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Abstract

Unsupervised clustering for high-dimension data (such

as imageset or video) is a hard issue in data processing and

data mining area since these data always lie on a manifold

(such as Grassmann manifold). Inspired of Low Rank repre-

sentation theory, researchers proposed a series of effective

clustering methods for high-dimension data with non-linear

metric. However, most of these methods adopt the tradition-

al single nuclear norm as the relaxation of the rank func-

tion, which would lead to suboptimal solution deviated from

the original one. In this paper, we propose a new low rank

model for high-dimension data clustering task on Grass-

mann manifold based on the Double Nuclear norm which

is used to better approximate the rank minimization of ma-

trix. Further, to consider the inner geometry or structure of

data space, we integrated the adaptive Laplacian regular-

ization to construct the local relationship of data samples.

The proposed models have been assessed on several public

datasets for imageset clustering. The experimental results

show that the proposed models outperform the state-of-the-

art clustering ones.

1. Introduction

As an active topic in data processing and data mining,

data clustering has attracted great interests [2, 13]. A large

number of clustering methods [10, 20] have been proposed

∗Corresponding author: Yongli Hu (huyongli@bjut.edu.cn)

and successfully used in many applications [41, 17]. In

all the clustering methods, the spectral clustering methods

[41, 16] based on subspace assumption are considered state-

of-the-art methods with promising performance. It is gen-

erally assumed that data have intrinsic subspace structures

[32] or the data are generated from multiple subspaces.

Thus, the datum in a subspace could be linearly represent-

ed by a smaller number of other data samples from the

same subspace. The key problem of these methods is to ob-

tain a good affinity matrix which usually describes the data

similarity determined by the underlying subspace structure.

To this end, various subspace clustering methods are pro-

posed. The most representative methods are Sparse Sub-

space Clustering (SSC) [7] and Low-Rank Representation

(LRR) [16], which use sparse and low rank constraints to

construct affinity matrix, respectively. Later, researchers u-

tilize the local geometry or structure of the raw data as reg-

ularizers such as the Laplacian regularizer, and propose the

Non-negative Sparse Laplacian regularized Low Rank Rep-

resentation (NSLLRR) [40]. From the representation ma-

trix, clustering results can be obtained by using a spectral

clustering algorithm such as Normalized Cuts (NCut)[28].

In the aforementioned methods, the data is usually for-

mulated as vectors with Euclidean distance. However, one

often faces high dimensional data following nonlinear con-

straints, especially for imagesets and videos data [39, 34].

Since these high-dimension data are always lie on non-

linear manifold space, the traditional linear methods are no

longer valid. For example, an imageset or a video is actual-

ly modeled as a data sample on Grassmann manifold. Thus,
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researchers extended the traditional LRR based methods on

the Grassmann manifold for high-dimension data cluster-

ing based on the non-Euclidean geometry. The representa-

tive methods are Low Rank Representation on Grassmann

manifold method (G-LRR)[33], Partial Sum Minimization

of Singular Values Representation on Grassmann manifold

method (G-PSSVR)[37] and Cascaded Low Rank and S-

parse Representation on Grassmann manifold method (G-

CLRSR)[35]. Further, combined with the Laplacian regu-

larizer, researchers proposed Laplacian Low-Rank Repre-

sentation on Grassmann manifold method (G-LLRR)[34,

36] and Laplacian Partial Sum Minimization of Singular

Values Representation on Grassmann manifold method (G-

LPSSVR)[37] in which authors construct the Laplacian ma-

trix by original data samples.

Although the above methods have achieved good perfor-

mance in Grassmann manifold clustering, all these methods

adopt the traditional nuclear norm as the low rank constraint

which would lead to a suboptimal solution [15, 8, 5, 38].

That is because the traditional nuclear norm based low-

rank subproblem would tend to over-relaxations of rank

components from the representation matrix [42]. In recen-

t works, researchers usually adopt Schatten-p quasi-norm

(0 < p < 1) instead of the traditional nuclear norm for low

rank based problems[22, 27]. Schatten-p norm has decom-

posable approach and it could construct a more accurate low

rank matrix than the traditional nuclear norm [21]. In this

paper, we adopt double nuclear norm, a kind of Schatten-p
quasi-norm, instead of the traditional single nuclear norm to

formulate a new clustering model on Grassmann manifold

with non-linear metric for imageset clustering task. We call

this model as Double Nuclear norm based Low Rank model

on Grassmann manifold (G-DNLR). Further, to better ex-

ploit the the local geometrical structure of data space, we in-

troduce the adaptive Laplacian regularizer into the G-DNLR

and formulate an adaptive Laplacian regularized G-DNLR

which is called adaptive Laplacian Double Nuclear based

Low Rank model on Grassmann manifold (G-ALDNLR).

