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Abstract

Face recognition achieves great success thanks to the

emergence of deep learning. However, many contem-

porary face recognition models still have limited invari-

ance to strong intra-personal variations such as large pose

changes. Face normalization provides an effective and

cheap way to distill face identity and dispell face variances

for recognition. We focus on face generation in the wild with

unpaired data. To this end, we propose a Face Normaliza-

tion Model (FNM) to generate a frontal, neutral expression,

photorealistic face image for face recognition. FNM is a

well-designed Generative Adversarial Network (GAN) with

three distinct novelties. First, a face expert network is in-

troduced to construct generator and provide the ability of

retaining face identity. Second, with the reconstruction of

normal face, a pixel-wise loss is applied to stabilize op-

timization process. Third, we present a series of face at-

tention discriminators to refine local textures. FNM could

recover canonical-view, expression-free image and directly

improve the performance of face recognition model. Exten-

sive qualitative and quantitative experiments on both con-

trolled and in-the-wild databases demonstrate the superior-

ity of our face normalization method. Code is available at

https://github.com/mx54039q/fnm

1. Introduction

Unconstrained face recognition [25] is an important but

extremely challenging problem. Large pose, expression[19]

and lighting remain main obstacles for further pushing un-

constrained face recognition performance. Some works

[3, 22, 29] address the pose problem by learning pose-

invariant features, while some others [6, 20, 31, 16, 33] try

to synthesize an identity-preserved frontal face. Photoreal-

istic frontal view synthesis from a single face image has an
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Figure 1. Face normalization results under the same identity in

unconstrained environment. Face images are under different views

across pose, lighting, expression and background. FNM can keep

a high-level consistency in preserving identity. On the right of the

dashed line is a near-normal face of the same identity.

abundance of applications other than face recognition.

However, face rotation (especially face frontalization) in

unconstrained environment has two major difficulties: com-

plex face variations besides pose, and unpaired data. Com-

pared to controlled environment, there are more complex

face variations, e.g., lighting, head pose, expression, self-

occlusion in real-world scenarios. It is difficult to directly

warp input face to a normalized view. While obtaining

strictly normalized face is undoubtedly expensive and time-

consuming, we can not get effective supervision of target

normalized face (i.e., front-facing, neutral expression) cor-

responding to an input face. Face synthesis lays great stress

on facial texture, which is difficult without supervision of

target normalized face.

We present a method to normalize face into a front-

facing, neutral expression view. We propose a Face Normal-

ization Model (FNM) completely based on neural network

to solve the two problems above simultaneously. Introduced

by Goodfellow et al. [10], the Generative Adversarial Net-

work (GAN) maps from a source data distribution to a target

data distribution using a min-max two-player game between

a generator network and a discriminator network. In this
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work, adversarial loss encourages our generator to synthe-

size normal face (target distribution) from non-normal face

(source distribution). Inspired by Cole et al. [6], we employ

a face expert network in our generator to produce identity

features. Trained on large-scale face dataset with large vari-

ations in pose, age, lighting, ethnicity and profession, the

face expert network is robust enough across complex face

variations in real-world scenarios. Many previous works

commonly import existing knowledge and make learning

much more efficient. While previous face synthesis meth-

ods usually directly warp image to image, our model eases

the task of the generator and maps from identity features to

face image. Intuitively, the Face expert network provides

strong prior knowledge. Rewarding features similarity of

normalized face and input face, it can keep the identity of

face during the transformation.

Integrating GAN with expert face network, we can

achieve the target of face normalization theoretically. How-

ever, the result is dissatisfied with such two simple parts

due to the speciality of face synthesis. Normalized faces

are similar in outline but different in detail, so the gener-

ator’s task is arduous without paired data (i.e., input face

and target view face of the same person). While the image-

wise loss of GAN works on the whole face image, we need

a pixel-wise loss to guide and stabilize the face synthesis

process.

