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Figure 1: High resolution (384× 384) results of STGAN for facial attribute editing, and more results are given in the suppl.

Abstract

Arbitrary attribute editing generally can be tackled by

incorporating encoder-decoder and generative adversar-

ial networks. However, the bottleneck layer in encoder-

decoder usually gives rise to blurry and low quality editing

result. And adding skip connections improves image qual-

ity at the cost of weakened attribute manipulation ability.

Moreover, existing methods exploit target attribute vector

to guide the flexible translation to desired target domain. In

this work, we suggest to address these issues from selective

transfer perspective. Considering that specific editing task

is certainly only related to the changed attributes instead of

all target attributes, our model selectively takes the differ-

ence between target and source attribute vectors as input.

Furthermore, selective transfer units are incorporated with

encoder-decoder to adaptively select and modify encoder

feature for enhanced attribute editing. Experiments show

that our method (i.e., STGAN) simultaneously improves at-

tribute manipulation accuracy as well as perception qual-

ity, and performs favorably against state-of-the-arts in ar-

bitrary facial attribute editing and season translation.

⋆Work done during an internship at Baidu.

1. Introduction

Image attribute editing, aiming at manipulating an image

to possess desired attributes, is an interesting but challeng-

ing problem with many real-world vision applications. On

one hand, it is impracticable to collect paired images with

and without desirable attributes (e.g., female and male face

images of the same person). Thus, unsupervised genera-

tive learning models, e.g., generative adversarial networks

(GANs) [9], have attracted upsurging attention in attribute

editing. On the other hand, arbitrary attribute editing ac-

tually is a multi-domain image-to-image translation task.

Learning single translation model for each specific attribute

editing task may achieve limited success [20, 29, 34]. But it

is ineffective in exploiting the entire training data, and the

learned models grows exponentially along with the number

of attributes. To handle this issue, several arbitrary attribute

editing approaches [7, 11, 26] have been developed, which

usually (i) use encoder-decoder architecture, and (ii) take

both source image and target attribute vector as input.

Albeit their extensive deployment, encoder-decoder net-

works remain insufficient for high quality attribute editing.

Attribute can be of either local, global, or abstract charac-

teristic of the image. In order to properly manipulate im-

age attribute, spatial pooling or downsampling generally are

required to obtain high-level abstraction of image content
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Figure 2: Reconstruction results of AttGAN [11], StarGAN [7]

and our STGAN.

and attributes. For example, auto-encoder architecture is

adopted in [11, 17, 26], and shallow encoder-decoder with

residual blocks is used in [7, 34]. However, the introduc-

tion of bottleneck layer, i.e., the innermost feature map with

minimal spatial size, gives rise to blurry and low quality

editing result. As a remedy, some researchers suggest to add

one [11] or multiple [14] skip connections between encoder

and decoder layers. Unfortunately, as further shown in Sec.

3.1, the deployment of skip connections improves image

quality of editing result but is harmful to attribute manipula-

tion ability of learned model. Another possible solution is to

employ spatial attention network to allow attribute-specific

region editing [32], which, however, is effective only for lo-

cal attributes and not designed for arbitrary attribute editing.

Moreover, most existing methods exploit both source im-

age and target attribute vector for arbitrary attribute editing.

In particular, the encoders in [11, 17] only take source im-

age as input to produce latent code, and then the decoders

utilize both latent code and target attribute vector to gener-

ate editing result. In contrast, StarGAN [7] directly takes

source image and target attribute vector as input. How-

ever, for arbitrary attribute editing only the attributes to be

changed are required, taking full target attribute vector as

input may even have adverse effect on editing result. As

shown in Fig. 2, although all attributes keep unchanged, un-

wanted changes and visual degradation can be observed in

the results by AttGAN [11] and StarGAN [7], mainly as-

cribing to the limitation of encoder-decoder and the use of

target attribute vector as input.

