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Abstract

Multi-scale context information has proven to be essen-

tial for object segmentation tasks. Recent works construct

the multi-scale context by aggregating convolutional feature

maps extracted by different levels of a deep neural network.

This is typically done by propagating and fusing features in

a one-directional, top-down and bottom-up, manner. In this

work, we introduce ZigZagNet, which aggregates a richer

multi-context feature map by using not only dense top-down

and bottom-up propagation, but also by introducing path-

ways crossing between different levels of the top-down and

the bottom-up hierarchies, in a zig-zag fashion. Further-

more, the context information is exchanged and aggregated

over multiple stages, where the fused feature maps from

one stage are fed into the next one, yielding a more com-

prehensive context for improved segmentation performance.

Our extensive evaluation on the public benchmarks demon-

strates that ZigZagNet surpasses the state-of-the-art accu-

racy for both semantic segmentation and instance segmen-

tation tasks.

1. Introduction

Object segmentation is a long standing challenging prob-

lem in computer vision. It encompasses a variety of tasks

including semantic and instance segmentation. Recent ad-

vanced segmentation methods have significantly improved

the accuracy of object segmentation, leveraging the power

of deep convolutional neural networks (CNNs) to learn

from large-scale datasets.

One of the difficulties in localizing instances of objects

stems from the fact that objects in natural images may ap-

pear at a diversity of scales. Since CNNs [18, 38, 16, 40, 6]

consist of convolutional feature maps at various spatial reso-

lutions, recent object segmentation methods [25, 2, 10] have

used convolutional feature maps from different CNN levels

to represent content at different scales.

Different convolutional feature maps have correlated in-
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formation, forming a multi-scale context for object segmen-

tation. Thus, most recent approaches further utilize top-

down networks [35, 37, 21, 19, 31, 32, 22, 33, 30, 5] (see

Figure 1(a)), dense top-down networks [1, 42] (see Fig-

ure 1(b)) and successive top-down/bottom-up networks [29,

20, 24] (see Figure 1(c)) to communicate between different

levels. The motivation underlying such top-down/bottom-

up networks is to propagate multi-scale context across dif-

ferent scales, thereby augmenting the feature maps at dif-

ferent levels. State-of-the art methods [29, 22, 30, 24, 42],

however, propagate context information only along a single

direction.

In this paper, we advocate the idea of exchanging and

combining top-down and bottom-up context to enrich the

context information encoded by each feature map. In this

scheme, the top-down network propagates high-level large

scale semantic information down to shallow network lay-

ers, while the bottom-up network encodes the smaller scale

visual details into deeper network layers. Unlike one-

directional network architectures [29, 25, 2, 10, 37, 22, 33,

30, 24, 1, 42], our approach iteratively fuses feature maps

between the top-down and bottom-up networks, gradually

refining the aggregated multi-scale context information.

More specifically, we introduce ZigZagNet, a new

scheme for fusing multi-scale context information, illus-

trated in Figure 1(d). The backbone network (left) extracts a

progression of convolutional feature maps for the top-down

network (middle), where each pair of feature maps is con-

nected with a top-down pathway. Here, each feature map

is sensitive to the context information of all higher-level

feature maps. The top-down network produces a new set

of feature maps, which are fed into the bottom-up network

(right). Similarly to the top-down pathways, the bottom-

up pathways enhance each feature map with all lower-level

feature maps. The feature maps produced by the top-down

and bottom-up networks are exchanged in a zig-zag fash-

ion, and fused to aggregate the context information from all

levels. The resulting feature maps are then used by a new

round of top-down and bottom-up context propagation. Fi-

nally, the fused feature maps at the last stage are used for

the segmentation task.
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(a) top-down network (b) dense top-down network

(c) successive top-down and bottom-up networks

(d) ZigZag network

Figure 1. Different approaches for propagating multi-scale context information. The top-down networks (a) and (b) use the deeper layers

to augment the shallower ones. The feature maps produced by the top-down network are further passed to the bottom-up network (c). In

contrast to (a)-(c), ZigZagNet (d) exchanges feature maps between the top-down and bottom-up networks to achieve a richer encoding of

multi-scale context. The orange blocks on the left represent the feature maps of backbone networks. The blue and green blocks represent

the feature maps produced at different stages. For conceptual illustration, we omit some overlapping pathways and only show a subset of

the dense pathways between feature maps in (d). Figure 2 depicts the ZigZagNet architecture in more detail.