We suggest to employ a more elaborate architecture that

contains two modifications. First, we introduce a new term

of pixel-wise loss in unpaired data problem. When the gen-

erator reconstructs normal face to itself, a pixel-wise loss

could be applied to stabilize the optimization process. Sec-

ond, face attention mechanism is proposed to refine local

facial texture. Without any assistant techniques (e.g., 3D

face model and landmark localization), our face attention

model is simple but effective. Unlike previous methods that

crop local areas of input face with landmark localization, we

construct a series of attention discriminators in the fixed ar-

eas of generated normalized face. With the prior knowledge

of facial attribute, attention discriminators would automati-

cally enhance the quality of local facial texture.

Our model employs a publicly-available face expert net-

work, VGG-Face2 [4], to produce face identity features and

preserve identity while generating the normalized face im-

age. Recovering a face image from a particular feature vec-

tor presents an interesting approach in understanding deep

networks’ predictions. In other words, our model provides

a novel method to analyse and visualize the feature space of

the face recognition model.

This paper makes the following contributions. 1) A Face

Normalization Model (FNM) is proposed to synthesize a

canonical view and identity-preserved face from a single

face image. Incorporating with face expert network in a

novel way, it develops an effective and novel training strat-

egy for unpaired data and extreme face variations in the

wild. 2) Introduce a pixel-wise loss by normal face re-

construct, which leads to a healthy optimization process.

Compared with the image-wise adversarial loss, the pixel-

wise loss encourages image content consistency and greatly

stabilizes the training process in unsupervised face normal-

ization. 3) Attention mechanism is applied to reinforce

the realism and quality of normalized face. 4) Although

FNM does not contain any recognition module, it can im-

prove the performance of traditional face recognition frame-

works by “stitching” face normalization to them. As a pre-

processing procedure, FNM helps to distill face identity and

dispell face variations before face recognition procedure.

We conduct qualitative and quantitative experiments on var-

ious benchmarks, including both controlled and in-the-wild

datasets. The results demonstrate the effectiveness of FNM

on boosting face recognition model.

2. Related Works

Generative Adversarial Network (GAN) Since GAN first

introduced by Goodfellow et al. [10], its surprising per-

formance on generative task has drawn substantial atten-

tion from the deep learning and computer vision commu-

nity. The GAN framework learns a generator network G

and a discriminator network D with competing loss. The

min-max two-player game provides a simple yet powerful

way to estimate target distribution and generate novel image

samples [7]. Mirza and Osindero [23] introduce the condi-

tional GAN, to control the generator and discriminator for

effective image-to-image generating. Arjovsky et al. [2] in-

troduce Wassertain distance and propose Wasserstein GAN

(WGAN), which makes progress toward stable training of

GANs. These successful improvements of GAN motivate

us to develop face normal view synthesis, in the harsh con-

ditions of unconstrained environment, unpaired data and no

auxiliary 3D face model.

Face Normalization Synthesizing a frontal, neutral expres-

sion face from a single image in unconstrained environment

is very challenging because of extreme variations such as

large pose. Hassner et al. [13] adopt 3D face model to reg-

ister and produce frontal face. Zhu et al. [34] provide a high

fidelity pose and expression normalization method based on

3DMM. The results of 3D-based methods are often not real-

istic enough with artifacts and severe texture losses. These

methods suffer big performance drop on large pose.

Benefiting from deep learning, FF-GAN [31] incorpo-

rates 3D face model into GAN to solve the problem of large-

pose face frontalization in the wild. Considering photoreal-

istic and identity preserving frontal view synthesis, Huang

et al. [16] propose TP-GAN with global and local aware

networks under large pose. Extending TP-GAN, Zhao et

al. [33] propose PIM with introducing a domain adaptation

strategy for pose invariant face recognition.
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Figure 2. Architecture of FNM. The feed-ward process is shown in (a), where x from non-normal face set is fed into the generator to

extract identity features and generate the normalized view face x̃. In order to introduce pixel-wise loss, the generator also produces a

virtual normalized image ỹ for y from normal face set. Attention discriminators are used to distinguish the normalized samples x̃ and ỹ

from the real samples y. The details of the proposed attention discriminators are shown in (b). Fixed regions of face image are cropped

and fed into corresponding attention discriminators, which are marked by red box. Losses are drawn with red dashed lines, where Lp is a

pixel-wise consistency for normal face, Ladv is the adversarial loss for encouraging G to synthesize a photorealistic normalized face, Lip

is the identity perception loss for preserving the identity information. All of the notations are listed in (c).

