
Partial Order Pruning: for Best Speed/Accuracy Trade-off in

Neural Architecture Search

Xin Li1 Yiming Zhou1,3 Zheng Pan1 Jiashi Feng2

1UISEE Technology Inc.
2 Department of ECE, National University of Singapore

3 National Key Lab. of Communications, UESTC

{xin.li, yiming.zhou, zheng.pan}@uisee.com elefjia@nus.edu.sg

Abstract

Achieving good speed and accuracy trade-off on a target

platform is very important in deploying deep neural net-

works in real world scenarios. However, most existing au-

tomatic architecture search approaches only concentrate on

high performance. In this work, we propose an algorithm

that can offer better speed/accuracy trade-off of searched

networks, which is termed “Partial Order Pruning”. It

prunes the architecture search space with a partial order as-

sumption to automatically search for the architectures with

the best speed and accuracy trade-off. Our algorithm ex-

plicitly takes profile information about the inference speed

on the target platform into consideration. With the proposed

algorithm, we present several Dongfeng (DF) networks that

provide high accuracy and fast inference speed on various

application GPU platforms. By further searching decoder

architectures, our DF-Seg real-time segmentation networks

yield state-of-the-art speed/accuracy trade-off on both the

target embedded device and the high-end GPU.

1. Introduction

Deploying deep convolutional neural networks (CNNs)

on real-world embedded devices is attracting increasing

research interest. Different from high-end GPUs, these

devices usually offer rather limited computation capacity,

leading to low efficiency when deploying popular high ac-

curacy CNN models [12, 4] on them. Despite the consid-

erable efforts on accelerating inference of CNNs such as

pruning [11], quantization [29] and factorization [17], fast

inference speed1 is usually achieved at the cost of degraded

performance [22, 15]. In this paper, we address such a prac-

tical problem: Given a target platform, what is the best

speed/accuracy trade-off boundary curve by varying CNN

architecture? Or more specifically, we aim to answer two

1Inference speed is measured by inference latency, which is defined as

inference time with batch size 1 in a CNN.

Figure 1. Speed (frames per second) and segmentation accuracy

(mIoUclass) comparison on the Cityscapes [6] validataion set. DF-

Seg networks yield state-of-the-art speed/accuracy trade-off. The

compared models include PSPNet [34], Deeplabv2 [4], ENet [22],

SegNet [1], ICNet [33], BiSeNet [31] and our DF-Seg networks.

questions: 1) Given the maximum acceptable latency, what

is the best accuracy one can get? 2) To meet certain accu-

racy requirements, what is the lowest inference latency one

can expect?

Some existing works manually design high accuracy net-

work architectures [33, 31, 13, 25]. They usually adopt an

indirect metric, i.e. FLOP, to estimate the network com-

plexity, but the FLOP count does not truly reveal the actual

inference speed. For example, for a 3 × 3 convolution on

Nvidia GPUs which is highly optimized in terms of both

hardware and software design [16], one can assume it is 9
times slower than a 1× 1 convolution on GPUs since it has

9 times more FLOPs, which is not true actually. Besides,

another important factor that affects the inference speed,

the memory access, is not covered by measuring FLOPs.

Considering the diversities of hardware and software, it is

almost impossible to find one single architecture that is op-

timal for all the platforms.

Some other works attempt to automatically search for the

optimal network architecture [36, 23, 19], but they also rely

19145



on FLOPs to estimate the network complexity and do not

take into account the discrepancy of this metric with the ac-

tual inference speed and also the target platforms. Despite

a few works [8, 2, 28] consider the actual inference speed

on target platforms, they search the architecture in each in-

dividual building block and keep fixed the overall architec-

ture, i.e. depth and width.

In this paper, we develop an efficient architecture search

algorithm that automatically selects the networks that of-

fer better speed/accuracy trade-off on a target platform.

The proposed algorithm is termed “Partial Order Prun-

ing”, with which some candidates that fail to give better

speed/accuracy trade-off are filtered out at early stages of

the architecture searching process based on a partial order

assumption (see Section 3.3 for details). For example, a

wider network cannot be more efficient than a narrower one

with the same depth, thus accordingly some wider ones are

discarded. By pruning the search space in this way, our al-

gorithm is forced to concentrate on those architectures that

are more likely to lift the boundary of speed/accuracy trade-

off.

The proposed “Partial Order Pruning” algorithm differs

from previous neural architecture search algorithms in three

aspects. Firstly, it explicitly takes platform characteristics

into consideration. Secondly, it balances the width and

depth of the overall architecture, instead of searching for

complicated building blocks. Thirdly, it employs a partial

order assumption and a cutting plane algorithm to acceler-

ate searching, instead of using reinforcement learning, evo-

lutionary algorithms or gradient-based algorithms.

With the proposed algorithm, we are able to obtain a set

of networks that provide better accuracy and faster infer-

ence speed on a target platform, which we call Dongfeng

(DF) networks. We apply our algorithm to searching de-

coder architectures in semantic segmentation and gain a set

of DF-Seg networks. Figure 1 shows a comparison of our

DF-Seg networks and other methods. It can be seen that

our segmentation networks achieve new state-of-the-art in

real-time urban scene parsing tasks.