In addition to exchanging information between the top-

down and the bottom-up networks, each of the two networks

employs a novel Region Context Encoding (RCE) scheme,

which captures context information of multi-scale subre-

gions of the feature maps. We subdivide each feature map

into regions, which propagate information to each other. By

using different subdivisions of the feature map to compute

contextual features, we achieve a richer encoding of the

context in multi-scale subregions. The encoded context is

propagated via dense pathways, modeling relationships be-

tween subregions of different feature maps.

Our ZigZagNet architecture is applicable to an array of

object segmentation tasks. We show its effectiveness by

evaluating it on the public benchmarks for semantic seg-

mentation (e.g., PASCAL Context dataset [28] and PAS-

CAL VOC 2012 dataset [9]) and also for instance segmen-

tation (e.g., COCO dataset [23]). We surpass state-of-the-

art performance on the PASCAL Context dataset [28] and

PASCAL VOC 2012 validation set [9]. On the PASCAL

VOC 2012 test set, our performance is competitive with

that reported by Chen et al. [5], who use a private JFT

dataset [17, 6, 39] to pre-train the backbone network. On

the challenging COCO dataset [23], our approach is applied

with different backbone networks and detectors, yielding

consistent improvement of the segmentation accuracy. We

compare our single model to the previous methods individu-

ally, and we achieve the state-of-the-art result on the COCO

test-dev set. Our code package and models will be publicly

available.

2. Related Work

The literature on image segmentation is vast [26, 3, 43,

21, 1, 42, 20, 22, 15, 24]. In the following, we will mainly

survey semantic segmentation [9, 28] and instance segmen-

tation [14, 23] techniques, which are closely related to our

work in the sense that they combine convolutional feature

maps from different levels in order to aggregate multi-scale

context information.

Semantic Segmentation Semantic segmentation meth-

ods aim to provide pixel-wise labels for objects. Fully con-

volutional networks (FCNs) [26] have been used for seman-

tic segmentation and achieved tremendous progress. Due

to the down-sampling operations, the convolutional feature

maps have progressively coarser resolutions. Thus, using

high-level feature maps [3, 43, 4] for semantic segmentation

inevitably loses spatial context of objects. To resolve this

problem, dilated convolution (also known as atrous convo-

lution) has been used to preserve the resolutions of feature

maps in more detail. However, atrous convolution produces

many high-resolution feature maps that require an overly

large budget of GPU memory. To save GPU memory and

improve the segmentation accuracy, the backbone FCN is
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followed by the top-down network [35, 21, 31, 32, 5] (a.k.a.,

the encoder-decoder network), which is used to propagate

the high-level semantic information and combine it with the

spatial details of low-level feature maps, yielding a high-

resolution feature map with multi-scale context informa-

tion. Rather than communicating only between adjacent

feature maps, dense pathways [1, 42] are used to propagate

top-down context between all pairs of feature maps. Still,

the high-level feature maps do not have any lower-level con-

text information to enrich their own expressive power.

Unlike the above semantic segmentation methods, we

use dense pathways in both top-down and bottom-up direc-

tions, affecting the feature maps with all levels of context

information. In the most recent work, Lin et al. [20] also ex-

changes top-down and bottom-up context; however, the fea-

ture traffic takes place between adjacent feature maps only.

Thus, it requires multiple stages to propagate the context

beyond adjacent feature maps, which may decay important

information. In contrast, our dense pathways directly com-

municate all feature maps at each stage of context propaga-

tion, enabling a direct, effective augmentation of the feature

maps at all levels.

Our dense pathways employ region context encoding to

capture the context of subregions in different feature maps.

Instead of constructing the context of various subregion as a

global representation [27, 24], we compute context informa-

tion of multi-scale subregions by examining multiple subdi-

visions of each feature map. Note that our method is differ-

ent from the traditional spatial pyramid pooling [3, 43, 4],

which uses adjacent subregions to produce the context fea-

ture. We propagate information between all subregions,

providing more effective context for segmentation tasks.