To address the above issues, this work investigates ar-

bitrary attribute editing from selective transfer perspective

and presents a STGAN model. In terms of selective, our

STGAN is suggested to (i) only consider the attributes to

be changed, and (ii) selectively concatenate encoder feature

in editing attribute irrelevant regions with decoder feature.

In terms of transfer, our STGAN is expected to adaptively

modify encoder feature to match the requirement of varying

editing task, thereby providing a unified model for handling

both local and global attributes.

To this end, instead of full target attribute vector, our

STGAN takes the difference between target and source at-

tribute vectors as input to encoder-decoder. Subsequently,

selective transfer units (STUs) are proposed to adaptively

select and modify encoder feature, which is further concate-

nated with decoder feature for enhancing both image qual-

ity and attribute manipulation ability. In particular, STU is

added to each pair of encoder and decoder layers, and takes

both encoder feature, inner state, and difference attribute

vector into consideration for exploiting cross-layer consis-

tency and task specificity. From Figs. 1 and 2, our STGAN

can generate high quality and photo-realistic results for ar-

bitrary attribute editing, and obtain near-ideal reconstruc-

tion when the target and source attributes are the same. To

sum up, the contribution of this work involves:

• Instead of all target attributes, difference attribute vec-

tor is taken as input to enhance the flexible translation

of attributes and ease the training procedure.

• Selective transfer units are presented and incorporated

with encoder-decoder for simultaneously improving

attribute manipulation ability and image quality.

• Experimental results show that our STGAN performs

favorably against state-of-the-arts in arbitrary facial at-

tribute editing and season translation.

2. Related Work

Encoder-Decoder Architecture. In their pioneer

work [12], Hinton and Zemel proposed an autoencoder

network, which consists of an encoder to map the input

into latent code and a decoder to recover from the latent

code. Subsequently, denoising autoencoders [30] are pre-

sented to learn representation robust to partial corruption.

Kingma and Welling [16] suggested a Variational Autoen-

coder (VAE), which validates the feasibility of encoder-

decoder architecture to generate unseen images. Recent

studies show that skip connections [14,28] between encoder

and decoder layers usually benefit the training stability and

visual quality of generated images. However, as discussed

in Sec. 3.1, skip connections actually improves image qual-

ity at the cost of weakened attribute manipulation ability,

and should be carefully used in arbitrary attribute editing.

Generative Adversarial Networks. GAN [9, 27] is orig-

inally proposed to generate images from random noise,

and generally consists of a generator and a discriminator

which are trained in an adversarial manner and suffer from

the mode collapse problem. Recently, enormous efforts

have been devoted to improving the stability of learning.

In [3, 10], Wasserstein-1 distance and gradient penalty are

suggested to improve stability of the optimization process.

In [18], the VAE decoder and GAN generator are collapsed

into one model and optimized by both reconstruction and

adversarial loss. Conditional GAN (cGAN) [14, 24] takes

conditional variable as input to the generator and discrim-

inator to generate image with desired properties. As a re-
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Figure 3: Results of AttGAN [11] variants for reconstructing input

image. Please zoom in for better observation.

sult, GAN has become one of the most prominent models

for versatile image generation [9, 27], translation [14, 34],

restoration [19, 21] and editing [25] tasks.

Image-to-Image Translation. Image-to-image translation

aims at learning cross-domain mapping in supervised or

unsupervised settings. Isola et al. [14] presented a uni-

fied pix2pix framework for learning image-to-image trans-

lation from paired data. Improved network architectures,

e.g., cascaded refinement networks [4] and pix2pixHD [31],

are then developed to improve the visual quality of syn-

thesized images. As for unpaired image-to-image transla-

tion, additional constraints, e.g., cycle consistency [34] and

shared latent space [22], are suggested to alleviate the in-

herent ill-posedness of the task. Nonetheless, arbitrary at-

tribute editing actually is a multi-domain image-to-image

translation problem, and cannot be solved with scalabil-

ity by aforementioned methods. To address this issue, [2]

and [13] decouple generators by learning domain-specific

encoders/decoders with shared latent space, but are still lim-

ited in scaling to change multiple attributes of an image.

