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Abstract

Generative adversarial nets (GANs) and variational

auto-encoders have significantly improved our distribution

modeling capabilities, showing promise for dataset aug-

mentation, image-to-image translation and feature learn-

ing. However, to model high-dimensional distributions, se-

quential training and stacked architectures are common, in-

creasing the number of tunable hyper-parameters as well as

the training time. Nonetheless, the sample complexity of the

distance metrics remains one of the factors affecting GAN

training. We first show that the recently proposed sliced

Wasserstein distance has compelling sample complexity

properties when compared to the Wasserstein distance. To

further improve the sliced Wasserstein distance we then an-

alyze its ‘projection complexity’ and develop the max-sliced

Wasserstein distance which enjoys compelling sample com-

plexity while reducing projection complexity, albeit neces-

sitating a max estimation. We finally illustrate that the pro-

posed distance trains GANs on high-dimensional images up

to a resolution of 256x256 easily.

1. Introduction

Generative modeling capabilities have improved tremen-

dously in the last few years, especially since the advent of

deep learning-based models like generative adversarial nets

(GANs) [11] and variational auto-encoders (VAEs) [17].

Instead of sampling from a high-dimensional distribution,

GANs and VAEs transform a sample obtained from a sim-

ple distribution using deep nets. These models have found

use in dataset augmentation [31], image-to-image transla-

tion [15, 37, 21, 14, 24, 29, 35, 38], and even feature learn-

ing for inference related tasks [9].

GANs and many of their variants formulate generative

modeling as a two player game. A ‘generator’ creates sam-

ples that resemble the ground truth data. A ‘discriminator’

tries to distinguish between ‘artificial’ and ‘real’ samples.

Both, the generator and discriminator, are parametrized us-

ing deep nets and trained via stochastic gradient descent.

In its original formulation [11], a GAN minimizes the

Jenson-Shannon divergence between the data distribution

and the probability distribution induced in the data space

by the generator. Many other variants have been proposed,

which use either some divergence or the integral probabil-

ity metric to measure the distance between the distribu-

tions [2, 22, 12, 20, 8, 7, 27, 4, 26, 23, 13, 30]. When

carefully trained, GANs are able to produce high quality

samples [28, 16, 25, 16, 25]. Training GANs is, however,

difficult – especially on high dimensional datasets.

The scaling difficulty of GANs may be related to one

fundamental theoretical issue: the sample complexity. It

is shown in [3] that KL-divergence, Jenson-Shannon and

Wasserstein distance do not generalize, in the sense that the

population distance cannot be approximated by an empir-

ical distance when there are only a polynomial number of

samples. To improve generalization, one popular method

is to limit the discriminator class [3, 10] and interpret the

training process as minimizing a neural-net distance [3].

In this work, we promote a different path that resolves

the sample complexity issue. A fundamental reason for the

exponential sample complexity of the Wasserstein distance

is the sparsity of points in a high dimensional space. Even if

two collections of points are randomly drawn from the same

ball, these two collections are far away from each other.

Our intuition is that projection onto a low-dimensional sub-

space, such as a line, mitigates the artificial distance effect

in high dimensions and the distance of the projected sam-

ples reflects the true distance.

We first apply this intuition to analyze the recently pro-

posed sliced Wasserstein distance GAN, which is based on

the average Wasserstein distance of the projected versions

of two distributions along a few randomly picked direc-

tions [8, 20, 34]. We prove that the sliced Wasserstein dis-

tance is generalizable for Gaussian distributions (i.e., it has

polynomial sample complexity), while Wasserstein distance

is not, thus partially explaining why [8, 20, 34] may exhibit
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better behavior than the Wasserstein distance [2].

One drawback of the sliced Wasserstein distance is that it

requires a large number of projection directions, since ran-

dom directions lose a lot of information. To address this

concern, we propose to project onto the “best direction,”

along which the projected distance is maximized. We call

the corresponding metric the “max-sliced Wasserstein dis-

tance,” and prove that it is also generalizable for Gaussian

distributions.

Using this new metric, we are able to train GANs to gen-

erate high resolution images from the CelebA-HQ [16] and

LSUN Bedrooms [36] datasets. We also achieve improved

performance in other distribution matching tasks like un-

paired word translation [6].