Instance Segmentation In addition to pixel-wise labels,

instance segmentation further aims to differentiate individ-

ual objects. Similar to the encoder-decoder network used

for semantic segmentation, the top-down network [37, 19,

22, 33, 30] has been applied with the FCN backbone for in-

stance segmentation. Unlike semantic segmentation meth-

ods [26, 21, 31, 5, 1, 42, 20] that produce a high-resolution

feature map for predicting pixel-wise labels, instance seg-

mentation methods [37, 19, 22, 33, 30, 29, 24] use all levels

of feature maps to better capture object instances with dif-

ferent scales.

Recently, successive top-down and bottom-up net-

works [29, 24] have been used to learn more powerful

feature maps at different levels. Specifically, the path-

aggregation network [24] appends a bottom-up network

following the top-down network, building a shortcut for

the information propagation between the top-most and the

bottom-most feature maps. The hourglass network [29] re-

peats top-down and bottom-up feature propagation to distill

multi-scale context information. Nonetheless, in this net-

work, at each iteration, the feature maps only receive infor-

mation of the highest-resolution feature map from the pre-

vious iteration, inevitably ignoring the context information

of lower-resolution feature maps. In our work, we fuse the

feature maps produced by the top-down and the bottom-up

networks at all levels, employing all of them in all itera-

tions. This implies that during all stages of top-down and

bottom-up context exchange, the entire context information

is available for learning effective features.

3. ZigZag Network

Feature maps at all levels can benefit from context in-

formation that has been aggregated from all scales. How-

ever, recent methods only establish one-way connections

between the top-down and bottom-up networks (see Fig-

ure 1(a) and (c)), where feature maps from adjacent levels

propagate context to affect each other. Even though the lat-

est works [1, 42] use dense pathways (see Figure 1(b)) to

strengthen context propagation between multi-scale feature

maps, only the highest-resolution feature map perceives the

entire context.

Here, we propose the ZigZagNet architecture, where

each feature map is directly enhanced by multi-scale con-

text extracted from all the other maps. More specifically,

ZigZagNet consists of two networks, a top-down network,

and a bottom-up network, as illustrated in Figure 2. Each

network has dense connections between its layers, with each

such connection carrying a feature map augmented by its

multi-scale context using region context encoding (RCE),

as described in more detail in Section 4. In addition to these

dense pathways, there are also pathways that exchange in-

formation between the two networks, by connecting be-

tween feature maps of the same level of the top-down and

the bottom-up pyramids (the red arrows in Figure 2). The

propagation of context within each network and between

the networks is iterated over several stages.

More formally, let t denote the stage (0 ≤ t < T ), and

F
i,d
t and F

i,u
t denote the t-th stage feature maps at the i-th

level of the top-down and the bottom-up networks, respec-

tively. At each iteration, we fuse feature maps F
i,d
t and

F
i,u
t to yield F

i,d
t+1, and maps F

j,d
t+1 and F

j,u
t to yield F

j,u
t+1.

As a result, context information is propagated between the

two networks in a zig-zag fashion. Figure 2 illustrates this

process, by showing each feature map in two consecutive

stages: stage t in blue and stage t+ 1 in green.

Specifically, in stage t + 1, the top-down network com-

putes the feature map F
i,d
t+1 ∈ R

H×W×C as:

F
i,d
t+1 = P

i,d
t+1 +

L
∏

j=i+1

R
j,d
t+1, (1)

where t = 0, . . . , T − 1. The total number of stages T is

set to 3 in our experiments. We model the feature map F
i,d
t+1
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(a) top-down network (b) bottom-up network
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...
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j,d
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i,d
t
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i,d
t+1
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j,u
t

F
j,u
t+1

F
i,u
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i,u
t+1

R
j,d
t+1

R
i,u
t

R
i,u
t+1

R
j,d
t

Figure 2. Top-down and bottom-up context propagation in ZigZagNet. The gray arrows of the top-down network (a) and bottom-up network

(b) represent the dense pathways between different levels of feature maps. The red arrows iteratively exchange the context information

between the top-down and bottom-up networks, which generate all levels of feature maps over multiple iterations. Here, we show only two

different levels of feature maps to simplify the illustration. The blue and green blocks represent feature maps computed in two successive

iterations.

by summing the product of the set of context feature maps

from higher levels {Rj,d
t+1|j > i} with a fused feature map

P
i,d
t+1 ∈ R

H×W×C , defined as:

P
i,d
t+1 =

{

Bi t = 0,

σ(W i,d
t+1 ∗ (F

i,d
t + F

i,u
t )) otherwise.