The proposed FNM differs from prior works in follow-

ing aspects: 1) FNM incorporates a face expert network to

solve the problems of complex variations and unpaired data

in the wild. As trained on paired data in controlled environ-

ment, TP-GAN [16] and PIM [33] might degenerate perfor-

mance in unconstrained environment. 2) While most prior

works focus on face frontalization [33, 16, 31], FNM con-

siders face variations besides pose and makes further efforts

to distill identity and dispell face variations. 3) Incorporat-

ing with 3D face model, FF-GAN [31] employs a complex

architecture and suffers from great optimization difficulty.

Our FNM is an end-to-end deep learning model. FNM in-

troduces a pixel-wise loss for reconstruction of faces from

the normal face set (frontal faces with neutral expression).

This pixel-wise loss leads to a more stable optimization.

Disentangled Representation via Generation Face nor-

malization (or face frontalization) may be considered an

image-level disentangled representation. The advantage of

this category is that it can be easily incorporated into off-

the-shelf face recognition framework as a pre-processing

procedure. Tran et al. [20] propose DR-GAN to rotate face

and explicitly disentangle the identity representation by us-

ing the pose code. Hu et al. [29] propose CAPG-GAN that

uses a landmark heatmap to control the face rotation. FF-

GAN [31], TP-GAN [16] and PIM [33] share the same ob-

jective of pose-invariant recognition via face frontalization.

While most prior works learn a representation that is only

invariant to pose, our method can learn a representation in-

variant to other attributes besides pose. From a face im-

age under arbitrary condition, FNM can synthesize a virtual

canonical-view face image while preserving face identity.

3. Approach

Face normalization aims to synthesize a canonical-view

face from a single face image, while preserving face iden-

tity. GAN [10] transforms non-normal face set X to nor-

mal face set Y , while the face expert network preserves

face identity. In addition, a pixel-wise loss and face at-

tention mechanism are applied for high-quality synthesis.

The overall framework of our proposed Face Normalization

Model (FNM) is depicted in Fig. 2

3.1. Employing Face Expert Network

Our key target is to synthesize from a face taken in the

wild to a front-facing and neutral expression face, retain-

ing identity as much as possible. Face expert network has

prominent discriminative capability and is efficient in map-
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ping face image to identity feature. Most previous works

only use face model to maintain perceptual similarity of

generated face and input face. In our model, face recog-

nition network is also used as encoder network to initially

distill identity information and dispell non-identity informa-

tion.

As shown in Fig. 2, we employ a publicly-available face

expert network, VGG-Face2 [4] network, both as the en-

coder of generator Genc and as a source of identity loss.

Our assumption is that the face expert network is a strong

prior knowledge on face recognition. In response, we keep

the face expert network fixed and do not update its parame-

ters during training. For preserving face identity, we penal-

ize the feature distance between normalized face and input

face.

Both employed in generator and used for identity pre-

serving, the face expert network Genc : R
H×W×C 7→

R
D produces reliable identity features of input face image,

where H , W , and C denote the image height, width, and

channel number respectively, and D is the size of feature

vector.

3.2. Generator

We employ the face expert network as the encoder of

the generator to map input face to feature space, denoted

as Genc. A decoder Gdec is constructed to make a further

effort on distilling identity by recovering a normalized (i.e.,

front-facing, neutral expression) face. Specifically, the gen-

erator is stated as G = Genc ◦ Gdec, for a learned function

Genc (VGG-Face2).

More formally, let face image from non-normal set be

denoted by x ∈ R
H×W×C and the responding generated

face image be denoted by x̃ ∈ R
H×W×C , then

x̃ := Gdec(Genc(x)), (1)

When function of G is normalizing arbitrary input face, it is

obvious that G would reconstruct normal face to itself. To

this end, we also input normal face to G:

ỹ := Gdec(Genc(y)), (2)

where y denotes face image from normal face set, and ỹ de-

notes corresponding normalized face image. The new term

of normal-to-normal mapping makes it possible to introduce

pixel-wise loss, which guides and stabilizes the optimiza-

tion of GAN in condition of unpaired data.