The contributions of this paper are following:

• Proposing a new low rank based clustering model on

Grassmann manifold for imageset clustering task by

utilizing double nuclear norm with non-linear metric;

• Adaptive Laplacian regularizer is introduced into the

G-DNLR to formulate G-ALDNLR model for exploit-

ing the local geometrical structure of the data samples;

• An algorithm is proposed to solve the complicated op-

timization problems involved in the proposed models.

The paper is organized as follows. We introduce the no-

tations and definition of Grassmann manifold in Section 2.

Section 3 review the related works. We will introduce the

formulation and optimization of the propose G-DNLR and

G-ALDNLR models in Section 4 and 5 respectively. Sec-

tion 6 assesses the clustering performance of the proposed

method on several datasets. Finally, conclusions are dis-

cussed in Section 7.

2. Notation and Definition of Grasssmann

Manifold

2.1. Notation

We use bold lowercase letters for vectors, e.g. x,y,a,

bold uppercase for matrices, e.g. X,Y,A, calligraphy let-

ters for tensors e.g. X ,Y,A, lowercase letters for scalars

such as dimension and class numbers, e.g. m,n, c. xi rep-

resents the i-th column of matrix X. xij represents the i-th
element in j-th column from matrix X. R

m×n represents

the space of real numbers.

2.2. Definition of Grassmann Manifold

According to [1], the Grassmann manifold consists of

all linear p-dimension subspaces in m-dimension Euclidean

space R
m(0 ≤ p ≤ m) which is denoted as G(p,m). Thus,

we could construct a Grassmann manifold as below:

G(p,m) = {Y ∈ R
m×p : YTY = Ip}/O(p), (1)

where O(p) represents the p-order orthogonal group. For

two Grassmann manifold data samples Y1 and Y2, the dis-

tance of them could be defined as below [12]:

distg(Y1,Y2) =
1

2
‖Π(Y1)−Π(Y2)‖F , (2)

where Π(·) is a mapping function defined as below:

Π : G(p,m) −→ Sym(m),Π(Y) = YYT . (3)

where Sym(m) represents the space of m-dimension sym-

metric matrices. With the function Π(·), Grassmann mani-

fold could be embedded into the symmetric matrices.

3. Related Works

We first introduce related clustering methods on the

Euclidean Space. Given a set of sample vectors Y =
[y1,y2, ...,yn] ∈ R

m×n drawn from a union of c subspaces

{Si}
c
i=1, where m denotes the dimension of each sample yi

and n represents the number of samples Y. The task of sub-

space clustering is to segment the sample set Y according

to the underlying subspaces. By introducing a hypothesized

representation matrix X, the data could be self-represented

by a linear combination as Y = YX. To avoid the trivial

solution, some matrix constraints are adopted on X. In the

past decade, sparse and low rank theories have been applied

to subspace clustering successfully. Elhamifar and Vidal [7]

proposed Sparse Subspace Clustering (SSC) method, which

aims to find the sparsest representation matrix X by using

ℓ1 norm ‖ · ‖1. The SSC model is formulated as follows,

min
X

λ‖X‖1 + ‖Y −YX‖2F , (4)
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where λ is balance parameter and ‖X‖1 =
∑n

i=1,j=1 |xij |.
Instead of adopting the sparse constraint, Liu et al. [16] pro-

posed Low Rank Representation (LRR) method for cluster-

ing by using low rank constraint or nuclear norm ‖ · ‖∗ on

X, which is formulated as follows,

min
X

λ‖X‖∗ + ‖Y −YX‖2F , (5)

where ‖X‖∗ =
∑r

i σi(X) and σi(X) represents the i-th
singular value of X, r represents the rank of X.

Later, many researchers develop some Laplacian regu-

larizer based subspace clustering methods [19, 24]. The

idea of Laplacian regularizer is induced from the graph the-

ory [6]. According to this theory, an undirected local k-

connected graph is constructed for Y. This graph could be

encoded by a symmetric affinity matrix W ∈ R
n×n, where

0 ≤ wij ≤ 1 reflects the probability that the data points yi

and yj are connected, i.e., wij > 0 means yi and yj are

closer in certain metric or in a local neighbourhood. The lo-

cal geometry of these data points should be correspondingly

reflected in the data representation matrix X, which can be

formulated by minimizing the following error,

n
∑

i=1

n
∑

j=1

wij‖xi − xj‖
2
2 = 2tr(XLWXT ), (6)

where tr(·) represents the trace function of matrix, LW =
D − W represents the Laplacian matrix, D ∈ R

n×n

is a diagonal matrix D with diagonal elements dii =
∑n

j=1 wij , i = 1, ..., n. Thus, Yin et al. [40] proposed a

general Laplacian regularized low-rank representation mod-

el by using a graph regularizer called hypergraph as below:

min
X

‖X‖∗ + λ‖X‖1 + αtr(XLWXT ) + β‖E‖1,

s.t. X ≥ 0,Y = YX+E,
(7)

where α, β are balance parameters.

