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Figure 1: Mode seeking generative adversarial networks (MSGANs). (Left) Existing conditional generative adversarial

networks tend to ignore the input latent code z and generate images of similar modes. (Right) We propose a simple yet

effective mode seeking regularization term that can be applied to arbitrary conditional generative adversarial networks in

different tasks to alleviate the mode collapse issue and improve the diversity.

Abstract

Most conditional generation tasks expect diverse out-

puts given a single conditional context. However, condi-

tional generative adversarial networks (cGANs) often focus

on the prior conditional information and ignore the input

noise vectors, which contribute to the output variations. Re-

cent attempts to resolve the mode collapse issue for cGANs

are usually task-specific and computationally expensive. In

this work, we propose a simple yet effective regularization

term to address the mode collapse issue for cGANs. The

proposed method explicitly maximizes the ratio of the dis-

tance between generated images with respect to the cor-

responding latent codes, thus encouraging the generators

to explore more minor modes during training. This mode

seeking regularization term is readily applicable to vari-

ous conditional generation tasks without imposing training

overhead or modifying the original network structures. We

validate the proposed algorithm on three conditional image

synthesis tasks including categorical generation, image-to-

image translation, and text-to-image synthesis with different

baseline models. Both qualitative and quantitative results

demonstrate the effectiveness of the proposed regularization

method for improving diversity without loss of quality.

∗ Equal contribution

1. Introduction

Generative adversarial networks (GANs) [8] have been

shown to capture complex and high-dimensional image data

with numerous applications effectively. Built upon GANs,

conditional GANs (cGANs) [20] take external information

as additional inputs. For image synthesis, cGANs can be

applied to various tasks with different conditional contexts.

With class labels, cGANs can be applied to categorical im-

age generation. With text sentences, cGANs can be applied

to text-to-image synthesis [22, 29]. With images, cGANs

have been used in tasks including image-to-image transla-

tion [10, 11, 14, 16, 31, 32], semantic manipulation [28] and

style transfer [15].

For most conditional generation tasks, the mappings are

in nature multimodal, i.e., a single input context corre-

sponds to multiple plausible outputs. A straightforward ap-

proach to handle multimodality is to take random noise vec-

tors along with the conditional contexts as inputs, where the

contexts determine the main content and noise vectors are

responsible for variations. For instance, in the dog-to-cat

image-to-image translation task [14], the input dog images

decide contents like orientations of heads and positions of

facial landmarks, while the noise vectors help the genera-

tion of different species. However, cGANs usually suffer

from the mode collapse [8, 24] problem, where generators
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only produce samples from a single or few modes of the

distribution and ignore other modes. The noise vectors are

ignored or of minor impacts, since cGANs pay more at-

tention to learn from the high-dimensional and structured

conditional contexts.

There are two main approaches to address the mode

collapse problem in GANs. A number of methods focus

on discriminators by introducing different divergence met-

rics [1, 18] and optimization process [6, 19, 24]. The other

methods use auxiliary networks such as multiple genera-

tors [7, 17] and additional encoders [2, 4, 5, 25]. However,

mode collapse is relatively less studied in cGANs. Some

recent efforts have been made in the image-to-image trans-

lation task to improve diversity [10, 14, 32]. Similar to the

second category with the unconditional setting, these ap-

proaches introduce additional encoders and loss functions

to encourage the one-to-one relationship between the out-

put and the latent code. These methods either entail heavy

computational overheads on training or require auxiliary

networks that are often task-specific that cannot be easily

extended to other frameworks.

In this work, we propose a mode seeking regularization

method that can be applied to cGANs for various tasks to

alleviate the mode collapse problem. Given two latent vec-

tors and the corresponding output images, we propose to

maximize the ratio of the distance between images with re-

spect to the distance between latent vectors. In other words,

this regularization term encourages generators to generate

dissimilar images during training. As a result, generators

can explore the target distribution, and enhance the chances

of generating samples from different modes. On the other

hand, we can train the discriminators with dissimilar gen-

erated samples to provide gradients from minor modes that

are likely to be ignored otherwise. This mode seeking regu-

larization method incurs marginal computational overheads

and can be easily embedded in different cGAN frameworks

to improve the diversity of synthesized images.