(2)

Above, W
i,d
t+1 is a convolution kernel and σ denotes the

ReLU activation function. Initially (i.e., t = 0), we use Bi,

the feature map computed by the backbone FCN to con-

struct F
i,d
1 . In the following iterations, we fuse F

i,d
t and

F
i,u
t , which are produced by the top-down and bottom-up

networks in the previous iteration, by convolving and acti-

vating their sum. Thus, differently from the one-way con-

text propagation in previous works, our top-down network

receives the previous iteration of top-down as well as the

bottom-up context to refine the new feature map F
i,d
t+1. Fur-

thermore, we use region context encoding (RCE) to gener-

ate the context feature map R
j,d
t+1 based on the subregions of

F
j,d
t+1. As described in Section 4, RCE encodes the relation-

ship of subregions into the context feature maps. By using

various scales of subregions, we provide F
i,d
t+1 with richer

context.

Similarly, we use the bottom-up network to compute the

feature map F
j,u
t+1 ∈ R

H×W×C as:

F
j,u
t+1 = P

j,u
t+1 +

j−1
∏

i=1

R
i,u
t+1, (3)

where

P
j,u
t+1 =

{

F
j,d
t+1 t = 0,

σ(W j,u
t+1 ∗ (F

j,d
t+1 + F

j,u
t )) otherwise,

(4)

Note that here instead of fusing two feature maps from stage

t, as done in Eq. (2), we fuse the maps F
j,d
t+1 and F

j,u
t . This

is done, since at this point in the process F
j,d
t+1 is already

available, and contains more refined information than F
j,d
t .

Finally, the maps {F i,d
T } and {F i,u

T } are fused using Eq. (2)

to yield the maps {P i,d
T+1} for segmentation.

Below, we focus on the dense top-down and bottom-up

pathways equipped with the RCE to produce context feature

maps R
j,d
t and R

j,u
t . For clarity, we omit the notations d, u

and t from this point onward.

4. Region Context Encoding

In this section, we elaborate on the region context en-

coding (RCE) mechanism that connects all subregions of

the input feature map, enabling each subregion to diffuse its

information flexibly. As illustrated in Figure 3, this is done

using multiple parallel branches. We input the feature map

produced by the top-down/bottom-up network to each RCE

branch. In each branch, we partition the feature map into

regular subregions. Next, we perform a weighted sum to

aggregate all subregions into a global representation, which

is then distributed to all subregions. This allows each sub-

region to pass information to all subregions of the new fea-

ture map. Each branch performs a different subdivision of

the feature map, generating subregions at different scales.

Finally, we add the feature maps produced by all branches

to the input feature, which is propagated as the context fea-

ture map Ri to feature maps at other levels. Thus, thanks

to the RCE mechanism, subregions of various scales can

consequently affect any position of other feature maps.

In more detail, given the feature map F i ∈ R
H×W×C
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produced by the top-down/bottom-up network, we convolve

and partition it into K × K subregions. By summing the

neurons within each subregion, we produce a feature map

M i
K×K ∈ R

K×K×C as:

M i
K×K(x, y, c) =

∑

(h,w)∈S(x,y)

F i(h,w, c),

x = 1, ...,K, y = 1, ...,K, (5)

where (x, y) indicates the location of M i
K×K . We use

S(x, y) to denote a subregion that includes a set of neu-

rons in M i
K×K . Thus M i

K×K(x, y) is the feature of the

subregion S(x, y). We sum all subregion features by adapt-

ing to their importance, yielding a global representation

for connecting all subregions. For this purpose, we can

simply apply a learnable K × K convolution with ReLU

activation to M i
K×K without padding. This results in a

C-dimensional feature vector (see Figure 3(c)). Another

learnable K × K kernel is used to deconvolve this C-

dimensional vector without padding, yielding a new fea-

ture map Qi
K×K ∈ R

K×K×C . The Qi
K×K maps from all

branches are then added to the input feature map F i to yield

the feature map Ri ∈ R
H×W×C :

Ri(h,w) = F i(h,w) +
∑

K∈{3,5,7}

Qi
K×K(x, y),

(h,w) ∈ S(x, y). (6)

In Eq. (6), we empirically use the 3 different subdivisions

of F i (i.e., 3 × 3, 5 × 5 or 7 × 7 subregions) to compute the

set of feature maps {Qi
K×K}. By dividing the feature maps

into more subregions, we dramatically increase the number

of parameters to learn, but achieve negligible improvement.