To sum up, we make following contributions to network

architecture search:

• We are among the first to investigate the problem of

balancing speed and accuracy of network architectures

for network architecture search. By pruning the search

space with a partial order assumption, our “Partial Or-

der Pruning” algorithm can efficiently lift the boundary

of speed/accuracy trade-off.

• We present several DF networks that provide both high

accuracy and fast inference speed on target embedded

device TX2. The accuracy of our DF1/DF2A networks

exceeds ResNet18/50 on ImageNet validation set, but

the inference latency is 43% and 39% lower, respec-

tively.

• We apply the proposed algorithm to searching decoder

architectures for a segmentation network. Together

with DF backbone networks, we achieve new state-

of-the-art in real-time segmentation on both high-end

GPUs and target embedded device TX2. On GTX

1080Ti, our DF1-Seg network achieves 106.4 FPS at

resolution 1024×2048 with mIoUclass 74.1%. On TX2,

our DF1-Seg network achieves 21.8 FPS at resolution

1280× 720, i.e. 720p.

2. Related Work

Efficient Network Design Group convolution plays a key

role in current efficient CNN architecture design [20, 13,

25]. MobileNet V2 [25] adopts an inverted residual module

that uses group convolutions to reduce the FLOPs during

inference. ShuffleNet [32] uses pointwise group convolu-

tion and channel shuffle operation to reduce FLOPs while

maintaining accuracy. [20] points out that there is a dis-

crepancy between indirect metric (FLOPs) and direct metric

(inference speed), and proposes four guidelines for efficient

network design. These works design a single architecture

without considering the target platform while our algorithm

explicitly takes platform characteristics into consideration.

Neural Architecture Search Automatic network archi-

tecture search is often tackled with either reinforcement

learning [36, 35] or evolutionary algorithms [23, 24]. They

require huge computational resources, and the obtained

networks are relatively slower than manually designed

ones [20, 8], even with comparable FLOPs. More recently,

several gradient-based algorithms [19, 28, 2, 9] are pro-

posed to reduce the architecture search cost. Besides, a few

works [8, 28, 2] also take platform-related objectives into

consideration in architecture search. Although their goal is

somewhat similar to ours, our work differs in that we pur-

sue the balance of width and depth of a network, instead of

searching the architecture in each individual block.

Real-time Semantic Segmentation Most semantic seg-

mentation methods [34, 3, 5] aim at high performance but

with relatively slow inference speed. For fast semantic seg-

mentation, early works [22, 1] employ relatively shallower

backbone networks and lower image resolution, offering

fast inference speed but poorer accuracy. More recently,

ICNet [33] uses the image cascade to speed up inference,

in which pre-trained deep CNNs are only applied to the im-

ages with lowest resolution. BiSeNet [31] employs a con-

text path to obtain a sufficient receptive field, and an addi-

tional spatial path with a small stride to preserve spatial in-

formation. None of them attempts to accelerate inference by

improving the backbone network, or considers the charac-

teristics of target platforms. Comparatively, our algorithm

explicitly takes platform characteristics into consideration,

and aims at better speed/accuracy trade-off in both back-

bone network and decoder network.

9146



(a) (b)
Figure 2. (a) General network architecture. (b) The residual block used throughout this paper.

Model Acceleration Some researchers try to accelerate

inference of a pre-trained network via quantization [29],

pruning [11], factorization [17], etc. For example, Ne-

tAdapt [30] automatically adapts a pre-trained CNN to a

mobile platform given a resource budget. Compared with

them, we try to balance the width and depth of the overall

architecture.

3. Partial Order Pruning

3.1. Search Space

We provide a general network architecture in our search

space, as shown in Figure 2(a). It consists of 6 stages

to perform classification from input images. Stages 1∼5

down-sample the spatial resolution of the input tensor with

a stride of 2, and stage 6 produces the final prediction

with a global average pooling and a fully connected layer.

Stages 1&2 extract common low-level features on large ten-

sor size, which brings heavy computation burden. In pur-

suit of an efficient network, we only use one convolution

layer in stage 1&2, i.e. Conv1 and Conv2. We empiri-

cally find this is enough for achieving good accuracy. For

stages 3, 4, 5, each consists of L, M, N residual blocks,

where L, M ,N are integers, i.e. L,M,N ∈ N. Different

settings of L/M/N lead to different network depths. The

width (number of channels) of the i-th residual block in

stage s is denoted as Cs
i . Therefore, an architecture can

be encoded as shown in Figure 2(a). In practice, we restrict

Cs
i ∈ {64, 128, 256, 512, 1024}. We empirically restrict the

width of a block to be no narrower than its preceding blocks.

Throughout this paper, we use the basic residual block pro-

posed in [12] if not mentioned otherwise. As shown in

Figure 2(b), the building block consists of two convolution

layers and a shortcut connection. An additional projection

layer is added if the size of input does not match the output

tensor. All convolutional layers are followed with a batch

normalization [14] layer and ReLU nonlinearity.