We validate the proposed regularization algorithm

through an extensive evaluation of three conditional image

synthesis tasks with different baseline models. First, for cat-

egorical image generation, we apply the proposed method

on DCGAN [21] using the CIFAR-10 [12] dataset. Second,

for image-to-image translation, we embed the proposed reg-

ularization scheme in Pix2Pix [11] and DRIT [14] using the

facades [3], maps [11], Yosemite [31], and cat⇋dog [14]

datasets. Third, for text-to-image synthesis, we incorporate

StackGAN++ [29] with the proposed regularization term

using the CUB-200-2011 [27] dataset. We evaluate the

diversity of synthesized images using perceptual distance

metrics [30].

However, the diversity metric alone cannot guarantee

the similarity between the distribution of generated images

and the distribution of real data. Therefore, we adopt two

recently proposed bin-based metrics [23], the Number of

Statistically-Different Bins (NDB) metric which determines

the relative proportions of samples fallen into clusters pre-

determined by real data, and the Jensen-Shannon Diver-

gence (JSD) distance which measures the similarity be-

tween bin distributions. Furthermore, to verify that we do

not achieve diversity at the expense of realism, we evaluate

our method with the Fréchet Inception Distance (FID) [9]

as the metric for quality. Experimental results demonstrate

that the proposed regularization method can facilitate exist-

ing models from various applications achieving better di-

versity without loss of image quality. Figure 1 shows the

effectiveness of the proposed regularization method for ex-

isting models.

The main contributions of this work are:

• We propose a simple yet effective mode seeking

regularization method to address the mode collapse

problem in cGANs. This regularization scheme can

be readily extended into existing frameworks with

marginal training overheads and modifications.

• We demonstrate the generalizability of the proposed

regularization method on three different conditional

generation tasks: categorical generation, image-to-

image translation, and text-to-image synthesis.

• Extensive experiments show that the proposed method

can facilitate existing models from different tasks

achieving better diversity without sacrificing visual

quality of the generated images.

Our code and pre-trained models are available at

https://github.com/HelenMao/MSGAN/.

2. Related Work

Conditional generative adversarial networks. Genera-

tive adversarial networks [1, 8, 18, 21] have been widely

used for image synthesis. With adversarial training, gener-

ators are encouraged to capture the distribution of real im-

ages. On the basis of GANs, conditional GANs synthesize

images based on various contexts. For instances, cGANs

can generate high-resolution images conditioned on low-

resolution images [13], translate images between different

visual domains [10, 11, 14, 16, 31, 32], generate images

with desired style [15], and synthesize images according to

sentences [22, 29]. Although cGANs have achieved success

in various applications, existing approaches suffer from the

mode collapse problem. Since the conditional contexts pro-

vide strong structural prior information for the output im-

ages and have higher dimensions than the input noise vec-

tors, generators tend to ignore the input noise vectors, which

are responsible for the variation of generated images. As a

result, the generators are prone to produce images with sim-

ilar appearances. In this work, we aim to address the mode

collapse problem for cGANs.
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Figure 2: Illustration of motivation. Real data distribution contains numerous modes. However, when mode collapse occurs,

generators only produce samples from a few modes. From the data distribution when mode collapse occurs, we observe that

for latent vectors z1 and z2, the distance between their mapped images I1 and I2 will become shorter in a disproportionate

rate when the distance between two latent vectors is decreasing. We present on the right the ratio of the distance between

images with respect to the distance of the corresponding latent vectors, where we can spot an anomalous case (colored in red)

where mode collapse occurs. The observation motivates us to leverage the ratio as the training objective explicitly.

Reducing mode collapse. Some methods focus on the

discriminator with different optimization process [19] and

divergence metrics [1, 18] to stabilize the training process.

The minibatch discrimination scheme [24] allows the dis-

criminator to discriminate between whole mini-batches of

samples instead of between individual samples. In [6], Du-

rugkar et al. use multiple discriminators to address this is-

sue. The other methods use auxiliary networks to alle-

viate the mode collapse issue. ModeGAN [2] and VEE-

GAN [25] enforce the bijection mapping between the in-

put noise vectors and generated images with additional en-

coder networks. Multiple generators [7] and weight-sharing

generators [17] are developed to capture more modes of

the distribution. However, these approaches either entail

heavy computational overheads or require modifications of

the network structure, and may not be easily applicable to

cGANs.