The above related works all construct the representation

matrix of data samples by employing Euclidean distance

which is not suitable for the high-dimension Grassmann

manifold data. Therefore, researchers proposed a series of

clustering methods for Grassmann manifold based on the

non-distance defined in (2). For a set of Grassmann sam-

ples Y = {Y1,Y2, ...,Yn} where Yi ∈ G(p,m). By gen-

erating the (5) on Grassmann, Wang et al. [33] proposed

a Low Rank model with non-linear metric for Grassmann

(G-LRR):

min
X

λ‖X‖∗ +

n
∑

i=1

‖Yi ⊖

n
⊎

j=1

Yj ⊛ xji‖G , (8)

where ‖Yi⊖
⊎n

j=1 Yj⊛xji‖G represents the reconstruction

error of the sample Yi on Grassmann manifold,
⊎n

j=1 Yj⊛

xji denotes the “combination” of {Yj}
n
j=1 with the coeffi-

cients {xji}
n
i=1,j=1, the symbol ⊖,

⊎

,⊛ are abstract sym-

bols which are used to simulated the “linear” operations on

Grassmann manifold. Combined with Laplacian regularizer

defined in (6), Wang et al.[34, 36] proposed Laplacian Low

Rank model on Grassmann manifold (G-LLRR) model:

min
X

λ‖X‖∗ + αtr(XLWXT )

+

n
∑

i=1

‖Yi ⊖

n
⊎

j=1

Yj ⊛ xji‖G ,
(9)

where affinity matrix W is constructed based on non-

linear distance metric defined in (2) based on the raw data

{Yi}
n
i=1. They also proposed a cascaded Low Rank and

Sparse model on Grassmann manifold (G-CLRSR) model:

min
X,C

λ‖X‖∗ + α‖Z‖1 + β‖X−XZ‖2F

+

n
∑

i=1

‖Yi ⊖

n
⊎

j=1

Yj ⊛ xji‖G .
(10)

Further, to achieve better low rank representation matrix

for clustering, Wang et al. [37] adopt Partial Sum Min-

imization of Singular Values (PSSV) norm to instead the

nuclear norm for formulating PSSV Low Rank model on

Grassmann manifold (G-PSSVLR) model:

min
X

λ‖X‖>r +

n
∑

i=1

‖Yi ⊖

n
⊎

j=1

Yj ⊛ xji‖G , (11)

where ‖ · ‖>r represents the PSSV norm defined as below

[25]:

‖X‖>r =
n
∑

i=r+1

σi(X), (12)

where σi(X) represents the i-th largest singular value of

X, r represents the expected rank of X. Similar to G-

LLRR, Wang et al. also proposed Laplacian G-PSSVLR

(G-LPSSVLR) as below [37]:

min
X

λ‖X‖>r + αtr(XLWXT )

+

n
∑

i=1

‖Yi ⊖

n
⊎

j=1

Yj ⊛ xji‖G .
(13)

Although the above methods achieve great performance in

Grassmann manifold clustering problem, all these methods

adopt nuclear norm or PSSV norm which would cause sub-

optimal solution of the low rank based problem. Further, the

affinity matrices in G-LLRR and G-LPSSVLR are all con-

structed based on the raw data. However there may exist

noise and outlier in the raw data, e.g. face images varia-

tions caused by illumination, color and pose. These factors

would reduce the ability to represent the correlation among

data.
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4. Double Nuclear norm based Low Rank mod-

el on Grassmann manifold

In this section, we will introduce the formulation and op-

timization of the proposed G-DNLR model in detail.

4.1. Models Formulation

For a set of Grassmann samples Y = {Y1,Y2, ...,Yn}
where Yi ∈ G(p,m), we could formulate a double nuclear

norm based low rank representation model on Grassmann

manifold as below:

min
X,A,B

λ(‖A‖∗ + ‖B‖∗) +

n
∑

i=1

‖Yi ⊖

n
⊎

j=1

Yj ⊛ xji‖G ,

s.t. X = AB,
(14)

where A ∈ R
n×r, B ∈ R

r×n, r < n represents the expect

rank of X. ‖A‖∗+‖B‖∗ represents the double nuclear nor-

m for X. We call this model the Double Nuclear norm based

Low Rank model on Grassmann manifold (G-DNLR). The

objective function is hard to solve owing to the non-linear

metric on Grassmann manifold. According to the proper-

ty and definition in Section 2, we could use the embedding

distance to replace the construction error in (14) as below:

‖Yi ⊖

n
⊎

j=1

Yj ⊛ xji‖G = dist2g(Yi,

n
⊎

j=1

Yj ⊛ xji)