3.2. Latency Estimation

The set of all possible architectures, with different depths

(number of blocks) and widths (number of channels per

block), is denoted as S and usually referred to as the search

space in neural architecture search [19, 36]. The latency of

architectures in S can vary from very small to positive in-

finity. But we only care about architectures in a subspace

Ŝ ⊂ S, which provide latency in the range [Tmin, Tmax].

(a) (b)
Figure 3. Preliminary experiments. (a) Our latency estimation is

highly close to the actual profiled latency. (b) We experimentally

verified that partial order assumption is generally true for efficient

architectures of our concern.

We employ the profiler provided by TensorRT li-

brary to obtain layer-wise latency of a network. We

empirically find that a block with a specific config-

uration (i.e. input/output tensor size) always con-

sumes the same latency. Thus we can construct

a look-up table Latency (ci, hi, wi, co, ho, wo) provid-

ing latency of each block configuration, where ci/co
is the number of channels in input/output tensor, and

hi/wi/ho/wo is the corresponding spatial size. For exam-

ple, Latency (32, 112, 112, 64, 56, 56) = 0.143ms on TX2.

By simply summing up the latency of all blocks, we can

efficiently estimate the latency Lat(x) of an architecture

x ∈ S. In Figure 3(a), we compare the estimated latency

with the profiled latency. It shows our latency estimation

is highly close to the actual profiled latency. All architec-

tures with latency ranging [Tmin, Tmax] form the subspace

Ŝ. This subspace construction significantly narrows down

our search space, and hence accelerates the architecture se-

lection.

3.3. Partial Order Assumption

A partial order is a binary relation defined over a set. It

means that for certain pairs of elements (x, y) in the set,

one of the elements x precedes the other y in the ordering,

denoted with x ≺ y. Here “partial” indicates that not every

pair of elements needs to be comparable.

We find that there is a partial order relation among archi-

tectures in our search space. In Figure 4, we follow the ar-

chitecture encoding in Figure 2(a), and illustrate the partial

order relation among architectures. As explained in Sec-

tion 3.2, Ŝ is a set that contains all architectures in which

we are interested. Let x, y ∈ Ŝ denote two elements in the

set Ŝ. If x is shallower than y but they are with the same

9147



Figure 4. Partial order relations among architectures. An architec-

ture (e.g. [(128), (256), (256)]) may be narrower than another one

with same depth (e.g. [(128), (256), (512)]), or shallower than an-

other with same width (e.g. [(128), (256, 256), (256)]).

width, or narrower than y with same depth, we can borrow

the concept from the order theory, and say that x precedes y
in the ordering, denoted as x ≺ y. In the rest of this paper,

we also call x a precedent of y if x ≺ y. Let Acc(x) and

Lat(x) denote the accuracy and latency of the architecture

x. Then the partial order assumption of architectures can be

summarized as

Lat(x) ≤ Lat(y), Acc(x) ≤ Acc(y), (1)

where ∀x, y ∈ Ŝ, x ≺ y. Formula (1) assumes that the la-

tency and accuracy of an architecture are both higher than

those of its precedents. This assumption may not hold for

very deep networks that contain hundreds of layers [12], but

it is generally true for the efficient architectures of our con-

cern, i.e. Ŝ, which is experimentally verified in this work.

We find all comparable architecture pairs (x, y), x ≺ y in

our trained architectures (Section 4.2), and compute the la-

tency difference ∆Lat = Lat(y) − Lat(x) and accuracy

difference ∆Acc = Acc(y) − Acc(x) in each pair. As

shown in Figure 3(b), most points locate in the first quar-

tile. This means the accuracy of the precedent x is lower,

for almost all comparable pairs. We also notice that a few

points locate in the second quartile, but the lower limit of

∆Acc. is −0.1%, which is negligible considering the ran-

domness during training. The above experimental results

validate the reasonableness of our partial order assumption.

This assumption can be utilized to prune the architecture

search space, and speed up the search process significantly.

3.4. Partial Order Pruning

Formally, the goal of our architecture searching algo-

rithm is to obtain an architecture with highest accuracy

within every small latency range [T, T + δt]:

max
x∈S

Acc(x), s.t.Lat(x) ∈ [T, T + δt] (2)

where δt is a short time period such as 0.1ms. Instead of

searching at every small latency range, we optimize within

the entire latency range [Tmin, Tmax]. With our “Partial Or-

der Pruning” algorithm, architecture searching at higher la-

tency helps reduce the searching space at lower latency, and

hence speeds up the overall searching process.

Algorithm 1 Partial Order Pruning

Initialize trained architecture set D = ∅

Initialize pruned architecture set P = ∅.

repeat

Random select an architecture x ∈ Ŝ \ P .

Train x and obtain its Acc(x).

D ← D ∪ {x}.
for all w ∈ D do

yw = arg min
y∈D

Lat(y), s.t.Acc(y) ≥ Acc(w)

△Pw = {m ∈ Ŝ|m ≺ w,Lat(m) ≥ Lat(yw)}
P ← P ∪ (∪

w
△Pw)

end for

B(D) = {x ∈ D|∀m ∈ D,
Lat(m) ≥ Lat(x) or Acc(m) ≤ Acc(x)}

until No change to B(D) for several iterations.