In the field of cGANs, some efforts [10, 14, 32] have

been recently made to address the mode collapse issue on

the image-to-image translation task. Similar to ModeGAN

and VEEGAN, additional encoders are introduced to pro-

vide a bijection constraint between the generated images

and input noise vectors. However, these approaches require

other task-specific networks and objective functions. The

additional components make the methods less generalizable

and incur extra computational loads on training. In con-

trast, we propose a simple regularization term that imposes

no training overheads and requires no modifications of the

network structure. Therefore, the proposed method can be

readily applied to various conditional generation tasks.

3. Diverse Conditional Image Synthesis

3.1. Preliminaries

The training process of GANs can be formulated as a

mini-max problem: a discriminator D learns to be a clas-

sifier by assigning higher discriminative values to the real

data samples and lower ones to the generated ones. Mean-

while, a generator G aims to fool D by synthesizing real-

istic examples. Through adversarial training, the gradients

from D will guide G toward generating samples with the

distribution similar to the real data one.

The mode collapse problem with GANs is well known

in the literature. Several methods [2, 24, 25] attribute the

missing mode to the lack of penalty when this issue occurs.

Since all modes usually have similar discriminative values,

larger modes are likely to be favored through the training

process based on gradient descent. On the other hand, it is

difficult to generate samples from minor modes.

The mode missing problem becomes worse in cGANs.

Generally, conditional contexts are high-dimensional and

structured (e.g., images and sentences) as opposed to the

noise vectors. As such, the generators are likely to focus on

the contexts and ignore the noise vectors, which account for

diversity.
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3.2. Mode Seeking GANs

In this work, we propose to alleviate the missing mode

problem from the generator perspective. Figure 2 illus-

trates the main ideas of our approach. Let a latent vec-

tor z from the latent code space Z be mapped to the im-

age space I . When mode collapse occurs, the mapped im-

ages are collapsed into a few modes. Furthermore, when

two latent codes z1 and z2 are closer, the mapped images

I1 = G(c, z1) and I2 = G(c, z2) are more likely to be col-

lapsed into the same mode. To address this issue, we pro-

pose a mode seeking regularization term to directly maxi-

mize the ratio of the distance between G(c, z1) and G(c, z2)
with respect to the distance between z1 and z2,

Lms = max
G

(
dI(G(c, z1), G(c, z2))

dz(z1, z2)
), (1)

where d∗(·) denotes the distance metric.

The regularization term offers a virtuous circle for train-

ing cGANs. It encourages the generator to explore the im-

age space and enhances the chances for generating samples

of minor modes. On the other hand, the discriminator is

forced to pay attention to generated samples from minor

modes. Figure 2 shows a mode collapse situation where

two close samples, z1 and z2, are mapped onto the same

mode M2. However, with the proposed regularization term,

z1 is mapped to I1, which belongs to an unexplored mode

M1. With the adversarial mechanism, the generator will

thus have better chances to generate samples of M1 in the

following training steps.

As shown in Figure 3, the proposed regularization term

can be easily integrated with existing cGANs by appending

it to the original objective function.

Lnew = Lori + λmsLms, (2)

where Lori denotes the original objective function and λms

the weights to control the importance of the regularization.

Here, Lori can be as a simple loss function. For example, in

categorical generation task,

Lori = Ec,y[logD(c,y)] + Ec,z[log (1−D(c,G(c, z)))],
(3)

where c,y, z denote class labels, real images, and noise vec-

tors, respectively. In image-to-image translation task [11],

Lori = LGAN + Ex,y,z[‖y −G(x, z)‖
1
], (4)

where x denotes input images and LGAN is the typical GAN

loss. Lori can be arbitrary complex objective function from

any task, as shown in Figure 3 (b). We name the proposed

method as Mode Seeking GANs (MSGANs).

