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Abstract

Single image super-resolution, as a high dimensional

structured prediction problem, aims to characterize fine-

grain information given a low-resolution sample. Recent

advances in convolutional neural networks are introduced

into super-resolution and push forward progress in this

field. Current studies have achieved impressive perfor-

mance by manually designing deep residual neural net-

works but overly relies on practical experience. In this

paper, we propose to adopt an ordinary differential equa-

tion (ODE)-inspired design scheme for single image super-

resolution, which have brought us a new understanding

of ResNet in classification problems. Not only is it in-

terpretable for super-resolution but it provides a reliable

guideline on network designs. By casting the numerical

schemes in ODE as blueprints, we derive two types of net-

work structures: LF-block and RK-block, which correspond

to the Leapfrog method and Runge-Kutta method in numeri-

cal ordinary differential equations. We evaluate our models

on benchmark datasets, and the results show that our meth-

ods surpass the state-of-the-arts while keeping comparable

parameters and operations.

1. Introduction

Super-resolution (SR) enjoys the recent advances in deep

learning and has attracted much attention in recent years

due to the rapid growth of image and video data. Generally

speaking, super-resolution can be applied to many applica-

tions including medical image processing [19], satellite and

aerial imaging [46], facial image improvement [28], etc. Al-

though obtaining high-resolution images from one or sever-

al low-resolution samples can be an ill-posed problem, con-

volutional neural networks have powered this field, making

∗These authors contributed equally to this work.

the resulting images natural and detailed. In this paper, we

focus on single image super-resolution (SISR).

In light of the empirical success of convolutional neural

networks (CNN) in high-level computer vision tasks such

as image classification, Dong et al. [11] proposed a CNN-

based SR algorithm. Since then, convolutional neural net-

works have became the mainstream in the field of super-

resolution [29, 20, 22, 12, 31]. Though the performance is

improving with tremendous effort, there remain some lim-

itations: 1) Previous researches tend to care less about the

computation overhead and introduce deeper convolutional

neural networks to enhance performance. The huge amount

of calculations makes it intractable to apply the algorithm to

real-world applications. 2) Another side effect is that with

the depth increases, more training tricks are required. Oth-

erwise, the training procedure becomes numerically unsta-

ble [35, 31]. 3) Super-resolution is different from high-level

visual tasks such as image classification, which extracts se-

mantic features via a convolutional neural network. In con-

trast, super-resolution predicts pixel-level fine-grained in-

formation. Directly employing state-of-the-art CNNs does

not necessarily lead to an optimal solution.

To alleviate these problems, we propose to apply ODE-

inspired schemes to Super-Resolution network designs

(OISR). First, we revisit the similarity between forward

Euler method and residual structure by adopting the view

of dynamical system, identifying that we can take advan-

tage of ODEs for SISR network designs. Second, we de-

velop two kinds of building blocks, corresponding to the

Leapfrog method and Runge-Kutta method in numerical

ODEs. To the best of our knowledge, this is the first at-

tempt to introduce ODE-inspired schemes into single image

super-resolution network design directly, providing a help-

ful viewpoint of single image super-resolution and a rela-

tively reliable guidance on network designs. In this work,

both lightweight and deep networks are generated using

proposed building blocks. Experimental results on bench-
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mark datasets demonstrate that our methods outperform the

state-of-the-arts, which indicates a better trade-off between

performance and computing cost. Lastly, we explore differ-

ent module G while maintaining a relatively stable amount

of computation. It is shown that our deep networks con-

verge rapidly without extra training tricks.

2. Related work

2.1. Single image superresolution

Single image super-resolution is a classical computer

vision task. Learning mapping functions from the low-

resolution image to high-resolution one is popular in previ-

ous literatures. These algorithms apply traditional machine

learning techniques to image super-resolution, including P-

CA [3], kernel method [4], learning embedding [8], sparse-

coding [43], etc. Another kind of methods make use of the

image self-similarity without external databases. [14] ex-

ploits the patch redundancy to obtain a super-resolution im-

age. Freedman et al.[13] go further and develop a localized

searching algorithm. Huang et al. [18] extend this method

by using detected perspective geometry to guide the patch

search process.