Figure 5. We construct pruned search space P with partial order

assumption, and prune the search space to be Ŝ \P . Architectures

in B(D) form the boundary for speed/accuracy trade-off we have

achieved. (Best viewed in color).

We use a cutting plane algorithm to optimize the combi-

national optimization problem in Formula (2). Algorithm 1

summarizes the pipeline of our algorithm. D is a set con-

taining all trained architectures, and is initialized as empty.

P denotes the search space pruned from Ŝ. Each time we

train a new architecture x ∈ Ŝ \ P and obtain its accu-

racy Acc(x), we are able to update the pruned search space

P . Figure 5 shows how to construct P with the aforemen-

tioned partial order assumption. For each trained architec-

ture w ∈ D, we find the fastest architecture yw ∈ D that

provides better accuracy:

yw ← argmin
y∈D

Lat(y), s.t.Acc(y) ≥ Acc(w). (3)

If no yw is found that satisfies the condition, we continue to

process the next w. Let △ Pw denote the precedents of w
with latency higher than yw, i.e.

△Pw = {m ∈ Ŝ|m ≺ w,Lat(m) ≥ Lat(yw)}. (4)

Based on the partial order assumption, a precedent m has

lower latency and accuracy, i.e. Acc(m) ≤ Acc(w). There-

fore, even though we do not actually train m, we can assume

∀m ∈ △Pw, Acc(m) ≤ Acc(yw). (5)

9148



In Figure 5, for all m ∈ △P (wi), i ∈ {1, 2, 3},
the (Lat(m), Acc(m)) shall locate in the corresponding

shadow area. These architectures in △Pw are very un-

likely to provide better speed/accuracy trade-off, and thus

get pruned from the search space to avoid unnecessary train-

ing cost.

Given trained architectures D, B(D) denotes the archi-

tectures that provide best speed/accuracy trade-off in trained

architectures:

B(D) = {x ∈ D|∀w ∈ D,Lat(w) ≥ Lat(x);

or Acc(w) ≤ Acc(x)}. (6)

Architectures in B(D) form the boundary for

speed/accuracy trade-off we can achieve on the target

platform. Figure 5 shows B(D) and the corresponding

speed/accuracy trade-off boundary. Intuitively, no archi-

tecture in D \ B(D) could obtain higher accuracy with

lower latency. By pruning P from the search space Ŝ, our

algorithm speeds up the architecture search process, and

lifts the boundary of speed/accuracy trade-off. We stop

the search process if no change to the B(D) happens for

several iterations.

3.5. Decoder Design

With the proposed Algorithm 1, we are able to find back-

bone architectures that provide best speed/accuracy trade-

off on the target platform. Given a backbone network,

we build semantic segmentation networks as shown in Fig-

ure 6(a). Each stage in the backbone network down-samples

the resolution by 2. The resolution of tensors in stage 5 is

thus 1/32 of the input image. We append a pyramid pool-

ing module [34] after the output tensor of stage 5 to im-

prove segmentation performance. These tensors are then

processed by the decoder to produce final prediction.

We append a 1×1 convolution layer after stage 3/4/5 as a

“Channel Controller” (CC). The channel controllers reduce

the number of channels in the corresponding stage without

changing its spatial resolution. The decoder fuses the ten-

sors in different stages through the fusion nodes. The archi-

tecture of the fusion node is shown in Figure 6(b). A fusion

node first projects a low resolution tensor from Cℓ channels

to Ch channels with a 1× 1 convolution layer, and then up-

samples it by 2. We concatenate the up-sampled tensor with

a higher resolution tensor, and then process it with a 3 × 3
convolution layer, to fuse the expressive power of different

backbone stages. We fuse the features from stage 3/4/5 and

produce a 1/8 resolution score map. The score map is then

up-sampled by 8 to produce final per-pixel semantic seg-

mentation prediction.

Let Cs, s = 3, 4, 5 denote the width of each CC. We

heuristically set C ∈ {K, 32, 64, 128, 256, 512}, where K
is the number of classes. Given a backbone network, differ-

ent settings of channel controllers, i.e. [C3, C4, C5], lead

(a) (b)

Figure 6. (a) Overall architecture of segmentation network. (b)

Detailed architecture of the fusion node.

to different decoder architectures. All the possible decoder

CC settings form the search space of the decoder architec-

ture. Similar to backbone network architectures, we also

apply a partial order assumption over the CC settings. That

is, a narrower decoder is always more efficient and less ac-

curate than a wider one. Therefore we can also employ the

“Partial Order Pruning” algorithm to lift the speed/accuracy

trade-off boundary in the decoder architecture search.

4. Experiment

4.1. Experimental Settings

We adopt two typical kinds of hardware that provide dif-

ferent computational power.

• Embedded device: We use Nvidia Jetson TX2 with

an integrated 256-core Pascal GPU as the target em-

bedded device. It provides considerable computational

power with limited electrical power consumption.