= ‖YiY
T
i −

n
∑

j=1

xjiYjY
T
j ‖

2
F .

(15)

With this measurement, the function in (14) could be rewrit-

ten as below:

min
X,A,B

λ(‖A‖∗ + ‖B‖∗) + ‖YiY
T
i −

n
∑

j=1

xjiYjY
T
j ‖

2
F .

s.t. X = AB.
(16)

Donating gij = tr((YT
j Yi)(Y

T
i Yj)) according to [33], we

could rewrite (16) as below:

min
X,A,B

λ(‖A‖∗ + ‖B‖∗) + tr(XTGX)− 2tr(GX),

s.t. X = AB,
(17)

where matrix G = {gij}n×n ∈ R
n×n is a symmetric

matrix. With these transformation, the original non-linear

function in (14) could be converted into a linear one.

4.2. Optimization of G­DNLR

G-DNLR model is a complicated optimization problem

which is difficult to solve directly. Here, we adopt the al-

ternating direction method of multipliers (ADMM) [3] to

solve it. We first introduce two auxiliary variables Â = A,

B̂ = B and rewrite (17) as below:

min
X,A,B,Â,B̂

λ(‖Â‖∗ + ‖B̂‖∗) + tr(XTGX)− 2tr(GX),

s.t. X = AB, Â = A, B̂ = B.
(18)

Then we remove the linear equality constraints in (18) by

using the augmented Lagrangian method and have

min
X,A,B,Â,B̂

λ(‖Â‖∗ + ‖B̂‖∗) + tr(XTGX)− 2tr(GX)

+ tr(FT
1 (Â−A)) + tr(FT

2 (B̂−B))

+ tr(FT
3 X−AB) +

γ

2
(‖Â−A‖2F

+ ‖B̂−B‖2F + ‖X−AB‖2F ),
(19)

where F1,F2,F3 are Lagrangian multipliers. γ > 0 is a

penalty parameter. For this problem, X,A,B, Â, B̂ and

other parameters can be solved by the following alternative

iterations, in which superscript t denotes the current itera-

tion step.

4.2.1 Update Â with fixing others

When other variables are fixed, (19) degenerates into a func-

tion with respect to Â as below:

min
Â

λ‖Â‖∗ +
γ

2
‖Â− (A−

F1

γ
)‖2F . (20)

We can update Â based on the closed-form solution [4]:

Â(t+1) = U
(t)
1 max{Σ

(t)
1 −

λ

γ(t)
, 0}V

(t)T

1 , (21)

where U
(t)
1 Σ

(t)
1 V

(t)T

1 is the singular value decomposition

(SVD) of A(t) −
F

(t)
1

γ(t) .

4.2.2 Update B̂ with fixing others

When other variables are fixed, (19) degenerates into a func-

tion with respect to B̂ as below:

min
B̂

λ‖B̂‖∗ +
γ

2
‖B̂− (B−

F2

γ
)‖2F . (22)

We can update B̂ based on the closed-form solution [4]:

B̂(t+1) = U
(t)
2 max{Σ

(t)
2 −

λ

γ(t)
, 0}V

(t)T

2 , (23)

where U
(t)
2 Σ

(t)
2 V

(t)T

2 is the singular value decomposition

of B(t) −
F

(t)
2

γ(t) .
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4.2.3 Update A with fixing others

When other variables are fixed, (19) degenerates into a func-

tion with respect to A as below:

min
A

‖A− (Â+
F1

γ
)‖2F + ‖AB− (X+

F3

γ
)‖2F . (24)

The closed-form solution to the problem(24) is given by

A(t+1) = (P
(t)
1 +P

(t)
2 B(t))(I1 +B(t)B(t)T )−1, (25)

where P
(t)
1 = Â(t) +

F
(t)
1

γ(t) , P
(t)
2 = X(t) +

F
(t)
3

γ(t) , I1 ∈ R
r×r

represents the identify matrix.

4.2.4 Update B with fixing others

When other variables are fixed, (19) degenerates into a func-

tion with respect to A as below:

min
B

‖B− (B̂+
F2

γ
)‖2F + ‖AB− (X+

F3

γ
)‖2F . (26)

The closed-form solution to the problem(26) is given by

B(t+1) = (A(t)TA(t) + I1)
−1(A(t)TP

(t)
2 +P

(t)
3 ), (27)

where P
(t)
3 = B̂(t) +

F
(t)
2

γ(t) ,

4.2.5 Update X with fixing others

When other variables are fixed, (19) degenerates into a func-

tion with respect to X as below:

min
X

tr(XTGX)− 2tr(GX) +
γ

2
‖X−AB+

F3

γ
‖2F .

(28)

The closed-form solution to the problem(28) is given by

X(t+1) = (2G+ γ(t)I2)
−1(2G+ γ(t)(A(t)B(t) −

F
(t)
3

γ(t)
)).

