation [11])

for channel attention. However, we find it matters to place

SE module in different position of basic block. Here we

only discuss the position of SE module in inverted bottle-

neck. As illustrated in Fig.6, there are two different place-

ment manners. The first manner is the conventional one,

which places SE module in the output position of the ba-

sic block. However, as for inverted bottleneck, the most

redundant information exists in the expansion part. Since

SE module is used for channel attention, it is more reason-

able to place SE module in the expansion part of inverted

bottleneck as shown in Fig.6(b). The results in Tab.7 empir-

ically validates this idea. Moreover, we note that the shift

sparsity increases a lot after equipping SE module as shown

in Tab.8. Through channel-wise feature recalibration, it im-

poses more unshifted feature maps, since SE module en-

codes global information which lowers the need of shifting

for spatial information communication.

Networks Top1 Top5 GPU CPU

FE-Net 72.9% 91.2% 16.1ms 1.9s

MobileNetV2 (DW) 72.0% - 21.4ms 2.9s

FE-Net (DW) 73.2% 91.4% 21.8ms 2.7s

FE-Net 1.375x 75.0% 92.4% 23.1ms 3.8s

MobileNetV2 1.4x (DW) 74.7% - 30.6ms 5.8s

FE-Net 1.375x (DW) 75.2% 92.8% 30.4ms 5.3s

Table 6. An ablation study of FE-Net with shift operation (SSL)

vs. depthwise convolution (DW) on ImageNet (batchsize 32).

1x1 Conv

SSL

1x1 Conv

BN

(a) SE V1

BN+ReLU

1x1 Conv

SSL

1x1 Conv BN

(b) SE V2

BN+ReLU

SE

Channel Attention

Channel

Attention

SE

Figure 6. Two different placement manners of SE module.

Networks MAdds Params Top1

MobileNetV1 1.0x + SE [11] 572M 4.7M 74.7%

ShuffleNetV2 2X + SE [26] 597M - 75.4%

FE-Net 1.375x + SE V1 564M 6.1M 75.6%

FE-Net 1.375x + SE V2 566M 8.2M 76.5%

Table 7. The performance comparison of several compact neural

architectures equipped with SE modules on ImageNet.

Networks Top1 Shift Sparsity

FE-Net 1.0x 72.9% 60.0%

FE-Net 1.375x 75.0% 69.5%

FE-Net 1.375x + SE V1 75.6% 77.7%

FE-Net 1.375x + SE V2 76.5% 80.2%

Table 8. The shift sparsity of FE-Net with different accuracy.

6. Conclusions

In this paper, we mainly study the feasibility of SSL

to build a compact and accurate neural network. Exten-

sive experiments prove that only a few shift operations are

sufficient for spatial information communication. We also

show that SSL can be taken as an efficient alternative over

depthwise separable convolution. A well-designed network

equipped with SSL can surpass other counterparts equipped

with depthwise separable convolution in terms of accuracy,

FLOPs and practical inference time. Our work will inspire

more exploration for network design and searching.
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