The main contributions of this paper are the following:

• We analyze in Sec. 3.1 the sample complexity of the

Wasserstein and sliced Wasserstein distances. We

show that for a certain class of distributions the

Wasserstein distance has an exponential sample com-

plexity, while the sliced Wasserstein distance [8, 34]

has a polynomial sample complexity.

• We then study in Sec. 3.2 the projection complexity of

the sliced Wasserstein distance, i.e., how the number

of random projection directions affects estimation.

• We introduce the max-sliced Wasserstein distance in

Sec. 3.3 to address the projection complexity issue.

• We then employ the max-sliced Wasserstein distance

to train GANs in Sec. 4, demonstrating significant re-

duction in the number of projection directions required

for the sliced-Wasserstein GAN.

2. Background

Generative modeling is the task of learning a probabil-

ity distribution from a given dataset D = {(x)} of sam-

ples x ∼ Pd drawn from an unknown data distribution

Pd. While this has traditionally been seen through the lens

of likelihood-maximization, GANs pose generative model-

ing as a distance minimization problem. More specifically,

these approaches recommend learning the data distribution

Pd by finding a distribution Pg that solves:

argmin
Pg

D(Pg,Pd), (1)

where D(·, ·) is some distance or divergence between dis-

tributions. Arjovsky et al. [1] proposed using the Wasser-

stein distance in the context of GAN formulations. The

Wasserstein-p distance between distributions Pg and Pd is

defined as:

Wp(Pg,Pd) = inf
γ∈Π(Pg,Pd)

(E(x,y)∼γ [||x− y||p])
1
p , (2)

where Π(Pg,Pd) is the set of all possible joint distributions

on (x, y) with marginals Pg and Pd.

Estimating the Wasserstein distance is, however, not

straightforward. Arjovsky et al. [2] used the Kantorovich-

Rubinstein duality to the Wasserstein-1 distance, which

states that:

W (Pg,Pd) = sup
‖f‖L≤1

Ex∼Pg
[f(x)]− Ex∼Pd

[f(x)], (3)

where the supremum is over all 1-Lipschitz functions f :
X → R. The function f is commonly represented via a

deep net and various ways have been suggested to enforce

the Lipschitz constraint, e.g., [12].

While the Wasserstein distance based approaches have

been successful in several complex generative tasks, they

suffer from instability arising from incorrect estimation.

The cause behind this was noted in [33], where it was shown

that estimates of the Wasserstein distance suffer from the

‘curse of dimensionality.’ To tackle the instability and com-

plexity, a sliced version of the Wasserstein-2 distance was

employed by [8, 20, 18, 34], which only requires estimating

distances of 1-d distributions and is, therefore, more effi-

cient. The “sliced Wasserstein-p distance” [5] between dis-

tributions Pd and Pg is defined as

W̃p(Pd,Pg) =

[
∫

ω∈Ω

W p
p (P

ω
d ,P

ω
g )dω

]
1
p

, (4)

where P
ω
g , Pω

d denote the projection (i.e., marginal) of Pg ,

Pd onto the direction ω, and Ω is the set of all possible di-

rections on the unit sphere. Kolouri et al. [19] have shown

that the sliced Wasserstein distance satisfies the properties

of non-negativity, identity of indiscernibles, symmetry, and

subadditivity. Hence, it is a true metric.

In practice, Deshpande et al. [8] approximate the sliced

Wasserstein-2 distance between the distributions by using

samples D ∼ Pd, F ∼ Pg , and a finite number of ran-

dom Gaussian directions, replacing the integration over Ω
with a summation over a randomly chosen set of unit vec-

tors Ω̂ ∝ N (0, I), where ‘∝’ is used to indicate normaliza-

tion to unit length. With Pg (and hence, F) being implicitly

parametrized by θg , [8] uses the following program for gen-

erative modeling:

min
θg

1

|Ω̂|

∑

ω∈Ω̂

W 2
2 (D

ω,Fω). (5)

The Wasserstein-2 distance between the projected sam-

ples Dω and Fω can be computed by finding the opti-

mal transport map. For 1-d distributions, this can be done

through sorting [32], i.e.,

W 2
2 (D

ω,Fω) =
1

|D|

∑

i

||Dω
πD(i) −F

ω
πF (i)||

2
2, (6)
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where πD and πF are permutations that sort the pro-

jected sample sets Dω and Fω respectively, i.e., Dω
πD(1) ≤

Dω
πD(2) ≤ . . . ≤ Dω

πD(|D|).