Recent advances in SISR take advantage of the powerful

representation capability of convolutional neural networks.

Dong et al. [11] introduce SRCNN for SISR, they interpret

the hidden layers in CNN as extraction, non-linear mapping,

and reconstruction, corresponding to those steps in sparse

coding [43]. DRCN [23] takes it a step further by firstly in-

terpolating the LR images to the desired size, which suffers

from “details lost” and the huge computational complexity.

Kim et al. [20, 22] follow the same design pattern of using

bicubic interpolation to upsample the image to the desired

size, but they adopt a deep residual convolutional neural net-

work to obtain a better representation. Since then, several

deeper CNN-based super-resolution models have been pro-

posed to achieve superior performance, including DRNN

[36], LapSRN [24], SRResNet [27], etc.

However, deeper architectures bring about a larger

amount of computation with the impressive progress on

benchmark datasets. To address this problem, Dong et al.

[12] remove the bicubic interpolation in SRCNN and intro-

duced a deconvolution layer at the end of FSRCNN. They

also adopt smaller filter sizes and a deeper network struc-

ture. In order to further reduce parameters, DRRN [37]

introduces the combination of the recursive and residual

blocks while compromising the runtime speed. Recently,

CARN [1] presents a cascading mechanism upon a residual

network, which utilizes the multi-level representation and

multiple shortcut connections. To exploit the inter-relation

of multi-scale factors, [31] proposes an MSRN model to

encourage the feature reuse of different upsampling fac-

tors. MSRN [29] is a similar multi-scale method based on

ResNet [16], they further propose a hierarchical features fu-

sion architecture to utilize features at different scales.

Although the empirical success of CNN-based super-

resolution methods is encouraging, most state-of-the-art de-

sign their networks empirically. It is clear that this hand-

crafted process requires a lot of tricks and attempts.

2.2. Bridging network design with ODEs

ResNet [16] and its variants [17, 41, 35] have become

popular in a wide range of applications, including low-level

visual tasks such as super-resolution. Inspired by its clever

insight, many studies on network topology have emerged

and promoted the process. Zhang et al. [45] propose Poly-

Inception module and enhance the generalization ability.

Larsson et al. [26] make use of the self-similarity and de-

velop FractalNet. These networks share a similar idea of

feature fusion by establishing multiple connections between

different layers, which is proved to be effective.

Many good efforts try to bridge the gap between good

performance and a poor understanding of where the effec-

tiveness of residual connections stemming from. These s-

tudies mainly start from searching for similar mathemati-

cal structures and expect to take advantage of these well-

developed theories. Liao and Poggio [30] show that deep

ResNet is equivalent to a shallow RNN. The author of [40]

first observes the relationship between ResNet and ODE.

They grant deep neural networks as a discrete dynamical

system, identifying the similarity between ResNet and the

discretization of ODEs. Chang et al. [5] do more than ex-

planation. They make use of numerical ODEs to construct

reversible neural networks with the stability analysis. Lu

et al. [32] focus on the discretization schemes of ODEs.

They analyze the similarity between several network struc-

tures and numerical ODEs and propose an LM-architecture,

which originates from the linear multistep method. Al-

though these studies may not fully identify the true roots

of ResNet’s success, they shed some light on providing a

guidline for network designs.

3. ODE-inspired network design for SISR

Recent advances in single image super-resolution are at-

tributed to the progress of deep-learning, which enables

SISR to take a powerful end-to-end framework. Broadly

speaking, CNN-based methods map a low-resolution input

to a high-resolution image. From a dynamical system per-

spective, it defines a map that takes input status forward x
units of time in the phase space. In CNN semantics, time

horizon x corresponds to layers that can be adaptively cho-

sen, while the final status is restricted by labels. However,

the problem lies in that, how to design a network that is able

to achieve the goal. [40] describes it as a controllability

problem and explore the simplified one-dimensional case,

giving that there exits such a map generated by an ODE if
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the problem is smooth enough. Since SISR is such a low-

level visual problem with the constraint of high similarity

between inputs and outputs, it tends to approach the condi-

tions intuitively. Therefore, we are encouraged to take the

perspective of dynamical system and apply the rich knowl-

edge in ODE to SISR.