• High-end GPU: We use Nvidia Geforce GTX 1080Ti

that provides enormous computing power. We also use

GTX Titan X (Maxwell) for fair comparison with pre-

vious methods.

We adopt two tools to measure inference speed. First, we

employ the widely used high-performance CNN inference

framework TensorRT-3.0.4. Second, for a fair comparison

with ICNet [33], we use the time measure tool Caffe Time,

and set the repeating number to 100 and take the average

inference time for comparison. All experiments are per-

formed under CUDA 9.0 and CUDNN V7.

We conduct experiments on two benchmark datasets.

The ImageNet [7] is a large-scale image classification

dataset, which contains over 1.2 million color images in the

training set and 50k color images in the validation set. The

Cityscapes [6] is a large benchmark dataset for urban scene

parsing. It contains 5, 000 images with high quality pixel-

level annotations, and is split to 2, 975 for training, 500 for

validation, and 1, 525 for testing.

9149



Figure 7. Comparison with other popular networks on TX2.

4.2. Backbone Architecture Search

In contrast to current architecture search algorithms that

conduct architecture searching on small datasets, we di-

rectly conduct architecture searching on ImageNet. We use

the SGD optimizer with the poly learning rate policy to train

models. The power is set to 2, and the momentum is set to

0.9. We use a weight decay of 0.0001. The batch size is

set to 2048. We employ random scaling and stretching for

data augmentation to relieve overfitting. Following [10], we

first train each network for 5 epochs with learning rate 0.1
as a warm up scheme, and then train for 80 epochs with an

initial learning rate 0.8.

We conduct backbone architecture searching experi-

ments on TX2 platform. During searching, we evaluate

the single crop Top-1 accuracy on ImageNet validation set

and the inference latency at resolution 224 × 224. We are

interested in the efficient architectures with latency falling

in the range [1ms, 5ms], and construct the search space Ŝ

accordingly (Section 3.2). We conduct architecture search

with Algorithm 1, and stop the search process when no

remarkable boundary update is found during the search.

The resulting speed/accuracy trade-off boundary is consid-

ered to be nearly optimal in our search space Ŝ on the tar-

get platform TX2. We train ∼ 200 networks in total, as

shown in Figure 7. With the training configuration kept

unchanged during architecture search, we train two rep-

resentative network architectures with additional supervi-

sion [26] and more epochs, to further improve their accu-

racy. The resulting models are referred to as DF1, DF2.

We further replace some of the building blocks in DF2 from

basic block in Figure 2(b) to bottleneck block [12]. The re-

sulting network is denoted as DF2A. Figure 7 and Table 1

give a comparison of our DF networks and popular models2

on the target platform TX2. Table 2 shows detailed archi-

tectures of these three DF networks. Training with more so-

phisticated methods, e.g. dropout or label smoothing, may

produce higher accuracy, which however is not the focus of

2We report latency with our re-implementation.

Model Top1 Acc. Latency (ms) FLOPs

ShuffleNet V2 [20] 69.4% 4.1 146M

ResNet-18 [12] 69.0% 4.4 1.8G

ShuffleNet V1 [32] 67.4% 4.7 140M

GoogLeNet [26] 68.7% 5.1 1.43G

MobileNet V1 [13] 70.8% 6.1 569M

MobileNet V2 [25] 71.9% 8.7 300M

ResNet-50 [12] 75.3% 10.6 3.8G

FBNet-A [28] 73.0% 5.9 249M

ProxylessNAS-GPU [2] 75.1% 9.3 -

NASNet-A [36] 74.0% 20.7 564M

PNASNET-5 [18] 74.2% 27.6 588M

DF1 69.8% 2.5 746M

DF2 73.9% 5.0 1.77G

DF2A 76.0% 6.5 1.97G

Table 1. Comparison with other popular networks on TX2.

this paper.

Compared with ResNet-18 and GoogLeNet, our DF1 ob-

tains a higher accuracy 69.8% but the inference latency is

43%, 51% lower than two baselines respectively. our DF2

has a similar latency but the accuracy is 4.9% and 5.2%
higher than the baselines respectively. Furthermore, DF2A

achieves a surpassing ResNet-50-level accuracy with a 39%
lower latency. Note we use the same building blocks with

ResNet-18/50. So we attribute the better speed/accuracy

trade-off to the better balancing between depth and width

in our architectures. Specifically, our DF1/DF2A are slim-

mer and deeper than ResNet-18/50 for obtaining the same

accuracy.

MobileNet [13, 25] and ShuffleNet [32, 20] are state-

of-the-art efficient networks that are designed for mobile

applications. We also compare our DF networks to them

on TX2 in Table 1 and Figure 7. It can be seen our DF1

achieves higher accuracy but lower inference latency. The

MobileNet/ShuffleNet have less FLOPs but higher latency.

This is because they have higher memory access cost. The

total memory cost (i.e. intermediate features) for Shuf-

fleNet V2 and DF1 is 4.86M and 2.91M respectively. This

also indicates the FLOPs may be inconsistent with latency

on the target platform [27, 20]. Therefore, taking character-

istics of target platform into consideration is necessary for

achieving the best speed/accuracy trade-off.