Facial Attribute Editing. Facial attribute editing is an in-

teresting multi-domain image-to-image translation problem

and has received considerable recent attention. While sev-

eral methods have been proposed to learn single translation

model for each specific attribute editing task [5, 20, 29, 32],

they suffer from the limitation of image-to-image trans-

lation and cannot well scale to arbitrary attribute editing.

Therefore, researchers resort to learning a single model for

arbitrary attribute editing. IcGAN [26] adopts an encoder

to generate latent code of an image, and a cGAN to de-

code latent code conditioned on target attributes. However,

IcGAN first trains the cGAN model followed by the en-

coders, greatly restricting its reconstruction ability. Lam-

ple et al. [17] trained the FaderNet in an end-to-end man-

ner by imposing adversarial constraint to enforce the in-

dependence between latent code and attributes. Modu-

larGAN [33] presents a feasible solution to connect specific

attribute editing to arbitrary attribute editing, but its compu-

tation time gradually increases along with the number of at-

tributes to be changed. StarGAN [7] and AttGAN [11] elab-

orately tackle arbitrary attribute editing by taking target at-

tribute vector as input to the transform model. In this work,

we analyze the limitation of StarGAN [7] and AttGAN [11],

and further develop a STGAN for simultaneously enhanc-

ing the attribute manipulation ability and image quality.

Method AttGAN-ED AttGAN AttGAN-2s AttGAN-UNet

PSNR/SSIM 22.68/0.758 24.07/0.841 26.13/0.897 29.66/0.929

Table 1: Reconstruction evaluation of AttGAN [11] variants.
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Figure 4: Attribute generation accuracy of AttGAN [11] variants.

3. Proposed Method

This section presents our proposed STGAN for arbitrary

attribute editing. To begin with, we use AttGAN as an ex-

ample to analyze the limitation of skip connections. Then,

we formulate STGAN by taking difference attribute vec-

tor as input and incorporating selective transfer units into

encoder-decoder structure. Finally, network architecture

(see Fig. 5) and model objective of STGAN are provided.

3.1. Limitation of Skip Connections in AttGAN

StarGAN [7] and AttGAN [11] adopt encoder-decoder

structure, where spatial pooling or downsampling are es-

sential to obtain high level abstract representation for at-

tribute manipulation. Unfortunately, downsampling irre-

versibly diminishes spatial resolution and fine details of fea-

ture map, which cannot be completely recovered by trans-

posed convolutions and the results are prone to blurring or

missing details. To enhance image quality of editing result,

AttGAN [11] applies one skip connection between encoder

and decoder, but we will show that it is still limited.

To analyze the effect and limitation of skip connections,

we test four variants of AttGAN on the test set: (i) AttGAN

w/o skip connection (AttGAN-ED), (ii) AttGAN model re-

leased by He et al. [11] with one skip connection (AttGAN),

(iii) AttGAN with two skip connections (AttGAN-2s), and

(iv) AttGAN with all symmetric skip connections [28]

(AttGAN-UNet). Table 1 lists the PSNR/SSIM results of

reconstruction by keeping target attribute vector the same as

the source one, and Fig. 3 shows the reconstruction results

of an image. It can be seen that adding skip connections

does benefit the reconstruction of fine details, and better re-

sult can be obtained with the increase of skip connections.

By setting target attribute vector different from source one,

Fig. 4 further assesses the facial attribute generation ac-

curacy via a facial attribute classification model1. While

1We train the model on CelebA [23] dataset which can achieve 94.5%
mean accuracy on the 13 attributes we use.
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adding one skip connection, i.e., AttGAN, only slightly

decreases generation accuracy for most attributes, notable

degradation can be observed by adding multiple skip con-

nections. Thus, the deployment of skip connections im-

proves reconstruction image quality at the cost of weakened

attribute manipulation ability, mainly attributing to that skip

connection directly concatenates encoder and decoder fea-

tures. To circumvent this dilemma, we present our STGAN

to employ selective transfer units to adaptively transform

encoder features guided by attributes to be changed.