3.1. Mapping numerical ODEs to building blocks

In this section, we first revisit the similarity between

forward Euler method and ResNet for clearness and self-

containment. We consider the dynamical systems which can

be described as an ODE, defined as

dy

dx
= f(x, y). (1)

This system gives a map

Φ(y0, x) = y(x; y0) (2)

with initial status y0 ∈ R
d. Suppose p(y0) is the distribution

of input feature y0 on a domain Ω, if we regard CNN-base

SISR as such a dynamical system, then we are supposed to

minimize

L =

∫
Ω

‖Φ(y0, x)− y‖ dp(y0) (3)

where Φ is a map should be learned in SISR, and it is also

associated to the solution of Equation (1). When the system

is nonlinear, in many cases, there is no simple formula de-

scribing the map, we have to turn to numerical methods. As

presented in [6], forward Euler method

yn+1 = yn + hf(xn, yn) (4)

provides an approximation, which can be seen as a numeri-

cal ODE using the approximation to the integral of y′ over

an interval of width h: yn+1 − yn ≈ hy′. Residual block

takes a similar form as

yn+1 = yn +G(yn). (5)

This formula suggests the relationship [40, 32, 7, 9] and we

are able to establish the bridge by defining

G(yn) = hf(xn, yn), (6)

thus mapping forward Euler to a residual block.

In this paper, we consider the supervised SISR problem

where training data is provided to learn such a map Φ from

low-resolution images to high-resolution targets. It may

take many steps to reach the final status, each step corre-

sponds to a CNN block. Either increasing the number of

steps or refining motion of each step helps to achieve the

goal, corresponding to increasing block numbers and de-

signing finer blocks.

It should be noted that formula (4) is a first-order method

in numerical ODEs. Higher-order methods are supposed to

bring about some merits on reaching a more accurate solu-

tion. We are enlightened to deploy other numerical methods

for a finer block.

LF-Block: LeapFrog method is a second-order linear 2-

step method, as a refinement of forward Euler scheme. By

doubling the time interval h, we rewrite the approximation

of y′ in the form of y′ ≈ (yn+1−yn−1)/2h, then derive the

following equation

yn+1 = yn−1 + 2hf(xn, yn), (7)

which can be directly interpreted into CNN diagram using

the definition in formula (6). In order to retain flexibility

and obtain a block architecture, every three formulas above

are grouped into a block as

yn−1 = yn−3 + 2hf(xn−2, yn−2) (8)

yn = yn−2 + 2hf(xn−1, yn−1) (9)

yn+1 = yn−1 + 2hf(xn, yn). (10)

Hence, we obtain an interesting structure as shown in Fig-

ure 1 (b). Unlike ResNet where G is defined to be a certain

combinations of ReLU and convolutions, we do not restric-

t G to be a fixed module except for its nonlinearity. The

details are discussed in section 3.2.

RK2-Block: To further explore this design scheme, we

now consider the Runge-Kutta family, which is widely used

in numerical analysis. Making use of a trapezoidal formula

yn+1 = yn +
h

2
(f(xn, yn) + f(xn+1, ỹn+1)) (11)

and replace ỹn+1 with its first-order approximation (4), we

will obtain the following equations

yn+1 = yn +
1

2
(G1 +G2) (12)

G1 = hf(xn, yn) (13)

G2 = hf(xn + h, yn +G1). (14)

In mathematics, these formulas are refered as Heun’s

method, which is also a two-stage second-order Runge-

Kutta method. In order to map it to a CNN block, we use the

aforementioned G. Figure 1(c) further illustrates the inter-

pretation of these formulas. Compared with ResNet, there

are multiple branches in RK2-block, which is commonly

used in recent popular networks.