5. Implementation Details

The ZigZagNet network was implemented using the

Detectron platform1. We use ResNet-101 pre-trained on

the ImageNet dataset [8] as the backbone network. The

layers res2, res3, res4 and res5 are used as the initial

{B1, B2, B3, B4} feature maps in Eq. (2). Three stages of

fusing and exchanging context information are performed

(T = 3). The fused feature maps {P 1,d
4 , P

2,d
4 , P

3,d
4 , P

4,d
4 }

are used for the object segmentation tasks. We optimize the

network with the SGD solver. We evaluate our method on

the semantic segmentation and instance segmentation tasks.

Semantic Segmentation Network Following the training

strategy described in [43, 21, 4, 5], we adapt images of the

COCO dataset [23] to fine-tune the network at the begin-

ning. The feature map P
1,u
4 , which has the highest spatial

resolution is used to regress the pixel-wise categories. We

use the softmax loss to penalize the pixel-wise errors.

1https://github.com/facebookresearch/Detectron

G

(a) input 

feature map

(e) context 

feature map

G

G

(c) global 

representation

(b) subdivisions

of feature maps

(d) communication 

between subregions

Figure 3. Region context encoding. We use separate convolutional

layers to process the input feature map (a), and the results are used

to compute features of subregions (b). In each branch, we produce

a global representation (c) to connect all subregions. This global

representation is used to propagate information between all subre-

gions (d). We use different subdivisions of the input feature map

in separate branches. Finally, we add results of all branches to the

input feature map, yielding the context feature map (e).

We employ image flipping, cropping, scaling and rota-

tion to prepare the mini-batches for the network’s training.

Each mini-batch contains 16 images, and each image has

the uniform resolution of 473×473. We first use 60K mini-

batches with a learning rate of 1e−3, and then decay the

learning rate to 1e−4 for additional 60K mini-batches. Dur-

ing testing, we resize each image using four factors (i.e.,

{0.6, 0.8, 1.0, 1.2, 1.4}). The five resulting images are fed

to the trained model to compute predictions separately. The

predictions are averaged to obtain the final result.

Instance Segmentation Network We use all of the fused

feature maps (i.e., {P 1,d
4 , P

2,d
4 , P

3,d
4 , P

4,d
4 }) to compute the

mask for each object [34, 22]. According to the size of the

object’s bounding box [22], we select one of the feature

maps for extracting the ROI feature [12, 15] as the object

representation. We use three loss functions, i.e., softmax

loss for classification, smooth L1 loss for bounding-box re-

gression and pixel-wise softmax loss for mask regression.

We rescale the image’s shorter edge to 800, keeping the

aspect ratio of the image for training and testing the net-

work. Each mini-batch has 8 images. We use the warmup

strategy [13] at the beginning of fine-tuning the network.

During training, we decay the learning rate by using 0.01,

0.001 and 0.0001, along with 200K, 60K and 40K mini-

batches. We use the NMS with a threshold of 0.5 to reduce

overlapping segmentation results.
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context exchange feature fusion dense pathways mIoU

82.5

X X 83.6

X X 84.2

X X 84.9

X X X 86.0

Table 1. Ablation experiments on the PASCAL VOC 2012 valida-

tion set. Segmentation accuracy is measured by mIoU (%).

6. Experiments

We evaluate our method on three public benchmarks,

i.e., PASCAL VOC 2012 [9], PASCAL Context [28] and

COCO [23] datasets. We use the PASCAL VOC 2012 [9]

and PASCAL Context [28] datasets to evaluate the semantic

segmentation accuracy in terms of mean Intersection-over-

Union (mIoU). For the instance segmentation task, we eval-

uate our method on COCO dataset [23]. We show the mask

average precision (mask AP), which is the standard COCO

metric computed over different mask IoU thresholds.