We also compare our DF networks with other models

searched by NAS methods [36, 18, 28, 2]. As shown in

Table 1, NASNet [36] and PNASNet [18] have not taken la-

tency into consideration, leading to higher latency. Compar-

ing to FBNet [28] and ProxylessNAS [2], which also take

target platform-related objectives into neural architecture

search, our DF networks show better speed/accuracy trade-

off. This can be explained as (a) DF networks are specifi-

cally searched for TX2 platform; (b) FBNet and Proxyless-

NAS use an inverted bottleneck module, which brings more

memory access cost; (c) FBNet and ProxylessNAS aim at

9150



Stage Layer Output size DF1 DF2 DF2A

1 Conv1 112× 112 3× 3, 32 3× 3, 32 3× 3, 32

2 Conv2 56× 56 3× 3, 64 3× 3, 64 3× 3, 64

3 Res3 x 28× 28
[
3× 3, 64

3× 3, 64

]
× 3

[
3× 3, 64

3× 3, 64

]
× 2

[
3× 3, 128

3× 3, 128

]
× 1

[
3× 3, 64

3× 3, 64

]
× 2

[
3× 3, 128

3× 3, 128

]
× 1

4 Res4 x 14× 14
[
3× 3, 128

3× 3, 128

]
× 3

[
3× 3, 128

3× 3, 128

]
× 10

[
3× 3, 256

3× 3, 256

]
× 1




1× 1, 128

3× 3, 128

1× 1, 512



× 10




1× 1, 256

3× 3, 256

1× 1, 1024



× 1

5 Res5 x 7× 7

[
3× 3, 256

3× 3, 256

]
× 3

[
3× 3, 512

3× 3, 512

]
× 1

[
3× 3, 256

3× 3, 256

]
× 4

[
3× 3, 512

3× 3, 512

]
× 2




1× 1, 256

3× 3, 256

1× 1, 1024



× 4




1× 1, 512

3× 3, 512

1× 1, 1024



× 2

6 FC 1× 1 Global Average Pooling, 1000-d FC, Softmax.

Depth 23 43 60

Table 2. Detailed architecture of DF networks.

(a) (b)

Figure 8. (a) Number of pruned architectures. (b) We empirically

find that accuracy of an architecture is correlated to the number of

precedents.

searching for better building block architectures while we

balance the width and depth of the overall architecture.

We then discuss the search efficiency of our proposed al-

gorithm. Figure 8(a) shows the number of pruned architec-

tures in the search process. We prune 438 architectures after

training 200 architectures.Therefore, our POP algorithm ac-

celerates the architecture search process for 2.2 times. Each

model takes 5 ∼ 7 hours on a server with 8-GPUs. Train-

ing 200 architectures takes ∼ 400 GPU days in total. The

computational cost of our architecture for searching on Im-

ageNet is lower than the building block architecture search-

ing [36, 23] on CIFAR-10 by an order.

Based on our architecture search results, we make fol-

lowing observations. 1) Very quick down-sampling is pre-

ferred in early stages to obtain higher efficiency. We use

1 convolutional layer in each of stages 1&2, and are still

able to achieve good accuracy. 2) Down-sampling with the

convolutional layer is preferred to the pooling layer for ob-

taining higher accuracy. We only use 1 global average pool-

ing at the end of the network. 3) We empirically find that

the accuracy of a network is correlated to the number of its

precedents, as shown in Figure 8(b). We assume that an ar-

chitecture with more precedents may have a better balance

between depth and width.

4.3. Decoder Architecture Search

With our DF1/DF2 backbone networks, we conduct de-

coder architecture search experiments on two platforms,

1080Ti and TX2. The mIoUclass at resolution 1024×2048 is

taken as a metric of segmentation accuracy. The profiler of

TensorRT is used to evaluate latency of segmentation net-

works. We evaluate latency at resolution 1024 × 2048 on

1080Ti, and 640× 360 on TX2.

Figure 9 shows our decoder architecture search results.

We select three segmentation networks DF1-Seg, DF2-

Seg1, DF2-Seg2 from trained networks that provide good

speed/accuracy trade-off on both TX2 and 1080Ti. The CC

setting in the decoder of these three segmentation networks

are [19, 32, 128], [19, 19, 32], [19, 256, 512] respectively (19
is the number of classes). Few previous works have reported

inference speed on TX2, thus we provide a comparison be-

tween our DF-Seg networks and other methods on 1080Ti,

as shown in Table 3. We note [33] explicitly explains how

they measure inference speed. Therefore, we add an addi-

tional column “FPS(Caffe)” in Table 3 for fair comparison.

Inference speed in the “FPS(Caffe)” column is measured by

Caffe Time on Titan X (Maxwell) at resolution 1024×2048.