3.2. Taking Difference Attribute Vector as Input

Both StarGAN [7] and AttGAN [11] take target attribu-

tion vector attt and source image x as input to the gener-

ator. Actually, the use of full target attribution vector is re-

dundant and may be harmful to editing result. In Fig. 2, the

target attribution vector attt is exactly the same as on the

source one atts, but StarGAN [7] and AttGAN [11] may

manipulate some unchanged attributes by mistake. From

Fig. 2, after editing the face image with blond hair becomes

more blond. Moreover, they even incorrectly adjust hair

length of a source image with the attribute female.

For arbitrary image attribute editing, instead of full target

attribute vector, only the attributes to be changed should be

considered to preserve more information of source image.

So we define the difference attribute vector as the difference

between target and source attribute vectors,

attdiff = attt − atts . (1)

Taking attdiff as input can bring several distinctive mer-

its. First, the attributes to be changed are only a small set

of attribute vector, and the use of attdiff usually makes

the model easier to train. Second, in comparison to attt ,

attdiff can provide more valuable information for guid-

ing image attribute editing, including whether an attribute

is required to edit or not, toward what direction an attribute

should be changed. The information can then be utilized

to design proper model to transform and concatenate en-

coder feature with decoder feature, and improve image re-

construction quality without sacrifice of attribute manipula-

tion accuracy. Finally, in practice attdiff actually is more

convenient to be provided by user. When taking attt as

input, the user is required to either manually supply all tar-

get attributes, or modify source attributes provided by some

attribute prediction method.

3.3. Selective Transfer Units

Fig. 5 shows the overall architecture of our STGAN. In-

stead of directly concatenating encoder with decoder fea-

tures via skip connection, we present selective transfer unit

(STU) to selectively transform encoder feature, making it

compatible and complementary to decoder feature. Natu-

rally, the transform is required to be adaptive to the changed

attributes, and be consistent among different encoder layers.

Thus, we modify the structure of GRU [6, 8] to build STUs

for passing information from inner layers to outer layers.

Without loss of generality, we use the l -th encoder layer

as an example. Denote by f lenc the encoder feature of the

l -th layer, and sl+1 the hidden state from the l + 1-th layer.

For convenience, the difference attribute vector attdiff is

stretched to have the same spatial size of sl+1. Different

from sequence modeling, feature maps across layers are of

different spatial size. So we first use transposed convolution

to upsample hidden state sl+1,

ŝl+1 = Wt ∗T [sl+1,attdiff ], (2)

where [·, ·] denotes the concatenation operation, and ∗T de-

notes transposed convolution. Then, STU adopts the math-

ematical model of GRU to update the hidden state sl and

transformed encoder feature f lt ,

rl = σ(Wr ∗ [f
l
enc , ŝ

l+1]), (3)

zl = σ(Wz ∗ [f
l
enc , ŝ

l+1]), (4)

sl = rl ◦ ŝl+1, (5)

f̂ lt = tanh(Wh ∗ [f lenc , s
l ]), (6)

f lt = (1− zl) ◦ ŝl+1 + zl ◦ f̂ lt , (7)

where ∗ denotes the convolution operation, ◦ denotes entry-

wise product, and σ(·) stands for the sigmoid function.

The introduction of the reset gate rl and update gate zl

allows us control the contribution of hidden state, difference

attribute vector, and encoder feature in a selective manner.

Moreover, the convolution transform and linear interpola-

tion in Eqns. (6) and (7) provide an adaptive means for the

transfer of encoder feature and its combination with hidden

state. In comparison to GRU where f lt is adopted as the out-

put of hidden state, we take sl as the output of hidden state

and f lt as the output of transformed encoder feature. And

experiments empirically validate that such modification can

bring moderate gains on attribute generation accuracy.