We generate normal face image using a fully convolu-

tional network. As applied on identity features from Genc,

Gdec consists of a set of stacked layer groups (transposed

convolution layer [9], ReLU layer and Residual block [14]).

Finally, we apply an 1×1 convolution to yield 224×224×3
RGB values.

An ideal generator will warp non-normal face to pho-

torealistic normalized face, and keep consistent on normal

face. Meanwhile, preserving the identity information is cru-

cial for face recognition. Employing face expert network in

generator is an essential part in our model. Extracting face

identity features from a face in unconstrained environment

is more difficult than generating a normalized face from

identity features. Intuitively, this idea eases the difficulty

of the generator by more than a half.

3.3. Face Attention Discriminators

We introduce a series of discriminators to distinguish be-

tween real normal face images and generated normal face

images. Considering face characteristic, these discrimina-

tors have different receptive fields. More specifically, we

crop the regions of eyes, nose, mouth and face to construct

face attention discriminators, while an addition discrimina-

tor receives the entire image. As shown in Fig. 2, we con-

struct five discriminators (Dk, k = 1, 2, 3, 4, 5) with five

corresponding attention regions respectively.

Different from general image generation task, face syn-

thesis attaches great importance to local facial texture. The

idea of image attention is applied in DA-GAN [21] and TP-

GAN [16]. Unlike previous works that crop attention re-

gions of input image, our FNM pays attention on fixed re-

gions of output normalized face. Integrating the attention

mechanism into face synthesis produces photorealistic face

image with great quality.

3.4. Loss Function

The key objective of our FNM is to normalize an arbi-

trary face, while the synthesized face should keep the iden-

tity of the input face and look like a real face. Two losses

are proposed to basically meet the requirements, denoted by

Ladv , Lip as following:

Ladv =

5∑

k=1

Dk(x̃k) +

5∑

k=1

Dk(ỹk)−

5∑

k=1

Dk(yk), (3)

Lip = ||Genc(x)−Genc(x̃)||
2

2
+ ||Genc(y)−Genc(ỹ)||

2

2
,

(4)

where subscript k is number of attention discriminators

and corresponding regions, Ladv is the adversarial loss

for domain adaptation from source distribution (i.e., non-

normal face set) to target distribution (i.e., normal face set)

and adding realism to the synthesized images, Lip is the

identity perception loss for preserving the identity informa-

tion. || · ||2
2
means the vector 2-norm.

Proposed by Arjovsky et al. [2], Wasserstein distance is

effective in stabilizing the optimization process of GAN.

We apply WGAN-GP [12] loss in our model instead of orig-

inal cross entropy loss. To be specific, the outputs of the

discriminators are directly applied to loss function without

sigmoid activating.
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Figure 3. Face normalization results on IJB-A [18] under extreme pose, express, lighting, occlusion and front view.

Besides the elaborate architecture presented in Sec. 3.3

and Sec. 3.2, we suggest to employ a new term for the

problem of unpaired data. The image-wise adversarial loss

would result in distorted face contour and volatile optimiza-

tion process. We would like the generator G to behave like

an identity matrix when applied to faces from the normal

set. It is an essential part for both texture information pre-

serving and stable optimization. We introduce a pixel-wise

consistency before and after face normalization on normal

face, denoted by Lp as following:

Lp =
1

W ×H × C

W,H,C∑

w,h,c

|yw,h,c − ỹw,h,c|, (5)

where w, h, c traverse all pixels and channels of y and ỹ.

We have three forms of loss for warping face, preserv-

ing identity and promoting performance respectively. The

overall objective function for FNM is:
{

LD = Ladv,

LGdec
= −Ladv + λ1Lip + λ2Lp.

(6)

We optimize FNM by alternatively optimizing D and Gdec

for each training iteration.

4. Experimental Results

FNM aims for synthesizing a canonical view and

identity-preserved face in extreme unconstrained environ-

ment. Face normalization is an image-level disentangled

representation. In Sec. 4.2, we show qualitative face nor-

malization results of FNM. In Sec. 4.3, we quantitatively

evaluate face recognition performance on boosting face

recognition models under both the controlled and in-the-

wild settings. In Sec. 4.4, we further conduct experiments

with different architectures and loss functions to analyse re-

spective roles.