Compared with BiSeNet1, our DF1-Seg achieves com-

parable inference speed, but the mIoUclass on val set is

5.1% higher. Compared with BiSeNet2, DF1-Seg achieves

comparable mIoUclass on validation set, but the infer-

ence speed (FPS) is 1.68 times faster. We attribute the

better speed/accuracy trade-off of DF1-Seg to its back-

bone network DF1. BiSeNet2 employs ResNet-18 as the

backbone network. Our DF1 has a comparable accu-

9151



(a) DF1 and TX2 (b) DF1 and GTX 1080Ti (c) DF2 and TX2 (d) DF2 and GTX 1080Ti

Figure 9. Speed/accuracy trade-off of decoder architecture search results with different backbone networks on different platforms. DF1-

Seg/DF2-Seg are two segmentation networks that provide good speed/accuracy trade-off on both TX2 and GTX 1080Ti.

Method
mIoUclass

FPS FPS (Caffe)
val test

SegNet [1] - 56.1 - -

ENet [22] - 58.3 - -

ICNet [33] 67.7 69.5 - 30.3

ESPNet [21] - 60.3 110 -

BiSeNet1† [31] 69.0 68.4 105.8 -

BiSeNet2† [31] 74.8 74.7 65.5 -

DF1-Seg 74.1 73.0 106.4 30.7

DF2-Seg1 75.9 74.8 67.2 20.5

DF2-Seg2 76.9 75.3 56.3 17.7

DF1-Seg-d8 72.4 71.4 136.9 40.2

Table 3. Comparison with other real-time segmentation models on

1080Ti. † means FPS is evaluated at 1536× 768.

racy with ResNet-18, but is 1.76 times faster (2.5ms vs

4.4ms), as shown in Table 1. Compared with ICNet [33],

DF1-Seg achieves comparable inference speed, and the

mIoUclass is 3.5% higher on test set. Our DF2-Seg1 also

achieves faster inference speed and better segmentation ac-

curacy than BiSeNet2. With a wider decoder CC setting

([19, 256, 512]), our DF2-Seg2 achieves the best mIoUclass

76.9% on validation set and 75.3% on test set at 56.3 FPS.

We obtain an even faster segmentation network by drop-

ping the final up-sampling layer, and produce a prediction

at 1/8 of input resolution. The images to segment are then

up-sampled by 8 times with nearest neighbor interpolation,

which can be implemented very efficiently. We then obtain

a DF1-Seg-d8 network that achieves 136.9 FPS on 1080Ti.

The mIoUclass on test set (71.4%) is still 1.9% and 3% better

than ICNet (69.5%) and BiSeNet1 (68.4%) respectively.

For fair comparison with previous methods, we compare

inference speed on Titan X (Maxwell) at different resolu-

tion, as shown in Table 4. Our DF1-Seg and DF1-Seg-d8

achieve 59.9 FPS and 75.9 FPS at resolution 1920 × 1080,

i.e. 1080p. Based on the above experimental results,

the DF-Seg networks achieve new state-of-the-art in real-

time segmentation on high-end GPU, demonstrating better

speed/accuracy trade-off is achieved.

Previous works [1, 22] mostly adopt TX1 to analyze their

inference speed. In Table 5, we provide a detailed inference

speed analysis on TX2. Our DF1-Seg/DF1-Seg-d8 achieve

Method 640× 360

ms / FPS

1280× 720

ms / FPS

1920× 1080

ms / FPS

SegNet [1] 69/14.6 289/3.5 637/1.6

ENet [22] 7/135.4 21/46.8 46/21.6

BiSeNet-1 [31] 5/203.5 12/82.3 24/41.4

BiSeNet-2 [31] 8/129.4 21/47.9 43/23

DF1-Seg 3.65/274.0 8.24/121.4 16.70/59.9

DF2-Seg1 5.88/170.1 13.43/74.5 27.36/36.5

DF2-Seg2 6.57/152.2 15.10/66.2 31.08/32.2

DF1-Seg-d8 3.25/307.7 6.62/151.1 13.18/75.9

Table 4. Speed analysis on Titan X (Maxwell).

Method
480× 320

ms / FPS

640× 360

ms / FPS

1280× 720

ms / FPS

ESPNet [21] -/- -/∼20 -/-

DF1-Seg 9.45/105.8 14.01/71.4 45.93/21.8

DF2-Seg1 15.32/65.3 22.25/44.9 73.32/13.6

DF2-Seg2 16.98/58.9 25.07/39.9 82.07/12.2

DF1-Seg-d8 7.48/133.7 10.79/92.7 33.41/29.9

Table 5. Speed analysis on TX2.

21.8 FPS and 29.9 FPS at resolution 1280× 720, i.e. 720p.

5. Conclusion

We propose a network architecture search algorithm

“Partial Order Pruning” , which is able to lift the bound-

ary of speed/accuracy trade-off of searched networks on the

target platform. By utilizing a partial order assumption, it

efficiently prunes the feasible architecture space to speed

up the search process. We employ the proposed algorithm

to search for both the backbone network and decoder net-

work architectures. The searched DF backbone newtorks

provide state-of-the-art speed/accuracy trade-off on target

platforms. The searched DF-Seg networks achieve state-of-

the-art speed/accuracy trade-off on both embedded devices

and high-end GPUs.