RK3-Block: The knowledge of numerical ODEs sug-

gest that higher-order methods (e.g., with order p) obtain

a smaller local truncation error (e.g., O(hp+1)). This fact

inspires us to explore higher stages Runge-Kutta methods.
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Figure 1. (a) Residual block is widely used in previous works, e.g., EDSR [31]; (b) LF-block is derived from the Leapfrog method, we

combine three Leapfrog steps into a CNN block to compensate the missing term yn in formula (7); (c) RK2-block is derived from the

second-order Runge-Kutta method, also known as Heun’s method; (d) RK3-block is derived from the third-order Runge-Kutta method. In

all ODE-inspired blocks, we do not constrain the specific form of G (detailed in section 3.2).

Formally, explicit iterative Runge-Kutta methods can be ex-

tended to arbitrary n stages by using the following formulas

yn+1 = yn +
n∑

i=1

γiGi (15)

G1 = hf(xn, yn) (16)

Gi = hf(xn + αih, yn +

i−1∑
=1

βijkj) (17)

In particular, 3-stage Lunge-Kutta with third order can be

described as

yn+1 = yn +
1

6
(G1 + 4G2 +G3) (18)

G1 = hf(xn, yn) (19)

G2 = hf(xn +
h

2
, yn +

1

2
G1) (20)

G3 = hf(xn + h, yn −G1 + 2G2). (21)

(Please refer to the Appendix for the derivation of α, β, γ
if you are not familiar with numerical ODEs). It is s-

traightforward to map these equations to a CNN block:

we just replace G1, G2, G3 with module G as defined

above. RK3-block has more branches because 3-stage

Runge-Kutta method takes a computation pattern with high-

er complexity. Generally, higher-order methods tend to gen-

erate more complicated blocks.

It should be noted that in (13), (14) and (19)∼(21), G is

defined as a function with two variables. Compared with

y corresponding to the featuremaps, the semantics of x in

CNN is implicit. It can be granted as a snapshot of time,

indicating the position of G in a deep neural network. The

initial status y0 ∈ R
d is the input featuremaps of the first

OISR-blocks. y(X; y0) ∈ R
d refers to the output of the

last OISR-blocks with fix time horizon X (i.e., given finite

depth). d = C × H × W where C, H , and W is channel

number, the height of featuremaps and width of featuremap-

s, respectively. Note that we keep the dimension of input

and output featuremaps of G unchanged. This allows us to

finish the bridge between ODE and CNNs.

Conv OISR-blocks Pixel-ShuffleConv Conv

Identity Connection

Figure 2. The overall architecture of the proposed ODE-inspired

super-resolution network (OISR). For×2/×3 super-resolution, we

use PixelShuffle ×2/×3. In the ×4 model, the upsampler is

changed to the cascading of two ”Conv+Shuffle×2” modules. We

follow the same setting in EDSR [31] since the standard residual-

block is widely used. It is clear that OISR can be easily combined

with attention mechanisms and dense connections to further im-

prove the performance.
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3.2. Overall architecture for OISR

The overall architecture is a Convolution-PixelShuffle

framework, depicted in Figure 2. We emphasize that the de-

sign scheme is fully inspired by the numerical methods of

ODEs, all we need to do is mapping the numerical scheme

into a CNN block. Following the setting in [1, 31, 29, 37],

we do not use batch normalization layers. Strictly speaking,

equation (4) takes the form: yn+1 = yn + hnf(xn, yn). By

adaptively choosing hn (in this case, learned parameter α in

ParametricReLU [15]), one can improve the efficiency and

stability of the algorithm at the same time [25]. Besides, the

small initialization of α corresponds to the fact that the pre-

cision of numerical ODEs is related to the step size hn. If it

weren’t for finite precision arithmetic, the truncation error

goes to zero as hn goes to zero [34].

PReLU

ConvPReLU

Conv

PReLU

Conv

PReLU

Conv

PReLU

Conv PReLU

Conv

PReLU

Conv

PReLU

Conv

(b) (c) -v2 (d) -v3

ReLU

Conv

ReLU

Conv

(a) Original

Conv

Figure 3. Different structures of module G. (a) is the original G

used in EDSR [31]. (b) and (c) consist of a ParametricReLU and a

convolutional module. (d) defines an augmented G with the same

computing cost as (a).