4. Experiments

We evaluate the proposed regularization method through

extensive quantitative and qualitative evaluation. We ap-

(a) Proposed regularization
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(b) Applying proposed regularization on StackGAN++

Figure 3: Proposed regularization. (a) We propose a reg-

ularization term that maximizes the ratio of the distance

between generated images with respect to the distance be-

tween their corresponding input latent codes. (b) The pro-

posed regularization method can be applied to arbitrary

cGANs. Take StackGAN++ [29], a model for text-to-image

synthesis, as an example, we easily apply the regulariza-

tion term regardless of the complex tree-like structure of

the original model.

ply MSGANs to the baseline models from three representa-

tive conditional image synthesis tasks: categorical genera-

tion, image-to-image translation, and text-to-image synthe-

sis. Note that we augment the original objective functions

with the proposed regularization term while maintaining

original network architectures and hyper-parameters. We

employ L1 norm distance as our distance metrics for both

dI and dz and set the hyper-parameter λms = 1 in all exper-

iments. More implementation and evaluation details, please

refer to the supplementary material.

4.1. Evaluation Metrics

We conduct evaluations using the following metrics.

FID. To evaluate the quality of the generated images, we

use FID [9] to measure the distance between the generated

distribution and the real one through features extracted by

Inception Network [26]. Lower FID values indicate better

quality of the generated images.

LPIPS. To evaluate diversity, we employ LPIPS [30] fol-

lowing [10, 14, 32]. LIPIS measures the average feature

distances between generated samples. Higher LPIPS score

indicates better diversity among the generated images.

NDB and JSD. To measure the similarity between the dis-
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Table 1: NDB and JSD results on the CIFAR-10 dataset.

Metrics Models airplane automobile bird cat deer

NDB ↓
DCGAN 49.60± 3.43 53.00± 7.28 34.40± 6.11 46.00± 1.41 44.80± 3.90

MSGAN 46.60± 7.40 51.80± 2.28 39.40± 1.95 41.80± 3.70 46.80± 4.92

JS ↓
DCGAN 0.034± 0.001 0.035± 0.002 0.025± 0.002 0.030± 0.002 0.033± 0.001

MSGAN 0.031± 0.001 0.033± 0.001 0.027± 0.001 0.027± 0.001 0.035± 0.003

dog frog horse ship truck

NDB ↓
DCGAN 50.40± 4.62 52.00± 3.81 54.40± 4.04 42.80± 5.45 47.80± 4.55

MSGAN 33.80± 3.27 42.00± 2.92 47.60± 5.03 41.00± 2.92 43.80± 6.61

JS ↓
DCGAN 0.033± 0.001 0.034± 0.002 0.035± 0.001 0.029± 0.003 0.032± 0.001

MSGAN 0.024± 0.001 0.030± 0.002 0.033± 0.003 0.027± 0.001 0.029± 0.003

Table 2: FID results on the CIFAR-10 dataset.

Model DCGAN MSGAN

FID↓ 29.65± 0.06 28.73± 0.06

tribution between real images and generated one, we adopt

two bin-based metrics, NDB and JSD, proposed in [23].

These metrics evaluate the extent of mode missing of gen-

erative models. Following [23], the training samples are

first clustered using K-means into different bins which can

be viewed as modes of the real data distribution. Then

each generated sample is assigned to the bin of its near-

est neighbor. We calculate the bin-proportions of the train-

ing samples and the synthesized samples to evaluate the

difference between the generated distribution and the real

data distribution. NDB score and JSD of the bin-proportion

are then computed to measure the mode collapse. Lower

NDB score and JSD mean the generated data distribution

approaches the real data distribution better by fitting more

modes. Please refer to [23] for more details.

4.2. Conditioned on Class Label

We first validate the proposed method on categorical

generation. In categorical generation, networks take class

labels as conditional contexts to synthesize images of dif-

ferent categories. We apply the regularization term to the

baseline framework DCGAN [21].

We conduct experiments on the CIFAR-10 [12] dataset

which includes images of ten categories. Since images in

the CIFAR-10 dataset are of size 32 × 32 and upsampling

degrades the image quality, we do not compute LPIPS in

this task. Table 1 and Table 2 present the results of NDB,

JSD, and FID. MSGAN mitigates the mode collapse issue

in most classes while maintaining image quality.

4.3. Conditioned on Image

Image-to-image translation aims to learn the mapping

between two visual domains. Conditioned on images from

the source domain, models attempt to synthesize corre-

Figure 4: Diversity comparison. The proposed regulariza-

tion term helps Pix2Pix learn more diverse results.

Table 3: Quantitative results on the facades and maps

dataset.