(29)

4.2.6 Update F1, F2, F3 and γ

The Lagrangian multipliers F1, F2, F3 and penalty param-

eter γ could be updated as follows:

F
(t+1)
1 = F

(t)
1 + γ(t)(Â(t+1) −A(t+1)). (30)

F
(t+1)
2 = F

(t)
2 + γ(t)(B̂(t+1) −B(t+1)). (31)

F
(t+1)
3 = F

(t)
3 + γ(t)(X(t+1) −A(t+1)B(t+1)). (32)

γ(t+1) = min(ργ(t), γmax), (33)

where ρ > 1 is a constant and γmax is the upper bound of γ.

In our algorithm, the stopping criterion is measured by the

following condition:

max







‖Â(t+1) −A(t+1)‖∞,

‖B̂(t+1) −B(t+1)‖∞,
‖X(t+1) −A(t+1)B(t+1)‖∞







≤ ε. (34)

5. Adaptive Laplacian regularized G-DNLR

model

5.1. Model formulation

Combined the Laplacian regularizer, we could construct

an affinity matrix W based on the raw data samples and

formulate a Laplacian double nuclear norm based low rank

model for Grassmann manifold:

min
X,A,B

λ(‖A‖∗ + ‖B‖∗) + αtr(XLWXT )

+ tr(XTGX)− 2tr(GX),

s.t. X = AB.

(35)

However, as we discussed in Section 3, the affinity matrix

constructed by raw data would be biased by the noise or

outliers among the data. Therefore, we adopt the similar

approach in [11] to construct an adaptive Laplacian double

nuclear norm base low rank model for Grassmann manifold

(G-ALDNLR) as follows:

min
X,A,B,W

λ(‖A‖∗ + ‖B‖∗) + αtr(XLWXT ) + β‖W‖2F

+ tr(XTGX)− 2tr(GX),

s.t. X = AB,WT1n = 1n,W = WT ,

wij ≥ 0, ∀i, j,
(36)

where ‖W‖2F is a regularisation term on W to prevent triv-

ial solution, 1n represents an n-dimension vector of all 1s.

In this formulation, the affinity matrix W is no longer con-

structed from the raw data directly. It can be regarded as a

latent affinity matrix to reflect the geometry property of the

original data space, i.e. the element wij of W represents

the probability of the i-th and j-th data points belonging to

the same class and can be adaptively adjusted in the above

optimal procedure.

5.2. Optimization of G­ALDNLR

To solve G-ALDNLR model in (36), we introduce three

auxiliary variables Â = A, B̂ = B,Z = X and remove the

linear equality constraints rewrite (36) by using the aug-

mented Lagrangian method as below:

min
Θ

λ(‖Â‖∗ + ‖B̂‖∗) + αtr(ZLWZT ) + β‖W‖2F

+ tr(XTGX)− 2tr(GX) + tr(FT
1 (Â−A))

+ tr(FT
2 (B̂−B)) + tr(FT

3 (X−AB))

+ tr(FT
4 (X− Z)) +

γ

2
(‖Â−A‖2F + ‖B̂−B‖2F

+ ‖X− Z‖2F + ‖X−AB‖2F ),

s.t. WT1n = 1n,W = WT , wij ≥ 0, ∀i, j,
(37)

where Θ = {X,A,B,W, Â, B̂,Z}. We could adopt (20)

to (27)to solve A,B, Â, B̂, and solve Z,X,W as below:
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5.2.1 Update X with fixing others

When other variables are fixed, (37) degenerates into a func-

tion with respect to X as below:

min
X

tr(XTGX)− 2tr(GX) +
γ

2
(‖X−AB+

F3

γ
‖2F

+ ‖X− Z+
F4

γ
‖2F ).

(38)

The closed-form solution to the problem(38) is given by

X(t+1) = (2G+ γ(t)I2)
−1(2G+ γ(t)(P

(t)
4 +P

(t)
5 ),

(39)

where P
(t)
4 = A(t)B(t) −

F
(t)
3

γ(t) , P
(t)
5 = X(t) −

F
(t)
4

γ(t) .