3.4. Network Architecture

Our STGAN is comprised of two components, i.e., a

generator G and a discriminator D . Fig. 5 illustrates the

network structure of G consisting of an encoder Genc for

abstract latent representation and a decoder Gdec for target

image generation. The encoder Genc contains five convolu-

tion layers with kernel size 4 and stride 2, while the decoder

Gdec has five transposed convolution layers. Besides, STU

is applied right after each of the first four encoder layers,

denoted by (f lt , s
l) = G l

st(f
l
enc , s

l+1,attdiff ).
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Figure 5: The overall structure of STGAN. On the left is the generator. The top-right figure shows detailed STU structure, and all variables

marked in this figure share same dimension (e.g., 64×64). The difference attribute vector of adding Eyeglasses and removing Mouth Open

attributes is shown on the bottom-right.

The discriminator D has two branches Dadv and Datt .

Dadv consists of five convolution layers and two fully-

connected layers to distinguish whether an image is a fake

image or a real one. Datt shares the convolution layers with

Dadv , but predicts an attribute vector by another two fully-

connected layers. Please refer to the suppl. for more details

on the network architecture.

3.5. Loss Functions

Given an input image x, the encoder features can be ob-

tained by,
f = Genc(x), (8)

where f = {f1enc , ..., f
5
enc}. Then, guided by attdiff , STUs

are deployed to transform encoder features for each layer,

(f lt , s
l) = G

l
st(f

l
enc , s

l+1,attdiff ), (9)

Note that we adopt four STUs, and directly pass f5enc to

Gdec . The STUs deployed in different layers do not share

parameters due to that (i) the dimensions are different and

(ii) the features of inner layers are more abstract than those

of the outer layers.

Let ft = {f1t , ..., f
4
t }. Thus, the editing result of Gdec

can be given by,

ŷ = Gdec(f
5
enc , ft), (10)

and can be written by,

ŷ = G(x,attdiff ). (11)

In the following, we detail the reconstruction, adversarial,

and attribute manipulation losses which are collaborated to

train our STGAN.

Reconstruction loss. When the target attributes are exactly

the same as source ones, i.e., attdiff = 0, it is natural to re-

quire that the editing result approximates the source image.

Thus the reconstruction loss is defined as,

Lrec = ‖x−G(x,0)‖1, (12)

where the ℓ1-norm ‖·‖1 is adopted for preserving the sharp-

ness of reconstruction result.

Adversarial loss. When the target attributes are different

from source ones, i.e., attdiff 6= 0, the ground-truth of

editing result will be unavailable. Therefore, adversarial

loss [9] is employed for constraining the editing result to

be indistinguishable from real images. In particular, we fol-

low Wasserstein GAN (WGAN) [3] and WGAN-GP [10],

and define the losses for training Dadv and G as,

max
Dadv

LDadv
= ExDadv (x)− EŷDadv (ŷ)+

λEx̂

[

(‖∇x̂Dadv (x̂)‖2 − 1)2
]

,
(13)

max
G

LGadv
= Ex,attdiff Dadv (G(x,attdiff )), (14)

where x̂ is sampled along lines between pairs of real and

generated images.

Attribute manipulation loss. Even the ground-truth is

missing, we can require the editing result to possess the de-

sired target attributes. Thus, we introduce an attribute clas-

sifier Datt which shares the convolution layers with Dadv ,

and define the following attribute manipulation losses for

training Datt and generator G ,

LDatt
= −

c
∑

i=1

[att(i)s logD
(i)
att(x)+

(1− att(i)s ) log (1−D
(i)
att(x))],

(15)

LGatt
= −

c
∑

i=1

[att
(i)
t logD

(i)
att(ŷ)+

(1− att
(i)
t ) log (1−D

(i)
att(ŷ))],

(16)

where att
(i)
s/t (D

(i)
att(x)) denotes the i -th attribute value of

atts/t (Datt(x)).
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Method IcGAN FaderNet AttGAN StarGAN STGAN

PSNR/SSIM 15.28/0.430 30.62/0.908 24.07/0.841 22.80/0.819 31.67/0.948

Table 2: Reconstruction quality of the comparison methods on fa-

cial attribute editing task.