The program in Eq. (5), when coupled with a discrimina-

tor, was shown to work well on high-dimensional datasets.

Instead of working directly with sets D and F , it was pro-

posed that we transform them to an adversarially learnt fea-

ture space, say hD and hF respectively, where h is implic-

itly parameterized by θd, e.g., by using a deep net. The

generator, parametrized by θg , minimizes

min
θg

1

|Ω̂|

∑

ω∈Ω̂

W 2
2 (h

ω
D, h

ω
F ). (7)

The adversarial feature space h is learnt via a discrimina-

tor which classifies real and fake data. This discriminator

can be written as ωT
d h, where ωd is a logistic layer and the

parameters are learnt using

θ̂d, ω̂d=argmax
θd,ωd

∑

x∈D

ln(σ(ωT
d hx))+

∑

x̂∈F

ln(1−σ(ωT
d hx̂)).

(8)

3. Analysis and Max-Sliced Distance

In this section we provide the first analysis of the sample-

complexity benefits of the sliced Wasserstein distance com-

pared to the Wasserstein distance. We discuss how ‘projec-

tion complexity’ is a shortcoming of the sliced Wasserstein

distance and present as a fix the max-sliced Wasserstein dis-

tance, which – as we will show – enjoys the same beneficial

sample-complexity as the slice Wasserstein distance, albeit

necessitating estimation of a maximum. We will then show

how those results are used for training GANs.

3.1. Sample complexity of the Wasserstein and
sliced Wasserstein distances

We first show the benefits of using the sliced Wasserstein

distance over the Wasserstein distance. Specifically, we

show that, in certain cases, estimation of the sliced Wasser-

stein distance has polynomial complexity, while the Wasser-

stein distance does not. To make this notion concrete, we

introduce ‘generalizability’ of a distance:

Definition 1 Consider a family of distributions P over Rd.

A distance dist(·, ·) is said to be P-generalizable if there

exists a polynomial g such that for any two distributions

µ, ν ∈ P , and their empirical ensembles µ̂, ν̂ with size n =
g(d, 1/ǫ), ǫ > 0, the following holds:

|dist(µ, ν)− dist(µ̂, ν̂)| ≤ ǫ w.p. ≥ 1− polynomial(−n).

With this definition, we can prove the following result:

Claim 1 Consider the family of Gaussian distributions

P = {N (a, I) | a ∈ R
d}.

The sliced Wasserstein-2 distance W̃2 defined in Eq. (4)

is P-generalizable whereas the Wasserstein-2 distance W2

defined in Eq. (2) is not.

Proof. See the supplementary material. �

Claim 1 implies that for GAN training, under certain

conditions, it is better to use the sliced Wasserstein distance

as we can get a more accurate training signal with a fixed

computational budget. This will result in a more stable dis-

criminator.

Even though the sliced Wasserstein distance enjoys bet-

ter sample complexity, it has limitations when a finite num-

ber of random projection directions is used. We refer to this

property as ‘projection complexity’ and illustrate it in the

following section. We then present our proposed method to

help alleviate this problem.

3.2. Projection complexity of the Sliced Wasserstein
Distance

We begin with a simple example to demonstrate the lim-

itations of using W̃2 defined in Eq. (4) for learning distribu-

tions through gradient descent. To analyze the ‘projection

complexity’ of W̃2 we use infinitely many samples, but we

use only finitely many directions ω ∈ Ω̂.

Concretely, consider two d-dimensional Gaussians µ, ν
with identity covariance. Let µ = N (0, I) = Pd be the

data distribution and let ν = N (βê, I) = Pg be the in-

duced generator distribution, parametrized only by its mean

β, while ê is a fixed unit vector. Using gradient descent on

the estimated sliced Wasserstein distance between µ and ν,

we aim to learn β so that µ = ν. Thus, the updates for β are

β ← β − α∇βW̃2(µ, ν), (9)

where α is the learning rate.