6.1. Results on PASCAL VOC 2012 and Context
Datasets

The PASCAL VOC 2012 dataset contains 10,582 train-

ing images associated with 20 object categories and back-

ground. The PASCAL Context dataset contains 4,998 train-

ing images with 59 categories and background. We mainly

use the PASCAL VOC 2012 validation set (1,449 images)

to evaluate the effectiveness of our approach. We also re-

port segmentation accuracies on the PASCAL VOC 2012

test set (1,456 images) and the PASCAL Context valida-

tion set (5,105 images) for comparisons with state-of-the-art

methods.

Ablation Study of ZigZagNet Our ZigZagNet models

the bidirectional interaction between the top-down and

bottom-up networks, iteratively refining different levels of

feature maps. The network has dense pathways equipped

with the RCE to enrich the context information. We conduct

an ablation study by removing the critical components, and

examine the effect on the segmentation accuracy. We sum-

marize the results in Table 1.

We fuse the feature maps to achieve the multi-scale

context, exchanging the context information between top-

down and bottom-up networks. By removing the additional

bottom-up network and the dense pathways, we disable the

context exchange and feature fusion. Thus the system de-

grades to the encoder-decoder architecture [5] and obtains

the segmentation score of 82.5, significantly lower than the

score of 86.0 achieved by our full model.

method mIoU

global context

Mostajabi et al. [27] 82.7

Liu et al. [24] 83.0

Peng et al. [31] 83.4

spatial pyramid pooling
Zhao et al. [43] 84.1

Chen et al. [4] 84.7

multi-scale region context
SCF 85.2

ours 86.0

Table 2. Comparisons with various approaches that use context in-

formation. “SCF” means summing context feature maps at differ-

ent levels. Performance is evaluated on the PASCAL VOC 2012

validation set. We report the segmentation accuracy in terms of

mIoU (%).

Next, we examine the impact of the feature map fu-

sion on the segmentation accuracy. In ZigZagNet, the top-

down and bottom-up networks produce feature maps that

are fused to aggregate context at all levels. Without fusing

feature maps, the network has only one pass of top-down

and bottom-up context propagation. In this case, the feature

maps of top-down network learn from higher-level context,

but lacking of lower-level context for further refining them-

selves. It subsequently makes a negative impact on feature

maps of the bottom-up network, and obtains the segmen-

tation score of 83.6, once more a significant drop of per-

formance compared to our full approach. By removing the

context exchange only, we degrade ZigZagNet to one pass

of top-down and bottom-up context propagation. In this

case, the feature fusion helps achieve 84.2 IoU, which is

better than the one pass of propagation without feature fu-

sion (see the second case in Table 1 that achieves 83.6 IoU).

But it still lags far behind our full model (86.0 IoU).

Finally, we study the importance of the dense pathways.

The dense pathways employ the RCE to extract multi-scale

region context of different levels of feature maps, which are

merged to effectively augment the top-down and bottom-up

context. With dense pathways removed, we disallow re-

gions beyond adjacent feature maps to form useful context

information. This reduces the score to 84.9.

Approaches for Using Region Context We design the

RCE to model the relationship between multi-scale subre-

gions. There are other approaches for using context infor-

mation [27, 24, 31, 43, 4] to enhance the features of subre-

gions. For fair comparisons, we employ these approaches

in the ZigZagNet, in place of the RCE. The results are com-

pared in Table 2.

First, we report the results of encoding global context

into subregions. Mostajabi et al. [27] and Liu et al. [24] pro-
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VOC12 val set VOC12 test set Context val set

method mIoU method mIoU method mIoU

top-down propagation

Chen et al. [5] 84.6 Chen et al. [4] 86.9 Chen et al. [3] 45.7

Fu et al. [11] 84.8 Zhang et al. [42] 87.9 Lin et al. [21] 47.3

Zhang et al. [42] 85.8 Chen et al. [5] 89.0 Zhang et al. [41] 51.7

successive propagation
Shah et al. [36] 79.0 Shah et al. [36] 84.3 Liu et al. [24] 50.1