Model Objective. Taking the above losses into account, the

objective to train the discriminator D can be formulated as,

min
D

LD = −LDadv
+ λ1LDatt

, (17)

and that for the generator G is,

min
G

LG = −LGadv
+ λ2LGatt

+ λ3Lrec , (18)

where λ1, λ2, and λ3 are the model tradeoff parameters.

4. Experiments

We train the model by the ADAM [15] optimizer with

β1 = 0.5 and β2 = 0.999. The learning rate is initial-

ized as 2 × 10−4 and decays to 2 × 10−5 for fine-tuning

after 100 epochs. In all experiments, the tradeoff param-

eters in Eqns. (17) and (18) are set to λ1 = 1, λ2 = 10
and λ3 = 100. All the experiments are conducted in the

TensorFlow [1] environment with cuDNN 7.1 running on

a PC with Intel(R) Xeon(R) E3-1230v5 CPU 3.40GHz and

Nvidia GTX1080Ti GPU. The source code can be found at

https://github.com/csmliu/STGAN.git.

4.1. Facial Attribute Editing

Following [7, 11], we first evaluate our STGAN for ar-

bitrary facial attribute editing on the CelebA dataset [23]

which has been adopted by most relevant works [7, 11, 17,

26].

Dataset and preprocessing. The CelebA dataset [23] con-

tains 202,599 aligned facial images cropped to 178 × 218,

with 40 with/without attribute labels for each image. The

images are divided into training set, validation set and test

set. We take 1,000 images from the validation set to assess

the training process, use the rest of the validation set and the

training set to train our STGAN model, and utilize the test

set for performance evaluation. We consider 13 attributes,

including Bald, Bangs, Black Hair, Blond Hair, Brown Hair,

Bushy Eyebrows, Eyeglasses, Male, Mouth Slightly Open,

Mustache, No Beard, Pale Skin and Young, due to that they

are more distinctive in appearance and cover most attributes

used by the relevant works. In our experiment, the central

170 × 170 region of each image is cropped and resized to

128× 128 by bicubic interpolation. Training and inference

time please refer to the suppl.

Qualitative results. We compare STGAN with four

competing methods, i.e., IcGAN [26], FaderNet [17],

AttGAN [11] and StarGAN [7]. The qualitative results are

Method Bald Bangs Eyebrows Glasses
Hair

Color
Male

AttGAN 12.76% 34.28% 10.64% 30.04% 11.52% 15.68%

StarGAN 11.28% 18.12% 19.40% 19.20% 32.28% 13.52%

STGAN 75.96% 47.60% 69.96% 50.76% 56.20% 70.80%

Method
Mouth

Open
Mustache

No

Beard

Pale

Skin
Young Average

AttGAN 20.40% 20.20% 18.92% 21.08% 15.16% 19.15%

StarGAN 23.40% 10.04% 20.36% 16.52% 27.92% 19.27%

STGAN 56.20% 69.76% 60.72% 62.40% 56.92% 61.58%

Table 3: Results of user study for ranking the models on facial

attribute editing task.

Method AttGAN StarGAN CycleGAN STGAN

summer→winter 4.7% 9.9% 24.9% 60.5%

winter→summer 17.0% 7.9% 24.6% 50.5%

Table 4: Results of user study for ranking the models on season

conversion task.
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Figure 7: Attribute generation accuracy of IcGAN [26], Fader-

Net [17], AttGAN [11], StarGAN [7] and STGAN.

shown in Fig. 6. The results of AttGAN are generated by

the released model, and we retrain other models for a fair

comparison. It can be observed from Fig. 6, all the com-

peting methods are still limited in manipulating complex

attributes, e.g., Bald, Hair, and Age, and are prone to over-

smoothing results. Besides, their results are more likely

to be insufficiently modified and photo non-realistic when

dealing with complex and/or multiple attributes. In com-

parison, our STGAN is effective in correctly manipulating

the desired attributes, and can produce results with high im-

age quality. More editing results are given in the suppl.