5.2.2 Update Z with fixing others

When other variables are fixed, (37) degenerates into a func-

tion with respect to Z as below:

min
Z

αtr(ZLWZT ) +
γ

2
‖Z− (X+

F4

γ
)‖2F . (40)

The closed-form solution to the problem(38) is given by:

Z(t+1) = γ(t)(Z(t) +
F

(t)
4

γ(t)
)(2αLW

(t) + γ(t)I2)
−1. (41)

5.2.3 Update W with fixing others

When other variables are fixed, (37) degenerates into a

function with respect to W as below:

min
W

αtr(ZLWZT ) + β‖W‖2F ,

s.t.WT1n = 1n, W = WT , wij ≥ 0, ∀i, j.
(42)

This problem can be separated into a set of independent sub-

problems, i.e.:

W(t+1) = argmin
W

‖W +Q(t)‖2F ,

s.t.WT1n = 1n, wij ≥ 0, ∀i, j,
(43)

where each element q
(t)
ij of matrix Q(t) is defined as fol-

lows:

q
(t)
ij =

α

4β
‖z

(t)
i − z

(t)
j ‖22, (44)

where z
(t)
i represents the i-th column of Z(t). We have the

closed-form solution for the i-th column w
(t+1)
i of W(t+1)

by its k nearest neighbours as below:

w
(t+1)
i =

(

1 +
∑k

j=1 q̂
(t)
ji

k
1n − q

(t)
i

)

+

, (45)

Algorithm 1 The solution to G-DNLR and G-ALDNLR

Require: The Grassmann sample set Y =
{Y1,Y2, ...,Yn}, the expect rank r, the number

of neighbours k, the parameters λ, α, β
1: Initialize : X(0) = Z(0) = 0 ∈ R

n×n, A(0) =
Â(0) = 0 ∈ R

n×r, B(0) = B̂(0) = 0 ∈ R
r×n,

F
(0)
1 = 1 ∈ R

n×r, F
(0)
2 = 1 ∈ R

r×n, F
(0)
3 = F

(0)
4 =

1 ∈ R
n×n, initialize W by solving (49), γ(0) = 10−4,

ρ > 1, γmax = 1010, ε = 10−7, the number of maxi-

mum iteration MaxIter = 1000
2: Calculate matrix G by gij = tr((YT

j Yi)(Y
T
i Yj));

3: t = 0;

4: while not converged and t ≤ MaxIter do

5: Update Â, B̂,A,B by (20) to (27) respectively;

6: Update X by (28) and (29) for G-DNLR, or update

X by (38) and (39) for G-ALDNLR;

7: Update Z and W by (40) to (46) respectively for G-

ALDNLR ;

8: Update F1, F2, F3, F4 and γ by (30), (31), (32), (47)

and (33) respectively;

9: Check the convergence condition defined as (34) for

G-DNLR, or check the condition defined as (48) for

G-ALDNLR;

10: t = t+ 1.

11: end while

Ensure:

The matrices Â, B̂,A,B,X,Z,W.

where q̂
(t)
ji is the j-th element of column vector q̂

(t)
i , the

elements of q̂
(t)
i are same as those of q

(t)
i in ascending or-

der. For any column u, the operator (u)+ turns negative

elements in u to 0 while keeping the rest. The proof of the

closed-form solution to (45) could be found in [23]. Final-

ly, we could adjust A(t+1) which is generally an unbalanced

digraph obtained by (45) as follows:

W(t+1) =
1

2
(W(t+1) +W(t+1)T ). (46)

5.2.4 Update F1, F2, F3, F4 and γ

F1,F2,F3 and γ could be updated by (30) to (33). Then

we could update F4 as below:

F
(t+1)
4 = F

(t)
4 + γ(t)(X(t+1) − Z(t+1)). (47)

In this algorithm, the stopping criterion of G-ALDNLR is

measured by the following condition:

max















‖Â(t+1) −A(t+1)‖∞,

‖B̂(t+1) −B(t+1)‖∞,
‖X(t+1) − Z(t+1)‖∞,

‖X(t+1) −A(t+1)B(t+1)‖∞















≤ ε. (48)

12080



0 50 100 150 200
0

2

4

6

8 x 105

(a)

0 50 100 150 200
0

1

2

3

4 x 106

(b)

0 50 100 150 200
0

1

2

3

4 x 106

(c)

0 50 100 150 200
0

2

4

6

8 x 105

(d)

0 50 100 150 200
0

1

2

3

4 x 106

(e)

0 50 100 150 200
0

2

4

6

8 x 105

(f)

0 50 100 150 200
0

2

4

6

8 x 105

(g)

Figure 1. The convergence curves of G-DNLR and G-ALDNLR on Extended Yale B face dataset. In each subfigure, the x-axis represents

the iterations and the y-axis represents the value of function: (a) ‖Â(t+1)−A
(t+1)‖∞ for G-DNLR; (b) ‖B̂(t+1)−B

(t+1)‖∞ for G-DNLR;

(c) ‖X(t+1) −A
(t+1)

B
(t+1)‖∞ for G-DNLR. (d) ‖Â(t+1) −A

(t+1)‖∞ for G-ALDNLR; (e) ‖B̂(t+1) −B
(t+1)‖∞ for G-ALDNLR; (f)

‖X(t+1) − Z
(t+1)‖∞ for G-ALDNLR; (g) ‖X(t+1) −A

(t+1)
B

(t+1)‖∞ for G-ALDNLR.