G(·): There is a large searching space to search G. Here,

we only choose three different forms to illustrate the gener-

al effectiveness of ODE-inspired schemes. Each of these

designs keeps at least one activation function and one con-

volutional layer, thus promising the nonlinearity. In fac-

t, different numerical methods (in this case, ODE-inspired

blocks) describe different approximation strategies overall,

while different G determines local behaviors in each step.

Either higher-order method or refined G tends to improve

performance.

We build small-scale networks using LF-block and RK2-

block for each G. Since different forms of G vary in compu-

tation overhead, these networks are developed using differ-

ent numbers of building blocks but maintaining comparable

computation and parameters. This ensures us to have a fair

comparison with other lightweight models. Then we de-

velop middle-scale models using LF-block and RK2-block

with a similar size and computing cost as the state-of-the-

art MSRN [29]. This also enables us to verify that the per-

formance will not degrade as the networks become larger.

Finally, we design a deep network using RK3-blocks. S-

ince 3-stage Runge-Kutta is a third-order method, which is

100 200 300 400 500 600 700 800

Epoch
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4.00

4.25
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L
1
lo
ss

OISR-RK3

OISR-LF-s

Figure 4. The error curves of training ×2 OISR-LF-s (1.37M pa-

rameters) and ×2 OISR-RK3 (42M parameters). Our deep model

is easy to train and enjoys similar convergence speed as shallow

networks.

Table 1. Ablation studies on G(·). PSNR (db) in terms of 2× SR

on DIV2K validation set was reported. ”-s” denotes the single

scale baseline of EDSR and the small-scale version of OISR.

Method G(·) PSNR Params

EDSR-s Conv+ReLU+Conv 34.61 1.37M

OISR-LF-s

Conv + PReLU 34.64 1.37M

PReLU + Conv 34.67 1.37M

(PReLU + Conv) x2 34.66 1.37M

OISR-RK2-s

Conv + PReLU 34.62 1.37M

PReLU + Conv 34.59 1.37M

(PReLU + Conv) x2 34.63 1.37M

supposed to outperform low-order methods in approxima-

tion accuracy. For a fair comparison, we keep the overall

parameters of RK3 model almost the same as EDSR [31],

since residual block has only one G module yet RK3 con-

sists of three G modules.

4. Experiments

4.1. Datasets

Following the setting in [31, 42, 1, 29], we train our mod-

els on the 1th ∼ 800th training images in DIV2K [39], and

evaluate our models on four standard benchmark datasets:

Set5 [2], Set14 [44], B100 [33] and Urban100 [18]. The

ablation studies on G(·) is determnied on the 100 validation

images from DIV2K dataset. We report the peak signal-to-

noise ratio (PSNR) and structural similarity index (SSIM)

on the Y channel (i.e., luminance) of transformed YCbCr

space and ignore the same amount of pixels as scale from

the border [31, 29]. Specifically, for DIV2K validation set,

we measure PSNR on full RGB channels and remove the

(6+scale) pixels from each border to make a fair compar-

sion with EDSR. Upscaling factors: ×2, ×3, ×4 are used

for training and testing.
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Table 2. Quantitative comparisons of our models with the well-designed lightweight methods on benchmark datasets (PSNR(dB) / SSIM).

Red indicates the best performance and blue indicates the second best. ”MAC” denotes the number of multiply-accumulate operations

(a← a+ (b× c)). The smale-scale network designs are suffixed by ”-s”. We assume that the generated SR image is 720P (1280× 720).