Quantitative evaluation. The performance of attribute

editing can be evaluated from two aspects, i.e., image qual-

ity and attribute generation accuracy. Due to the unavail-

ability of editing result, we resort to two alternative mea-

sures for quantitative evaluation of our STGAN. First, we

use the training set of STGAN to train a deep attribute clas-

sification model which can attain an accuracy of 94.5% for

the 13 attributes on the test set. Then Fig. 7 shows the at-

tribute generation accuracy, i.e., classification accuracy on

the changed attributes of editing results. It can be seen that
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Raw Image Reconstruction To Bald Add Eyeglasses To Female
Add Bangs

To Mouth Open
To Old

To Light Eyebrows
Add Beard

To Pale Skin
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To Old
To Female

To Brown Hair
To Blond Hair

Figure 6: Facial attribute editing results on the CelebA dataset. The rows from top to down are results of IcGAN [26], FaderNet [17],

AttGAN [11], StarGAN [7] and STGAN.

our STGAN outperforms all the competing methods with a

large margin. For the attributes Bald, Black Hair, Brown

Hair, and Eyebrows, STGAN achieves 20% accuracy gains

against the competing methods.

As for image quality, we keep target attribute vector the

same as the source one, and give the the PSNR/SSIM re-

sults of reconstruction in Table 2. Benefited from the STUs

and difference attribute vector, our STGAN achieves much

better reconstruction (> 7 dB by PSNR) in comparison to

AttGAN and STGAN. The result is consistent with Fig. 2.

The reconstruction ability of IcGAN is very limited due to

the training procedure. FaderNet obtains better reconstruc-

tion results, mainly ascribing to that each FaderNet model

is trained to deal with only one attribute.

User study. User study on a crowdsourcing platform

is conducted to evaluate the generation quality of three

top-performance methods, i.e., AttGAN, StarGAN and

STGAN. We consider 11 tasks for 13 attributes, as the trans-

fer among Blond Hair, Black Hair and Brown Hair are

merged into Hair Color. For each task, 50 validated peo-

ple participate in and each of them is given 50 questions. In

each question, people are given a source image randomly

selected from test set and the editing results by AttGAN,

StarGAN and STGAN. For a fair comparison, the results

are shown in a random order. The users are instructed to

choose the best result which changes the attribute more suc-

cessfully, is of higher image quality and better preserves the

identity and fine details of source image. The results are

shown in Table 3, and STGAN has higher probability to be

selected as the best method on all the 11 tasks.

4.2. Season Translation

We further train our STGAN for image-to-image trans-

lation between summer and winter using the dataset re-

leased by CycleGAN [34]. The dataset contains photos of

Yosemite, including 1,231 summer and 962 winter images

in the training set, and 309 summer and 238 winter images

for testing. We also randomly select 100 images from the

training set to validation. All images are used as the original

size of 256× 256.

We compare our STGAN with AttGAN [11], Star-

GAN [7], and CycleGAN released by Zhu et al. [34]. Note

that CycleGAN uses two generators respectively for sum-

mer→winter and winter→summer translation, while the

other three methods conduct the two tasks with a single

model. Fig. 8 shows several examples of translation results.

It can be seen that STGAN performs favorably against the

competing methods. We also conduct a user study using the

same setting for facial attribute editing. From Table 4, our

STGAN has a probability of more than 50% to win among

the four competing methods.

5. Ablation Study

Using facial attribute editing, we implement several vari-

ants of STGAN, and evaluate them on CelebA [23] to as-

sess the role of difference attribute vector and STUs. Con-

cretely, we consider six variants, i.e., (i) STGAN: original

STGAN, (ii) STGAN-dst: substituting difference attribute

vector with target attribute vector, (iii) STGAN-conv: in-

stead of STU, applying a convolution operator by taking

encoder feature and difference attribute vector as input to

modify encoder feature, (iv) STGAN-conv-res: adopting
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Input AttGAN StarGAN CycleGAN STGAN

Figure 8: Results of season translation, the top two rows are sum-

mer→winter, and the bottom two rows are winter→summer.
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Figure 9: Effect of difference attribute vector on AttGAN, Star-

GAN and STGAN.