We summarized all update steps in Algorithm 1 for both G-

DNLR and G-ALDNLR. For G-ALDNLR, we initialize W

based on the distance of original Grassmann data sample as

below:

min
W

wij‖YiY
T
i −YjY

T
j ‖

2
F ,

s.t. WT1n = 1n, W = WT , wij ≥ 0, ∀i, j.
(49)

The solution to this problem is similar to (42).

5.3. Converge and Complexity Analysis

For Algorithm 1, by splitting variables in the proposed

objective functions, we have a set of subproblems for each

variable with closed-form solution. Therefore, all the con-

vergence analysis and proof in [27, 42] could be applicable

for our proposed methods. Figure 1 shows an example of

the convergence of the proposed methods on Extended Yale

B face dataset[14]. It is indicated that the curves decrease

fast and almost tend to be stable within 200 iterations, which

verifies the good convergence of our algorithm.

Further, we discuss the complexity of the proposed mod-

els. Calculating G has a complexity of O(n2(p2m + p3)).
In each iteration step, the complexity of updating Â, B̂,

A and B are all O(nr2). The complexity of updating Z

and X are both O(n3). The complexity of updating W is

O(n2). Therefore, the total complexity of G-DNLR and

G-ALDNLR are O(n2(p2m + p3) + t(4nr2 + n3)) and

O(n2(p2m+ p3) + t(4nr2 + 2n3 + n2)) respectively. We

also list the complexities of other methods in Table 1. Be-

sides, we test all the methods on Extended Yale B dataset

and show the wall-clock time in Table 1. It demonstrates

that our proposed methods (G-DNLR & G-ALDNLR) have

acceptable executive time. All methods are coded in Mat-

lab R2014a and implemented on an Intel Core i7-7700

3.60GHz CPU machine with 16G RAM.

6. Empirical Comparison

We test our methods on four datasets, including the Ex-

tended Yale B face dataset[14], CMU-PIE face dataset[30],

Ballet action dataset [9] and SKIG gesture dataset [18].

The performance of the proposed methods is compared

Method Complextiy Running Time

SSC O(tn2(1 + n)) 1.61

LRR O(2tn3) 21.41

LS3C O(tn2(sn2 + 1)) 30.65

SCGSM O(m3p3d2t(n + d)) 1050.67

G-KM O(n2p2(m + p) + 3n3 0.11

G-CLRSR O(n2p2(m + p) + tn2(3n + 1)) 90.56

G-LRR O(n2p2(m + p) + 2tn3) 17.76

G-LLRR O(n2p2(m + p) + 2tn3) 18.46

G-PSSVLR O(n2p2(m + p) + 2tn3) 15.17

G-LPSSVLR O(n2p2(m + p) + 2tn3) 15.74

G-DNLR O(n2p2(m + p) + tn(4r2 + n2)) 17.28

G-ALDNLR O(n2p2(m + p) + tn(4r2 + 2n2 + n)) 32.25

Table 1. The complexity and running time (second) on Extended

Yale B dataset of various methods.

with some state-of-the-art clustering algorithms, such as

SSC [7], LRR [16], LS3C [26], SCGSM [31], G-KM

[29], G-LRR [33], G-LLRR [34, 36], G-PSSVLR &G-

LPSSVLR[37] and G-CLRSR [35]. In our methods, after

learning the representation X, we use the NCut method [28]

to obtain the final clustering results. The clustering results

are measured by the clustering Accuracy (ACC) and Nor-

malized Mutual Information (NMI). The details of data set-

ting and results analysis are given below.

6.1. Data and parameters setting

The Extended Yale B dataset contains 2,414 frontal face

images of 38 subjects. Each subject has about 64 images.

In our experiments, we resize images into 20× 20 and ran-

domly select 8 images from the same subject to form an

imageset sample. The CMU-PIE dataset is composed of 68

subjects and each subject has 21 front face images with no

expression. Every 4 images from the same subject are se-

lected to form an imageset sample. Ballet action contains

44 video clips collected from an instructional Ballet DVD.

We resize each image into 30 × 30 and every 12 images

are chosen for an imageset from each clip. SKIG gesture

dataset consists of 1080 RGB-D video collected from 6 sub-

jects with 10 gesture types. Each image is resized as 24×32
and each clip is regarded as an imageset.