The sliced Wasserstein distance W̃2 is calculated by pro-

jecting the distributions (since we use infinitely many sam-

ples) onto random directions and comparing the projections,

i.e., marginals. Therefore, the estimated distance is

W̃2(µ, ν) =
1

|Ω̂|

∑

ω∈Ω̂

W2(µ
ω, νω), (10)

where W2(µ
ω, νω) is the Wasserstein distance between

marginal distributions µω , νω . Note that each ω is normal-

ized to unit norm.

Intuitively, projection of the Gaussians µ, ν onto any di-

rection other than ê makes them appear closer than they ac-

tually are – making the learning process slower. For any

10650



0 500 1,000 1,500 2,000

0

0.2

0.4

0.6

0.8

1

Iterations

||
µ
||
2

W̃2, 1 projections

W̃2, 10 projections

W̃2, 100 projections

W̃2, 1000 projections

discriminator max-W̃2

max-W̃2

0 500 1,000 1,500 2,000

0

0.2

0.4

0.6

0.8

1

Iterations

||
µ
||
2

0 500 1,000 1,500 2,000

0

0.2

0.4

0.6

0.8

1

Iterations

||
µ
||
2

(a) d = 10 (b) d = 100 (c) d = 1000

Figure 1: Convergence of the mean for different sampling strategies for learning the mean of a d-dimensional Gaussian

using the sliced Wasserstein distance and the max-sliced Wasserstein distance. Numbers in the legend denote the number of

projection directions used.

(a) Original distributions. (b) In feature space.
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(c) Wasserstein-2 distance along different

projection angles (in radians) in the fea-

ture space.

Figure 2: The discriminator is able to identify important projection directions. The discriminator transforms the distributions

in Fig. 2a to Fig. 2b. In this new space, the discriminator’s direction is aligned with the one along which the distributions are

the most dissimilar as shown in Fig. 2c.

given ω, it is easy to see that W2(µ
ω, νω) = β|êTω|. There-

fore, the update equation for β is

β → β − α
1

|Ω̂|

∑

ω∈Ω

|êTω|. (11)

The updates to β are particularly small for high dimen-

sional distributions, since any random unit-norm direction

ω is orthogonal to ê with high probability. Therefore, β →
0 very slowly. We verify this effect empirically in Fig. 1, ex-

perimenting with different numbers of random projections

and find that using the sliced Wasserstein distance results in

very slow convergence. This problem is further aggravated

when the dimensions of the distributions increase.

It is intuitively obvious that the aforementioned problem

can easily be solved by choosing ê as the projection direc-

tion. This results in larger updates and, consequently, faster

convergence. This intuition is also verified empirically. We

repeat the same experiment of learning β, but this time we

use only one projection direction ω = ê. This is labelled as

max-W̃2 in Fig. 1. By simply using the important projection

direction, we achieve fast convergence of the mean.

Considering this example, it is evident that some projec-

tion directions are more meaningful than others. Therefore,

GAN training should benefit from including such directions

when comparing distributions. This observation motivates

the max-sliced Wasserstein distance which we discuss next.

3.3. Max sliced Wasserstein distance

In this section we introduce the max-sliced Wasserstein

distance and illustrate that it fixes the ‘projection complex-

ity’ concern. We also prove that the max-sliced Wasserstein

distance enjoys the same sample-complexity as the sliced

Wasserstein distance, i.e., we are not trading one benefit for

another.

As noted in Sec. 3.2, it is useful to include the most

meaningful projection direction. Formally, for the afore-

mentioned example of µ = N (0, I), ν = N (βê, I), we

want to use the direction ω∗ that satisfies

ω∗ = argmax
ω∈Ω

|êTω|. (12)

Comparing distributions along such a direction ω∗ can, in

fact, be shown to be a proper distance. We call it the ‘max-

sliced Wasserstein distance’ and define it as follows:
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Algorithm 1: Training the improved Sliced Wasserstein Generator

Given : Generator parameters θg , Discriminator parameters θd, ωd, sample size n, learning rate α
1 while θg not converged do

2 for i← 0 to k do

3 Sample data {Di}ni=1 ∼ Pd, generated samples {F i
θg
}ni=1 ∼ Pg;

4 compute surogate loss s(ωThD, ω
ThF(θg))