Method Scale Params MAC
Set5 Set14 B100 Urban100

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

FSRCNN [12] ×2 0.01M 6.0G 37.00 0.9558 32.63 0.9088 31.53 0.8920 29.88 0.9020

DRRN [37] ×2 0.30M 6796.9G 37.74 0.9591 33.23 0.9136 32.05 0.8973 31.23 0.9188

MemNet [38] ×2 0.68M 623.9G 37.78 0.9597 33.28 0.9143 32.08 0.8978 31.31 0.9195

SelNet [10] ×2 0.97M 225.7G 37.89 0.9598 33.61 0.9160 32.08 0.8984 – –

CARN[1] ×2 1.59M 222.8G 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256

OISR-RK2-s ×2 1.37M 316.2G 37.98 0.9604 33.58 0.9172 32.18 0.8996 32.09 0.9281

OISR-LF-s ×2 1.37M 316.2G 38.02 0.9605 33.62 0.9178 32.20 0.9000 32.21 0.9290

MSRN [29] ×2 5.89M 1356.8G 38.08 0.9605 33.74 0.9170 32.23 0.9013 32.22 0.9326

OISR-RK2 ×2 4.97M 1145.7G 38.12 0.9609 33.80 0.9193 32.26 0.9006 32.48 0.9317

OISR-LF ×2 4.97M 1145.7G 38.12 0.9609 33.78 0.9196 32.26 0.9007 32.52 0.9320

FSRCNN [12] ×3 0.01M 5.0G 33.16 0.9140 29.43 0.8242 28.53 0.7910 26.43 0.8080

DRRN [37] ×3 0.30M 6796.9G 34.03 0.9244 29.96 0.8349 28.95 0.8004 27.53 0.8378

MemNet [38] ×3 0.68M 623.9G 34.09 0.9248 30.00 0.8385 28.96 0.8001 27.56 0.8376

SelNet [10] ×3 1.16M 120.0G 34.27 0.9257 30.30 0.8399 28.97 0.8025 – –

CARN[1] ×3 1.59M 118.8G 34.29 0.9255 30.29 0.8407 29.06 0.8034 28.06 0.8493

OISR-RK2-s ×3 1.55M 160.1G 34.43 0.9273 30.33 0.8420 29.10 0.8053 28.20 0.8534

OISR-LF-s ×3 1.55M 160.1G 34.39 0.9272 30.35 0.8426 29.11 0.8058 28.24 0.8544

MSRN [29] ×3 6.08M 621.2G 34.38 0.9262 30.34 0.8395 29.08 0.8041 28.08 0.8554

OISR-RK2 ×3 5.64M 578.6G 34.55 0.9282 30.46 0.8443 29.18 0.8075 28.50 0.8597

OISR-LF ×3 5.64M 578.6G 34.56 0.9284 30.46 0.8450 29.20 0.8077 28.56 0.8606

FSRCNN [12] ×4 0.01M 4.6G 30.48 0.8628 27.49 0.7503 26.90 0.7101 24.52 0.7221

DRRN [37] ×4 0.30M 6796.9G 31.68 0.8888 28.21 0.7720 27.38 0.7284 25.44 0.7638

MemNet [38] ×4 0.68M 623.9G 31.74 0.8893 28.26 0.7723 27.40 0.7281 25.50 0.7630

SelNet [10] ×4 1.42M 83.1G 32.00 0.8931 28.49 0.7783 27.44 0.7325 – –

CARN[1] ×4 1.59M 90.9G 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837

OISR-RK2-s ×4 1.52M 114.2G 32.21 0.8950 28.63 0.7822 27.58 0.7364 26.14 0.7874

OISR-LF-s ×4 1.52M 114.2G 32.14 0.8947 28.63 0.7819 27.60 0.7369 26.17 0.7888

MSRN [29] ×4 6.33M 365.1G 32.07 0.8903 28.60 0.7751 27.52 0.7273 26.04 0.7896

OISR-RK2 ×4 5.50M 412.2G 32.32 0.8965 28.72 0.7843 27.66 0.7390 26.37 0.7953

OISR-LF ×4 5.50M 412.2G 32.33 0.8968 28.73 0.7845 27.66 0.7389 26.38 0.7953

4.2. Training details

In the training phase, we use the RGB input patches of

size 48× 48 from the low-resolution image with the corre-

sponding high-resolution patches. All the images are pre-

processed by subtracting the mean RGB value of the DI-

V2K dataset and then augmented with random horizontal

flips and 90◦ rotations [31]. We set the minibatch size as 16

and use ADAM optimizer to train our model with the set-

tings of β1 = 0.9, β2 = 0.999, ǫ = 10−8. The learning

rate is initialized as 0.0001 and halved at every 250 epochs.

Training is terminated at 800 epochs. The objective of train-

ing OISR is the popular ℓ1 loss function.