Fu et al. [11] 84.8 Fu et al. [11] 86.6 Shah et al. [36] 50.8

bidirectional propagation
Lin et al. [20] 85.1 Lin et al. [20] 88.0 Lin et al. [20] 50.3

ours 86.0 ours 88.7 ours 52.1

Table 3. Comparisons with other state-of-the-art methods. The performances are evaluated on the PASCAL VOC 2012 validation set, test

set and the PASCAL Context validation set. Segmentation accuracy is reported in terms of mIoU (%).

pose to use fully-connected layers to combine all subregions

of the feature map as global context. By using different sets

of parameters, the fully-connected layer learn global con-

text information that is adaptive to each subregion. Rather

than using the fully-connected operation, Peng et al. [31]

employ convolutional layers with large kernels to produce

global context, which is more transformation-aware. Com-

pared to the above methods, which focus on the global scale

of the image, our network leverages the multi-scale subre-

gions to construct richer context, obtaining a higher seg-

mentation score.

Next, we compare our network to approaches that use

spatial pyramid pooling to construct context of subregions.

Zhao et al. [43] apply spatial pyramid pooling to extract fea-

tures within multi-scale subregions. Chen et al. [4] use dif-

ferent atrous convolution kernels to achieve learnable pyra-

mid pooling, while saving computation compared to con-

volving with larger kernels. Note that spatial pyramid pool-

ing [43, 4] computes context of adjacent subregions. Com-

parably, our method enables the information exchange be-

tween all subregions, which generally leads to 1.3 – 1.9 im-

provement of the segmentation score.

Instead of multiplying different levels of context feature

maps in Eqs. (1) and (3), we experiment with the common

way of adding different context feature maps to the feature

map produced by top-down/bottom-up network. With this

change, we observe a performance drop of 0.8 score com-

pared to our full model. A similar observation is made by

Zhang et al. [42]. We believe that the multiplication manner

better models the interaction between context feature maps

at different levels.

Comparisons with State-of-the-Art Methods In addi-

tion to the PASCAL VOC 2012 validation set, we report

the results of our approach on the PASCAL VOC 2012 test

set and the PASCAL Context validation set in Table 3. We

compare our network to state-of-the-art approaches, which

can be divided into three groups. The first group uses the

(dense) top-down network to propagate context informa-

tion. In the second group, successive top-down and bottom-

up networks are used with one-way propagation of con-

text information. Our approach and the context intertwin-

ing proposed by Lin et al. [20] belong to the third group,

where bidirectional propagation of context is performed. It

is noteworthy that ZigZagNet outperforms other methods

on the PASCAL VOC 2012 validation set and the PASCAL

Context validation set. On the PASCAL VOC 2012 test set,

we achieve the score of 88.7 (see per-category accuracies

on the PASCAL VOC leaderboard2). Our approach is com-

petitive to the network proposed in [5], which uses a private

JFT dataset [17, 6, 39] as additional data for training the

backbone network. We show several semantic segmenta-

tion results of our method in Figure 4.

6.2. Results on COCO Dataset

We test our method on the COCO dataset [23] for in-

stance segmentation. The COCO dataset contains about

120K training images with mask annotations for 80 object

categories. We report our results on the COCO validation

and test-dev sets, which have about 5K and 20K images re-

spectively.

We use ZigZagNet to output multi-scale feature maps,

which are then used by object detectors to extract features

for regressing instance masks. Here, we experiment with

three widely-used detectors, i.e., FCIS [19], Deformable

RCNN [7] and Mask RCNN [15]. These detectors mainly

contribute to champions of the COCO instance segmenta-

tion challenge from 2016 to 2018. We also evaluate the

performance by using different backbone networks, i.e.,

ResNet-101 and ResNet-152. All results are reported in

Table 4. Compared to different baseline models, our net-

work improves the performance by 1 – 3 points. It demon-

strates that our ZigZagNet is general to different detectors

for achieving the performance gain on instance segmenta-

2http://host.robots.ox.ac.uk:8080/anonymous/

N1OUN0.html
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image ground-truth ours

Figure 4. Six semantic segmentation results produced by our

method. The first three rows are from the PASCAL VOC 2012

validation set, and the last three rows are from the PASCAL Con-

text validation set.

backbone mask AP w/ ZZNet

FCIS
ResNet-101 29.2 → 32.2

ResNet-152 31.7 → 33.4

Deformable RCNN
ResNet-101 36.1 → 38.2

ResNet-152 37.9 → 39.8

Mask RCNN
ResNet-101 37.5 → 39.5

ResNet-152 39.7 → 40.8

Table 4. Comparisons with popular detectors for instance segmen-

tation. Performance is evaluated on the COCO validation set. Ac-

curacies are reported in terms of mask AP (%).

tion. We show several instance segmentation results of our

method in Figure 5.