Ba
ld

Ba
ng

s
Bl

ac
k H

air
Bl

on
d H

air
Br

ow
n H

air
Ey

eb
ro

ws
Ey

eg
las

se
s

Ge
nd

er
M

ou
th

 O
pe

n
M

us
tac

he
No

 B
ea

rd
Pa

le 
Sk

in
Ag

e
Av

era
ge

0.0

0.2

0.4

0.6

0.8

1.0

A
ttr

ib
ut

e 
G

en
er

at
io

n 
A

cc
ur

ac
y

STGAN-conv
STGAN-conv-res

STGAN-gru
STGAN-res

STGAN

Figure 10: Attribute generation accuracy of STGAN variants.

the residual learning formulation to learn the convolution

operator in STGAN-conv, (v) STGAN-gru: replacing STU

with GRU in STGAN, (vi) STGAN-res: adopting the resid-

ual learning formulation to learn the STU in STGAN. We

also train AttGAN and StarGAN models with difference at-

tribute vector, denoted by AttGAN-diff and StarGAN-diff.

Figs. 9 and 10 show their results on attribute manipulation.

Please refer to the suppl. for qualitative results.

Difference attribute vector vs. target attribute vector.

In Fig. 9, we present the comparison results of AttGAN,

StarGAN and STGAN-dst with their counterparts (i.e.,

AttGAN-diff, StarGAN-diff and STGAN) by using differ-

ence attribute vector. One can see that difference attribute

vector generally benefit attribute generation accuracy for all

the three models. Moreover, empirical studies show that the

use of difference attribute vector gives rise to training sta-

bility as well as image reconstruction performance. Note

that while AttGAN-diff and StarGAN-diff perform better

than AttGAN and StarGAN, they still suffer from the poor

image quality.

Selective Transfer Unit vs. its variants. Fig. 10 reports

the attribute generation accuracy of several STGAN vari-

ants for transforming encoder feature conditioned on differ-

ence attribute vector. The two convolutional methods, i.e.,

STGAN-conv and STGAN-conv-res, are significantly infe-

rior to STGAN, indicating that they are limited in selective

transfer of encoder feature. In comparison to STGAN-conv,

STGAN-conv-res achieves relatively higher attribute gener-

ation accuracy. So we also compare STGAN with STGAN-

res to check whether STU can be improved via residual

learning. However, due to the selective ability of STUs,

further deployment of residual learning cannot bring any

gains for most attributes, and performs worse for several

global (e.g., Gender, Age) and fine (e.g., Mustache, Beard)

attributes. Finally, STGAN is compared with STGAN-gru

by using transformed feature as hidden state. Although

STGAN-gru performs better on Bald, STGAN is slightly

superior to STGAN-gru for most attributes and the gain is

notable for attributes Gender and Mustache.

6. Conclusion

In this paper, we study the problem of arbitrary image at-

tribute editing for selective transfer perspective, and present

a STGAN model by incorporating difference attribute vec-

tor and selective transfer units (STUs) in encoder-decoder

network. By taking difference attribute vector rather than

target attribute vector as model input, our STGAN can fo-

cus on editing the attributes to be changed, which greatly

improves the image reconstruction quality and enhances the

flexible translation of attributes. Furthermore, STUs are

presented to adaptively select and modify encoder feature

tailored to specific attribute editing task, thereby improving

attribute manipulation ability and image quality simultane-

ously. Experiments on arbitrary facial attribute editing and

season translation show that our STGAN performs favor-

ably against state-of-the-arts in terms of attribute generation

accuracy and image quality of editing results.
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