5 return L← s(ωThD), ω
ThF(θg));

6 (ω̂, θ̂d)← (ω̂, θ̂d)− α∇ω,θdL;

7 end

8 compute max-sliced Wasserstein Distance max-W̃2(ω̂
ThD, ω̂

ThF(θg))
9 Sample data {Di}ni=1 ∼ Pd, generated samples {F i

θg
}ni=1 ∼ Pg;

10 sort ω̂ThD and ω̂ThF(θg) to obtain permutations πD, πF ;

11 return L =
∑

i ‖ω̂
ThDπD(i)

− ω̂ThFπF (i)(θg)‖
2
2;

12 θg ← θg − α∇θgL;

13 end

Definition 2 Let Ω be the set of all directions on the unit

sphere. Then, the max-sliced Wasserstein-2 distance be-

tween distributions µ and ν is defined as:

max-W̃2(µ, ν) =

[

max
ω∈Ω

W 2
2 (µ

ω, νω)

]
1
2

. (13)

As illustrated in the following claim, it can be shown

easily that max-W̃2(·, ·) is a valid distance.

Claim 2 The max-sliced Wasserstein-2 distance defined in

Eq. (13) is a well defined distance between distributions.

Proof. See supplementary material. �

We can also show that the max-sliced Wasserstein dis-

tance has polynomial sample complexity:

Claim 3 Consider the family of Gaussian distributions

P = {N (a, I) | a ∈ R
d}.

The max-sliced Wasserstein-2 (max-W̃2) distance is P-

generalizable.

Proof. See the supplementary material. �

Since it is a valid metric, we can directly use the max-

sliced Wasserstein distance for learning distributions.

By definition, the max-sliced Wasserstein distance over-

comes the limitation discussed in Sec. 3.2. However, we

note that the use of a max-estimator is necessary, which is

harder than estimation of a conventional random variable.

In the following section, we discuss how the max-sliced

Wasserstein distance can be estimated and used in a GAN-

like setting.

3.4. maxsliced GAN

In this section, we discuss our approach that uses the

max-sliced Wasserstein distance to train a GAN. We also

discuss how we approximate the max-sliced Wasserstein

distance in practice. Since we use max-W̃2, we are able to

achieve significant savings in terms of the number of pro-

jection directions needed as compared to [8].

Intuitively, we want to project data into a space where

real samples can easily be differentiated from artificially

generated points. To this end, we work with an adversar-

ially learnt feature space, i.e., we use the penultimate layer

of a discriminator network. In this feature space, we mini-

mize the max-sliced Wasserstein distance max-W̃2. As will

be discussed later in this section, finding the actual max is

hard and therefore we resort to approximating it.

Let Pd again denote the data distribution and let Pg refer

to the induced generator distribution. Further, let the dis-

criminator be represented as ωT
d h(.), where ω denotes the

weights of a fully connected layer and h represents the fea-

ture space we are interested in. Further, let hD and hF rep-

resent the two empirical distributions in this feature space.

Then, we would like to solve

max-W̃2(hD, hF ) = max
ω∈Ω

W2(h
ω
D, h

ω
F ), (14)

where Ω is the set of all normalized directions. There is no

easy way in general to solve

ω∗ = argmax
ω∈Ω

W2(h
ω
D, h

ω
F ), (15)

even if the parameters θd of the feature transform h are

fixed. This is because computation of the Wasserstein dis-

tance W2(h
ω
D, h

ω
F ) in the 1-dimensional case requires sort-

ing, i.e., solving of a minimization problem. Hence the pro-

gram given in Eq. (15) is a saddlepoint objective, for which

both maximization and minimization can be solved exactly

when assuming the parameters of the other program to be

fixed.
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en-es es-en en-fr fr-en en-de de-en en-ru ru-en en-zh zh-en

[6] - NN 79.1 78.1 78.1 78.2 71.3 69.6 37.3 54.3 30.9 21.9

[6] - CSLS 81.7 83.3 82.3 82.1 74.0 72.2 44.0 59.1 32.5 31.4

Max-sliced WGAN - NN 79.6 79.1 78.2 78.5 71.9 69.6 38.4 58.7 34.9 25.1

Max-sliced WGAN - CSLS 82.0 84.1 82.5 82.3 74.8 73.1 44.6 61.7 35.3 31.9

Table 1: Unsupervised word translation. We show the retrieval precision P@1 on 5 pairs of languages on MUSE bilingual

dictionaries [6]: English (‘en’), French (‘fr’), German (‘de’), Russian (‘ru’) and Chinese (‘zh’).