In Table 5, we compare our method with state-of-the-art

models on test-dev set. Without the ensemble of different

models and the multi-scale training/testing, all results are

achieved by single models based on the ResNet-101 back-

bone for a fair comparison. Our result is better than others.

7. Conclusions

The latest progress in object segmentation benefits from

deep neural networks trained on large-scale datasets and

context information provided by multi-scale convolutional

Li et al. [19] Dai et al. [7] He et al. [15] Liu et al. [24] ours

29.6 35.7 37.1 40.0 42.0

Table 5. Comparisons with state-of-the-art single-model methods.

Performance is evaluated on the COCO test-dev set. Accuracies

are reported in terms of mask AP (%).

zebra

zebra

zebra

person
person

frisbee
frisbee

person personperson

person

tennis racket

sports

ball

person

person

person
baseball 

batbaseball 

glove

person

sports 

ball

person

person

sports 

ball

person

person

person

sheep
sheep

person

person

motorcycle

bicycle
bicycle

person

person

person

person

traffic 

light

traffic 

light

bus

car car

truck

car

Figure 5. Several instance segmentation results produced by our

method. The images are taken from the COCO validation set.

feature maps. In this paper, we have proposed ZigZag-

Net, where we establish bidirectional connections between

the top-down and bottom-up networks. Our network has

dense pathways to smooth the information propagation at

all levels, encoding richer multi-scale context into the fea-

ture maps. The bidirectional connections are critical for

fusing and exchanging context, progressively learning how

to refine the feature maps with useful information. Our

method outperforms the state-of-the-art on several public

datasets, showing its effectiveness for object segmentation.

In future work, we plan to explore bidirectional con-

text propagation in 3D segmentation tasks, which exhibit

more complex relationship between objects. Additionally,

we plan to design more efficient network architectures ca-

pable of computing context information at a lower compu-

tational cost.

Acknowledgments

We thank the anonymous reviewers for their constructive

comments. This work was supported in parts by 973 Pro-

gram (2015CB352501), NSFC (61702338, 61761146002,

61861130365), Guangdong Science and Technology Pro-

gram (2015A030312015), Shenzhen Innovation Program

(KQJSCX20170727101233642), LHTD (20170003), ISF-

NSFC Joint Program (2472/17), and National Engineering

Laboratory for Big Data System Computing Technology.

7497



References

[1] P. Bilinski and V. Prisacariu. Dense decoder shortcut con-

nections for single-pass semantic segmentation. In CVPR,

2018.

[2] Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos. A unified

multi-scale deep convolutional neural network for fast object

detection. In ECCV, 2016.

[3] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Deeplab: Semantic image segmentation with

deep convolutional nets, atrous convolution, and fully con-

nected crfs. arXiv, 2016.

[4] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam. Re-

thinking atrous convolution for semantic image segmenta-

tion. arXiv, 2017.

[5] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam.

Encoder-decoder with atrous separable convolution for se-

mantic image segmentation. arXiv, 2018.

[6] F. Chollet. Xception: Deep learning with depthwise separa-

ble convolutions. In CVPR, 2017.

[7] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei.

Deformable convolutional networks. In ICCV, 2017.

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database. In

CVPR, 2009.

[9] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and

A. Zisserman. The pascal visual object classes (voc) chal-

lenge. IJCV, 2010.

[10] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg. Dssd:

Deconvolutional single shot detector. arXiv, 2017.

[11] J. Fu, J. Liu, Y. Wang, and H. Lu. Stacked deconvolutional

network for semantic segmentation. arXiv, 2017.

[12] R. Girshick. Fast r-cnn. In ICCV, 2015.

[13] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis,

L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He.

Accurate, large minibatch sgd: training imagenet in 1 hour.

arXiv, 2017.
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