4.3. Results on benchmark datasets

We first do the ablation study on the implementation

of G. As listed in Table 1, ”PReLU+Conv”, namely G-

v2 is suitable for LF-blocks and RK2-blocks should be

equipped with G-v3. As mentioned in previous work-

s [1, 31, 29], deep models are difficult to train. To ful-

ly examine the effectiveness of the ODE-inspired scheme,

we conduct the seemingly irrational behavior that applying

the worst-performing G-v2 in OISR-RK2 to our deep mod-

el OISR-RK3. Then, we compare our results with other

state-of-the-arts on two commonly-used metrics PSNR and

SSIM. As presented in Table 2, our small-scale models out-

perform other methods on different upscaling factors and

datasets, except a slightly behind on Urban100 with upscal-

ing factor ×2. In addition, we compare our middle-scale

models with MSRN. Our networks surpass MSRN with on-

ly two exceptions on B100 and Urban100 SSIM when the

upscaling factor is 2. These results illustrate that our meth-

ods better overcome the dilemma of performance enhance-
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Table 3. Quantitative comparisons of our models with hand-crafted deep residual SISR networks on benchmark datasets (PSNR(dB) /

SSIM). Red indicates the best performance and blue indicates the second best. We assume that the generated SR image is 720P (1280×720).

Method Scale Params MAC
Set5 Set14 B100 Urban100

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

LapSRN [24] ×2 0.81M 29.9G 37.52 0.9581 33.08 0.9109 31.80 0.8949 30.41 0.9112

VDSR [21] ×2 0.67M 612.6G 37.53 0.9587 33.03 0.9127 31.90 0.8960 30.76 0.9140

DRCN [23] ×2 1.77M 17974G 37.63 0.9588 33.04 0.9118 31.85 0.8942 30.75 0.9133

MDSR [31] ×2 6.92M 1592.2G 38.11 0.9602 33.85 0.9198 32.29 0.9007 32.84 0.9347

RDN [42] ×2 22.12M 5096.2G 38.24 0.9614 34.01 0.9212 32.34 0.9017 32.89 0.9353

EDSR [31] ×2 40.73M 9384.7G 38.11 0.9601 33.92 0.9195 32.32 0.9013 32.93 0.9351

OISR-RK3 ×2 41.91M 9656.5G 38.21 0.9612 33.94 0.9206 32.36 0.9019 33.03 0.9365

VDSR [21] ×3 0.67M 612.6G 33.66 0.9213 29.77 0.8314 28.82 0.7976 27.14 0.8279

DRCN [23] ×3 1.77M 17974G 33.82 0.9226 29.76 0.8311 28.80 0.7963 27.15 0.8276

MDSR [31] ×3 7.51M 768.1G 34.66 0.9280 30.44 0.8452 29.25 0.8091 28.79 0.8655

RDN [42] ×3 22.31M 2281.2G 34.71 0.9296 30.57 0.8468 29.26 0.8093 28.80 0.8653

EDSR [31] ×3 43.68M 4469.5G 34.65 0.9282 30.52 0.8462 29.25 0.8093 28.80 0.8653

OISR-RK3 ×3 44.86M 4590.1G 34.72 0.9297 30.57 0.8470 29.29 0.8103 28.95 0.8680

LapSRN [24] ×4 0.81M 149.4G 31.54 0.8855 28.19 0.7722 27.32 0.7280 25.21 0.7553

VDSR [21] ×4 0.67M 612.6G 31.35 0.8838 28.01 0.7674 27.29 0.7251 25.18 0.7524

DRCN [23] ×4 1.77M 17974G 31.53 0.8854 28.02 0.7670 27.23 0.7233 25.14 0.7510

MDSR [31] ×4 7.88M 480.4G 32.50 0.8973 28.72 0.7857 27.72 0.7418 26.67 0.8041

RDN [42] ×4 22.27M 1309.2G 32.47 0.8990 28.81 0.7871 27.72 0.7419 26.61 0.8028

EDSR [31] ×4 43.10M 2894.5G 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033

OISR-RK3 ×4 44.27M 2962.5G 32.53 0.8992 28.86 0.7878 27.75 0.7428 26.79 0.8068

ment and computation overhead.