If we want to jointly find the parameters θd of the feature

transform h and the projection direction ω, i.e., if we want

to solve

ω∗, θ∗d = argmax
ω∈Ω,θd

W2(h
ω
D, h

ω
F ), (16)

using gradient descent based methods, we also need to pay

attention to bounded-ness of the objective. Using regular-

ization often proves tricky and may require separate tuning

for each use case.

To circumvent those difficulties when jointly searching

for ω∗ and θ∗d, we use a surrogate function s and write the

objective for the discriminator as follows:

ω̂, θ̂d = argmax
ω∈Ω,θd

s(ωThD, ω
ThF ). (17)

Intuitively, and in spirit similar to max-W̃2, we want the

surrogate function s to transform the data via h into a space

where hD and hF are easy to differentiate. Moreover, we

want ω to be the direction which best separates the trans-

formed real and generated data. A variety of surrogate func-

tions such as the log-loss as specified in Eq. (8), the hinge-

loss, or a moment separator with

s(ωThD, ω
ThF ) =

∑

x∈D

ωThx −
∑

x̂∈F

ωThx̂ (18)

come to mind immediately.

For instance, in case of a log-loss, ωTh learns to classify

real and fake samples, essentially performing linear logis-

tic regression using ω on a learned feature representation h.

If trained to optimality, the two distributions are well sep-

arated in the discriminator’s feature space h. An example

is given in Fig. 2. The discriminator takes two distribu-

tions, shown in Fig. 2a and is trained to classify them. In

doing so the discriminator transforms them to the feature

space shown in Fig. 2b. In this simple example, we can

plot the Wasserstein distance along the different projection

directions. This is visualized in Fig. 2c. The discrimina-

tor’s final layer can be considered as a projection direction.

This direction is very close to the maximizer of the pro-

jected Wasserstein distance in the feature space.

Additionally, in this case, ω∗ can be approximated with

ω̂ – because the discriminator, trained for classification, es-

sentially separates the distributions along ω̂. If we compute

the Wasserstein-2 distance for projections onto different an-

gles (as in Fig. 2c), we see that the maximum distance is

achieved close to the projection direction from the discrim-

inator, i.e., ω̂. We next assess: ‘how close?’

While log-loss and all other functions seem intuitive, we

provide for the special case of the moment separator given

in Eq. (18) and an identity transform h the maximal sub-

optimality in terms of the max-sliced Wasserstein distance:

Claim 4 For the surrogate function s given in Eq. (18), h
the identity, and ω̂ computed as specified in Eq. (17), we

obtain

α(D,F) ≤W 2
2 (D

ω̂,F ω̂) ≤ V ∗ = max-W̃2(D,F)
2,

for a lower bound α(D,F) = ‖m‖22, where m =
∑

iDi −
∑

i Fi is the difference of dataset means.

Proof. See the supplementary material. �

To summarize, training the discriminator for classifica-

tion provides a rich feature space which can be utilized for

faster training. We note that the discriminator might be

trained to obtain such features in a more explicit manner,

but we leave this to future research.

3.5. maxsliced GAN Algorithm

We summarize the resulting training process in Alg. 1.

It proceeds as follows: In every iteration, we draw a set of

samples D and F from the true and fake distributions. We

optimize the parameters θd and ω of the feature transform

h for k iterations (k is a hyper-parameter) to maximize a

surrogate loss function s(ωThD, ω
ThF ). Then we compute

the Wasserstein-2 distance between the output distributions

of the discriminator, i.e., W2(ω̂
ThD, ω̂

ThF ). The generator

is trained to minimize this distance. In our experiments, we

choose h to be the binary classification loss.