In our experiments, we first transform each image into a

m-dimension vector. For vector based LRR, SSC and LS3C

methods, we stack all image vectors from the same image-

set as a long vector and adopt PCA to reduce the dimension

which equals to the dimension of PCA components retain-

ing 95% of its variance energy. For other Grassmann man-
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Method SSC LRR LS3C SCGSM G-KM G-CLRSR G-LRR G-LLRR G-PSSVLR G-LPSSVLR G-DNLR G-ALDNLR

Extended Yale B 0.4032 0.4659 0.2461 0.7946 0.8365 0.8194 0.8135 0.7921 0.9035 0.9118 0.9749 0.9855

CMU-PIE 0.5231 0.4034 0.2761 0.5732 0.6025 0.6289 0.6153 0.5862 0.6213 0.6373 0.6618 0.7244

Ballet 0.2962 0.2923 0.4262 0.5613 0.5699 0.5931 0.5912 0.6076 0.6013 0.6243 0.6768 0.6885

SKIG 0.3892 0.2537 0.2941 0.3716 0.5308 0.5083 0.5022 0.5176 0.5502 0.5712 0.6244 0.6667

Table 2. The accuracy results of various methods on four datasets.

Method SSC LRR LS3C SCGSM G-KM G-CLRSR G-LRR G-LLRR G-PSSVLR G-LPSSVLR G-DNLR G-ALDNLR

Extended Yale B 0.6231 0.6813 0.4992 0.9326 0.9341 0.9103 0.8903 0.8923 0.9262 0.9461 0.9874 0.9891

CMU-PIE 0.7865 0.7321 0.6313 0.5736 0.5976 0.8132 0.8103 0.7942 0.7926 0.8080 0.8510 0.8774

Ballet 0.2813 0.2910 0.4370 0.5646 0.5779 0.5862 0.5762 0.5983 0.5837 0.6102 0.6310 0.6692

SKIG 0.4762 0.3343 0.3421 0.5367 0.5671 0.5679 0.5450 0.5571 0.5692 0.5873 0.6482 0.6484

Table 3. The normalized mutual information results of various methods on four datasets.

ifold based methods, we form all image vectors from the

same imageset as a matrix. Then SVD is applied on the ma-

trix and we pick up the first p columns of the left singular

matrix as a sample data on Grassmann manifold G(p,m).

To get a suitable setting for these parameters, we s-

tudy each parameter’s influence on the clustering accura-

cy by some pre-experiments. In these experiments, each

parameter is tested with fixing the other parameters for

both G-DNLR and G-ALDNLR. We tune the rank val-

ue r within {1, 2, · · · , n}, the neighbour number k with-

in {1, 2, · · · , 10}, other parameters λ, α, β are tuned within

{10−10, 10−9, · · · , 1, 10, 102}. Figure 2 shows the influ-

ence of λ, α, β, r and k on Extended Yale B dataset as an

example. The parameters setting are: λ = 1, r = 100 for

G-DNLR and λ = α = β = 10−2, r = 100, k = 7 for

G-ALDNLR on Extended Yale B dataset; λ = 1, r = 142
for G-DNLR and λ = α = β = 10−2, r = 110, k = 6
for G-ALDNLR on CMU-PIE dataset; λ = 102, r = 6 for

G-DNLR and λ = α = β = 10−7, r = 10, k = 8 for

G-ALDNLR on Ballet dataset; λ = 10−2, r = 27 for G-

DNLR and λ = 1, α = 102, β = 10−5, r = 27, k = 8 for

G-ALDNLR on SKIG dataset.

6.2. Results analysis

All clustering results are shown in Tables 2 and 3. For

each experiment, the clustering are repeated 20 times and

the average results are reported. The best results are bold,

the second ones are in italic script and the third ones are

underlined. From the results, Grassmann manifold repre-

sentation based methods always have better performances

than the vectors based ones (SSC, LRR, LS3C), which is ex-

plained that the manifold representation have the advantage

of revealing the complicated relationship within the image-

set data effectively. In all the methods, the low rank based

models always obtain the top results, which shows the ben-

efit of low rank representation. From the results, our pro-

posed G-DNLR and G-ALDNLR obtain the top 2 best re-

sults and outperform the third best ones with about 4 and 8

percentage points gap in terms of ACC on avenges respec-

tively. The significant improvement of our method is ana-

lyzed and own to the superiority that the proposed method
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Figure 2. The clustering accuracy of the proposed methods on Ex-

tended Yale B dataset with different parameters setting: (a) G-

DNLR with different λ and r; (b) G-ALDNLR with different λ

and r; (c) G-ALDNLR with different α and β; (d) G-ALDNLR

with different k.

not only adopts the double nuclear norm but also constructs

adaptive affinity matrix based on the local structure.

7. Conclusion

In this paper, we propose two new low rank model

on Grassmann manifold for high-dimension data cluster-

ing task. Instead of the traditional single nuclear norm, we

adopt a kind of Schatten-p quasi-norm named Double Nu-

clear norm to formulate novel clustering models on Grass-

mann manifold with non-linear metric, which is called G-

DNLR. Further, to exploit the local geometrical structure

of the data samples, we integrated the adaptive Laplacian

regularization with G-DNLR as G-ALDNLR. The proposed

models has been evaluated on four public datasets. The ex-

perimental results show that our proposed models outper-

forms state-of-the-art ones.
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