For current state-of-the-art deep residual methods in

Table 3, OISR-RK3 achieves the best performances in

most cases. Though we apply the worst-performing G in

OISR-RK2 to OISR-RK3, it still achieves noticeable re-

sults. Moreover, Figure 4 further presents a comparison of

the convergence rate between OISR-LF-s and OISR-RK3,

which indicates that deeper OISR-RK3 is not difficult to

train compared with much smaller OISR-LF-s. These re-

sults empirically verify the effectiveness of ODE-inspired

design scheme, and the behaviors of OISR tend to vary from

different numerical ODEs with different order of truncation

error.

4.4. Discussion on ODEinspired design schemes

In this work, we have developed an ODE-Inspired

scheme for SISR. Novel architectures are designed by in-

troducing numerical ODEs into CNNs. Table 1,3 have illus-

trated that, in the case of comparable computation and pa-

rameters, OISR-LF and OISR-RK outperform EDSR [31].

These results suggest the superiority of our methods. Here

we expand the discussion in ODE viewpoint.

As mentioned in section 3.1, residual block, LF-block,

and RK2-block can be regarded as mappings of numeri-

cal ODEs. EDSR develops deep architecture using resid-

ual block, related to the first-order forward Euler method.

We propose to build our networks using RK-block and LF-

block, corresponding to the higher order methods in numer-

ical ODEs. Experimental results suggest that higher order

methods tend to enhance the performances. A similar fact

holds for deep networks as presented in Table 3, third-order

method RK3 performs better than first-order EDSR. If we

take the dynamical system viewpoint, higher-order method-

s tend to make a better approximation of the map locally,

which enables them to approach the final target with small-

er global (truncation) error, sustained in all the steps.

Table 1 presents the performances of proposed models

with different G. Our small-scale model outperforms EDSR

for each G with the same parameters and computing cost.

These results illustrate that ODE-inspired scheme is gener-

ally effective for SISR. Note that for OISR-RK2 and OISR-

LF, the best-performing G is different. OISR-LF tends to

take a simple G-v2 while OISR-RK2 prefers an augmented

G-v3. By adopting the view of the dynamical system, since

we keep a comparable computation, networks with G-v2 al-

lows more steps to give rise to the target (smaller hn), while

networks with G-v3 provides a better local approximation.

In order to control the amount of computation, augmented

G and more building blocks become the two sides of a coin.

Leaves out the computation overhead, one could enhance

the performance by designing finer G or using more build-

ing blocks, as two strategies in deepening our networks.

1738



EDSR
(24.49 db / 0.9099)
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Bicubic
(22.01 db / 0.8284)

CARN
(24.07 db / 0.8990)
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HR
(PSNR / SSIM)

HR
(PSNR / SSIM)

Bicubic
(18.21 db / 0.5209)

CARN
(18.84 db / 0.6274)

MSRN
(18.53 db / 0.5912)

OISR-RK3
(19.94 db / 0.6812)

OISR-LF-s
(18.75 db / 0.6287)

OISR-LF
(18.62 db / 0.6356)

img073 from Urban100 EDSR
(19.13 db / 0.6565)

Figure 5. Qualitative comparsions of our methods with other state-of-the-arts on ×2 super resolution (top) and ×4 super resolution (bot-

tom). OISRs can reconstruct more detailed images with less blurring.

In general, these results not only illustrate the effective-

ness of ODE-inspired design scheme but suggest the rea-

sonability of ODE perspective.

5. Conclusions

In this paper, we propose to apply ODE-inspired scheme

to design CNN for SISR. By introducing the concept of

dynamical system one can establish the bridge between C-

NN and numerical ODEs. This connection enables us to

design LF-block, RK2-block, and RK3-block inspired by

Leapfrog method and Runge-Kutta method in numerical

analysis. Experimental results show that our methods ex-

ceed other state-of-the-art methods while keeping compara-

ble computation, which relieves the dilemma of enhancing

performance and reducing computation overhead. To ful-

ly verify the effectiveness of our method, we design sever-

al building blocks with different G. Experimental results

demonstrate that ODE-inspired scheme works well in most

cases. This finding provides us with a relatively reliable

guideline to design networks for SISR.
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