Datasets Facades

Pix2Pix [11] MSGAN BicycleGAN [32]

FID ↓ 139.19± 2.94 92.84± 1.00 98.85± 1.21

NDB↓ 14.40± 1.82 12.40± 0.55 13.80± 0.45

JSD↓ 0.074± 0.012 0.038± 0.004 0.058± 0.004

LPIPS↑ 0.0003± 0.0000 0.1894± 0.0011 0.1413± 0.0005

Datasets Maps

Pix2Pix [11] MSGAN BicycleGAN [32]

FID ↓ 168.99± 2.58 152.43± 2.52 145.78± 3.90

NDB↓ 49.00± 1.00 41.60± 0.55 46.60± 1.34

JSD↓ 0.088± 0.018 0.031± 0.003 0.023± 0.002

LPIPS↑ 0.0016± 0.0003 0.2189± 0.0004 0.1150± 0.0007

sponding images in the target domain. Despite the multi-

modal nature of the image-to-image translation task, early
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Figure 5: Diversity comparison. We compare MSGAN with DRIT on the dog-to-cat, cat-to-dog, and winter-to-summer

translation tasks. Our model produces more diverse samples over DRIT.
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Figure 6: Visualization of the bins on dog→cat trans-

lation. The translated results of DRIT collapse into few

modes, while the generated image of MSGAN fit the real

data distribution better.

work [11, 31] abandons noise vectors and performs one-to-

one mapping since the latent codes are easily ignored dur-

ing training as shown in [11, 32]. To achieve multimodality,

several recent attempts [10, 14, 32] introduce additional en-

coder networks and objective functions to impose a bijec-

tion constraint between the latent code space and the image

space. To demonstrate the generalizability, we apply the

proposed method to a unimodal model Pix2Pix [11] using

paired training data and a multimodal model DRIT [14] us-

ing unpaired images.

4.3.1 Conditioned on Paired Images

We take Pix2Pix as the baseline model. We also compare

MSGAN to BicycleGAN [32] which generates diverse im-

ages with paired training images. For fair comparisons,

architectures of the generator and the discriminator in all

methods follow the ones in BicycleGAN [32].

We conduct experiments on the facades and maps

datasets. MSGAN obtains consistent improvements on all

metrics over Pix2Pix. Moreover, MSGAN demonstrates

comparable diversity to BicycleGAN, which applies an ad-

ditional encoder network. Figure. 4 and Table. 3 demon-

strate the qualitative and quantitative results, respectively.

4.3.2 Conditioned on Unpaired Images

We choose DRIT [14], one of the state-of-the-art frame-

works to generate diverse images with unpaired training
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Figure 7: Diversity comparison. We show examples of StackGAN++ [29] and MSGAN on the CUB-200-2011 dataset of

text-to-image synthesis. When the text code is fixed, the latent codes in MSGAN help to generate more diverse appearances

and poses of birds as well as different backgrounds.

Table 4: Quantitative results of the Yosemite (Summer⇋Winter) and the Cat⇋Dog dataset.

Datasets Summer2Winter Winter2Summer

DRIT [14] MSGAN DRIT [14] MSGAN

FID ↓ 57.24± 2.03 51.85± 1.16 47.37± 3.25 46.23± 2.45

NDB↓ 25.60± 1.14 22.80± 2.96 30.60± 2.97 27.80± 3.03

JSD↓ 0.066± 0.005 0.046± 0.006 0.049± 0.009 0.038± 0.004

LPIPS↑ 0.1150± 0.0003 0.1468± 0.0005 0.0965± 0.0004 0.1183± 0.0007

Datasets Cat2Dog Dog2Cat

DRIT [14] MSGAN DRIT [14] MSGAN

FID↓ 22.74± 0.28 16.02± 0.30 62.85± 0.21 29.57± 0.23

NDB↓ 42.00± 2.12 27.20± 0.84 41.00± 0.71 31.00± 0.71

JSD↓ 0.127± 0.003 0.084± 0.002 0.272± 0.002 0.068± 0.001

LPIPS↑ 0.245± 0.002 0.280± 0.002 0.102± 0.001 0.214± 0.001

data, as the baseline framework. Though DRIT synthe-

sizes diverse images in most cases, mode collapse occurs

in some challenging shape-variation cases (e.g., transla-

tion between cats and dogs). To demonstrate the robust-

ness of the proposed method, we evaluate on the shape-

preserving Yosemite (summer⇋winter) [31] dataset and the

cat⇋dog [14] dataset that requires shape variations.