4. Experiments

In this section, we present results to demonstrate the ef-

fectiveness of the max-sliced Wasserstein distance and the

computational benefits it offers over the sliced Wasserstein

distance. We show quantitative results on unpaired word

translation [6], and qualitative and quantitative results on

image generation tasks using the CelebA-HQ [16] and the

LSUN Bedrooms [36] datasets.
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(a) Max-sliced Wasserstein GAN

(b) Sliced Wasserstein GAN with 100 projections

(c) Sliced Wasserstein GAN with 1000 projections

(d) Sliced Wasserstein GAN with 10,000 projections

Figure 3: Generated samples (256× 256) from CelebA-HQ.

4.1. Word Translation without Parallel Data

We evaluate the effectiveness of the max-sliced GAN

on unsupervised word translation tasks, i.e., without

paired/parallel data [6]. This allows us to quantitatively

compare different methods.

The setting of this experiment is as follows. We are given

embeddings of words from two languages, say X,Y ∈ R
d.

We want to learn an orthogonal transformation W ∗ that

maps the source embeddings X to Y , i.e.:

W ∗ = argmin
W∈Rd×d,orthogonal

||WX − Y ||F . (19)

The current state-of-the-art [6] employs a GAN-like [11]

adversary to learn the transformation. Therefore, the trans-

formation is learned by minimizing the Jenson-Shannon di-

vergence between WX and Y . We instead minimize the

max-sliced Wasserstein distance to learn W .

We follow the training method and evaluation in [6] and

report the word translation precision by computing the re-

trieval precision@k for k = 1 on the MUSE bilingual dic-

tionaries [6]. During testing, 1,500 queries are tested and

200k words of the target language are taken into account.

We compare our method with [6] and present results for 5

pairs of languages in Tab. 1. In Tab. 1 ‘NN’ represents use

of nearest neighbors to build the dictionary after training

the transformation W , and ‘CSLS’ stands for use of cross-

domain similarity local scaling [6]. Our method with CSLS

outperforms the baseline in all tested language pairs. This

demonstrates the competitiveness of our method with cur-

rent established GAN frameworks.

4.2. Image Generation

In this section, we present results on the task of image

generation. Using the max-sliced Wasserstein distance, we

train a GAN on the CelebA [16] and LSUN Bedrooms [36]

datasets for images of resolution 256x256. We compare

with the sliced Wasserstein GAN [8].
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(a) Max-sliced Wasserstein GAN

(b) Sliced Wasserstein GAN with 100 projections

(c) Sliced Wasserstein GAN with 1000 projections

(d) Sliced Wasserstein GAN with 10,000 projections

Figure 4: Generated samples (256× 256) from LSUN Bedrooms.

Samples generated by each trained model are presented

in Fig. 3 and Fig. 4. The results of the max-sliced Wasser-

stein GAN are shown Fig. 3a and Fig. 4a. We train the sliced

Wasserstein GAN with 100, 1000, and 10000 random pro-

jections. Results of each of these are respectively shown in

Fig. 3b, Fig. 3c, and Fig. 3d for CelebA-HQ, and in Fig. 4b,

Fig. 4c, and Fig. 4d for LSUN. The max-sliced Wasserstein

GAN using just one projection direction is able to produce

results which are either comparable or better than the sliced

Wasserstein GAN even when using 10000 projections. This

significantly reduces the computational complexity and also

the memory footprint of the model.

We used a simple extension of the popular DCGAN ar-

chitecture for the generator and discriminator. Two extra

strided (transpose) convolutional layers are added to the

generator and the discriminator to scale to 256x256. We

do not use any special normalization/ initialization to train

the models. Specific details are given in the supplementary.

5. Conclusion

In this paper, we analyzed the Wasserstein and sliced

Wasserstein distance and developed a simple yet effective

training strategy for generative adversarial nets based on the

max-sliced Wasserstein distance. We showed that this dis-

tance enjoys a better sample complexity than the Wasser-

stein distance, and a better projection complexity than the

sliced Wasserstein distance. We developed a method to

approximate it using a surrogate loss, and also analyzed

the approximation error for one such surrogate. Empiri-

cally, we showed that the discussed approach is able to learn

high dimensional distributions. The method requires orders

of magnitude fewer projection directions than the sliced

Wasserstein GAN even though both work in a similar dis-

tance space.
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