Acknowledgement

Jiashi Feng was partially supported by NUS IDS R-263-

000-C67-646, ECRA R-263-000-C87-133 and MOE Tier-II

R-263-000-D17-112.

9152



References

[1] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A

deep convolutional encoder-decoder architecture for image

segmentation. TPAMI, (12):2481–2495, 2017. 1, 2, 8

[2] H. Cai, L. Zhu, and S. Han. ProxylessNAS: Direct neural

architecture search on target task and hardware. ICLR, 2019.

2, 6

[3] L.-C. Chen, M. D. Collins, Y. Zhu, G. Papandreou, B. Zoph,

F. Schroff, H. Adam, and J. Shlens. Searching for efficient

multi-scale architectures for dense image prediction. NIPS,

2018. 2

[4] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Deeplab: Semantic image segmentation with

deep convolutional nets, atrous convolution, and fully con-

nected crfs. TPAMI, 40(4):834–848, 2018. 1

[5] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam.

Encoder-decoder with atrous separable convolution for se-

mantic image segmentation. ECCV, 2018. 2

[6] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,

R. Benenson, U. Franke, S. Roth, and B. Schiele. The

cityscapes dataset for semantic urban scene understanding.

CVPR, 2016. 1, 5

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database. In

CVPR, 2009. 5

[8] J.-D. Dong, A.-C. Cheng, D.-C. Juan, W. Wei, and M. Sun.

Dpp-net: Device-aware progressive search for pareto-

optimal neural architectures. ECCV, 2018. 2

[9] X. Dong and Y. Yang. Searching for a robust neural archi-

tecture in four gpu hours. In CVPR, 2019. 2

[10] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis,

L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He.

Accurate, large minibatch sgd: training imagenet in 1 hour.

arXiv preprint arXiv:1706.02677, 2017. 6

[11] Y. Guo, A. Yao, and Y. Chen. Dynamic network surgery for

efficient dnns. NIPS, 2016. 1, 3

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. CVPR, 2016. 1, 3, 4, 6

[13] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-

cient convolutional neural networks for mobile vision appli-

cations. arXiv preprint arXiv:1704.04861, 2017. 1, 2, 6

[14] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

ICML, 2015. 3

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, 2012. 1

[16] A. Lavin and G. Scott. Fast algorithms for convolutional

neural networks. CVPR, 2016. 1

[17] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky.

Sparse convolutional neural networks. CVPR, 2015. 1, 3

[18] C. Liu, B. Zoph, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,

A. Yuille, J. Huang, and K. Murphy. Progressive neural ar-

chitecture search. ECCV, 2018. 6

[19] K. S. Liu, Hanxiao and Y. Yang. Darts: Differentiable archi-

tecture search. arXiv preprint arXiv:1806.09055, 2018. 1, 2,

3

[20] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun. Shufflenet

v2: Practical guidelines for efficient cnn architecture design.

ECCV, 2018. 2, 6

[21] S. Mehta, M. Rastegari, A. Caspi, L. Shapiro, and H. Ha-

jishirzi. Espnet: Efficient spatial pyramid of dilated convo-

lutions for semantic segmentation. ECCV, 2018. 8

[22] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello. Enet:

A deep neural network architecture for real-time semantic

segmentation. arXiv preprint arXiv:1606.02147, 2016. 1, 2,

8

[23] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regular-

ized evolution for image classifier architecture search. AAAI,

2019. 1, 2, 7

[24] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu,

J. Tan, Q. Le, and A. Kurakin. Large-scale evolution of im-

age classifiers. ICML, 2017. 2

[25] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.

Chen. Inverted residuals and linear bottlenecks: Mobile net-

works for classification, detection and segmentation. CVPR,

2018. 1, 2, 6

[26] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. CVPR, 2015. 6

[27] R. J. Wang, X. Li, S. Ao, and C. X. Ling. Pelee: A real-time

object detection system on mobile devices. NIPS, 2018. 6

[28] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian,

P. Vajda, Y. Jia, and K. Keutzer. Fbnet: Hardware-aware

efficient convnet design via differentiable neural architecture

search. CVPR, 2019. 2, 6

[29] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng. Quantized

convolutional neural networks for mobile devices. CVPR,

2016. 1, 3

[30] T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, M. San-

dler, V. Sze, and H. Adam. Netadapt: Platform-aware neural

network adaptation for mobile applications. ECCV, 2018. 3

[31] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang.

Bisenet: Bilateral segmentation network for real-time se-

mantic segmentation. ECCV, 2018. 1, 2, 8

[32] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An

extremely efficient convolutional neural network for mobile

devices. CVPR, 2018. 2, 6

[33] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia. Icnet for real-time

semantic segmentation on high-resolution images. ECCV,

2018. 1, 2, 5, 7, 8

[34] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene

parsing network. CVPR, 2017. 1, 2, 5

[35] B. Zoph and Q. V. Le. Neural architecture search with rein-

forcement learning. ICLR, 2017. 2

[36] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learn-

ing transferable architectures for scalable image recognition.

CVPR, 2018. 1, 2, 3, 6, 7

9153