As the quantitative results exhibited in Table. 4, MSGAN

performs favorably against DRIT in all metrics on both

datasets. Especially in the challenging cat⇋dog dataset,

MSGAN obtains substantial diversity gains. From the sta-

tistical point of view, we visualize the bin proportions of

the dog-to-cat translation in Figure. 6. The graph shows the

severe mode collapse issue of DRIT and the substantial im-

provement with the proposed regularization term. Qualita-

tively, Figure. 5 shows that MSGAN discovers more modes

without the loss of visual quality.

4.4. Conditioned on Text

Text-to-image synthesis targets at generating images

conditioned on text descriptions. We integrate the proposed

regularization term on StackGAN++ [29] using the CUB-

200-2011 [27] dataset. To improve diversity, StackGAN++

introduces a Conditioning Augmentation (CA) module that

re-parameterizes text descriptions into text codes of the

Gaussian distribution. Instead of applying the regulariza-

tion term on the semantically meaningful text codes, we fo-

cus on exploiting the latent codes randomly sampled from
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Table 5: Quantitative results on the CUB-200-2011 dataset. We conduct experiments in two settings: 1) Conditioned on

text descriptions, where every description can be mapped to different text codes. 2) Conditioned on text codes, where the text

codes are fixed so that their effects are excluded.

Conditioned on text descriptions Conditioned on text codes

StackGAN++ [29] MSGAN StackGAN++ [29] MSGAN

FID ↓ 25.99± 4.26 25.53± 1.83 27.12± 1.15 27.94± 3.10

NDB↓ 38.20± 2.39 30.60± 2.51 39.00± 0.71 30.60± 2.41

JSD↓ 0.092± 0.005 0.073± 0.003 0.102± 0.016 0.095± 0.016

LPIPS↑ 0.362± 0.004 0.373± 0.007 0.156± 0.004 0.207± 0.005

Figure 8: Linear interpolation between two latent codes in MSGAN. Image synthesis results with linear-interpolation

between two latent codes in the dog-to-cat translation and text-to-image synthesis.

the prior distribution. However, for a fair comparison, we

evaluation MSGAN against StackGAN++ in two settings:

1) Perform generation without fixing text codes for text de-

scriptions. In this case, text codes also provide variations

for output images. 2) Perform generation with fixed text

codes. In this setting, the effects of text codes are excluded.

Table. 5 presents quantitative comparisons between MS-

GAN and StackGAN++. MSGAN improves the diversity

of StackGAN++ and maintains visual quality. To better il-

lustrate the role that latent codes play for the diversity, we

show qualitative comparisons with the text codes fixed. In

this setting, we do not consider the diversity resulting from

CA. Figure. 7 illustrates that latent codes of StackGAN++

have minor effects on the variations of the image. On the

contrary, latent codes of MSGAN contribute to various ap-

pearances and poses of birds.

4.5. Interpolation of Latent Space in MSGANs

We perform linear interpolation between two given la-

tent codes and generate corresponding images to have a bet-

ter understanding of how well MSGANs exploit the latent

space. Figure. 8 shows the interpolation results on the dog-

to-cat translation and the text-to-image synthesis task. In

the dog-to-cat translation, we can see the coat colors and

patterns varies smoothly along with the latent vectors. In

the text-to-image synthesis, both orientations of birds and

the appearances of footholds change gradually with the vari-

ations of the latent codes.

5. Conclusions

In this work, we present a simple but effective mode

seeking regularization term on the generator to address the

model collapse in cGANs. By maximizing the distance be-

tween generated images with respect to that between the

corresponding latent codes, the regularization term forces

the generators to explore more minor modes. The proposed

regularization method can be readily integrated with ex-

isting cGANs framework without imposing training over-

heads and modifications of network structures. We demon-

strate the generalizability of the proposed method on three

different conditional generation tasks including categorical

generation, image-to-image translation, and text-to-image

synthesis. Both qualitative and quantitative results show

that the proposed regularization term facilitates the base-

line frameworks improving the diversity without sacrificing

visual quality of the generated images.
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