4.1. Experimental Settings

Databases: IJB-A [18] is one of the most challenging

unconstrained face recognition benchmark dataset with un-

controlled pose variations. IJB-A[18] contains both images

and video frames from 500 subjects with 5,397 images and

2,042 videos that are split into 20,412 frames, 11.4 images

and 4.2 videos per subject, captured from in-the-wild en-

vironment to avoid the near frontal bias, along with pro-

tocols for evaluation of both verification (1:1 comparison)

and identification (1:N search) tasks. For testing, 10 ran-

dom splits are provided by each protocol, respectively.

The CMU Multi-PIE database [11] is the largest database

for evaluating face synthesis and recognition in the con-

trolled setting. Multi-PIE allows for a graded evaluation

with respect to pose, illumination, and expression varia-

tions. Thus, it is an important database to validate the

performance of our method with respect to prior works on

face synthesis. We conduct experiments on Multi-PIE with

Setting-1 [30, 16, 29], which contains faces of 250 subjects.

The training set is composed of all the images (13 poses

and 20 illumination levels) of the first 150 identities, i.e.,

150 × 13 × 20 = 39, 000 images in total. For testing, one

gallery image under frontal view and normal illumination is

used for each of the remaining 100 subjects. The numbers

of the probe and gallery sets are 24,000 and 100 respec-

tively.

Implementation details: In unconstrained experiment,

the non-normal face set contains 297,369 face images from

unconstrained dataset CASIA-WebFace [28], while the nor-

mal face set contains 5,000 face images (front pose and

20 illuminations of 250 identities) from Multi-PIE [11].

In constrained experiment, we separate training set of the

Multi-PIE Setting-1 into non-normal set (12 poses and 20

illuminations of 150 identities) and normal set (front pose
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Figure 4. Synthesis results on Multi-PIE. Each pair presents profile (left), normalized face (middile) and ground truth normal face (right).

Table 1. Performance comparison on IJB-A. The results are aver-

aged over 10 testing splits. Symbol “-” implies that the result is

not reported for that method. FNM is incorporated into two face

recognition framework VGG-Face [24] and Light CNN [26] as a

pre-processing procedure.

Method
Verification Identification

@FAR=0.01 @FAR=0.001 @Rank-1 @Rank-5

OpenBR [18] 23.6±0.9 10.4±1.4 24.6±1.1 37.5±0.8

GOTS [18] 40.6±1.4 19.8±0.8 43.3±2.1 59.5±2.0

PAM [22] 73.3±1.8 55.2±3.2 77.1±1.6 88.7±0.9

DCNN [5] 78.7±4.3 - 85.2±1.8 93.7±1.0

DR-GAN [20] 77.4±2.7 53.9±4.3 85.5±1.5 94.7±1.1

FF-GAN [31] 85.2±1.0 66.3±3.3 90.2±0.6 95.4±0.5

VGG-Face [24] 86.8±1.8 68.4±3.3 92.8±0.8 97.9±0.6

FNM+VGG-Face 88.8±1.9 69.0±4.6 94.6±0.5 98.4±0.5

Light CNN [26] 82.7±2.0 67.4±2.2 84.5±1.7 92.6±0.9

FNM+Light CNN 93.4±0.9 83.8±2.6 96.0±0.5 98.6±0.3

and 20 illuminations of 150 identities). As our objective

is face normalization with unpaired data, we strictly keep

the same setting on constrained and unconstrained environ-

ments. In particular, we do not use paired data and identity

information under both environments, which is available in

controlled environment.

We pre-process the images by applying an off-the-shelf

face detection algorithm [32] and crop to 250 × 250 im-

age size across all the databases. The Genc is constructed

on public-available pretrained ResNet-50 [14] from VGG-

Face2 [4]. We keep the Genc fixed both in training and

testing process. Our network is implemented on Tensorflow

[1]. We train the discriminators and the generator by iter-

atively minimizing the discriminator loss function and the

generator loss function in sequence with Adam [17]. We

empirically set the hyperparameters of the loss functions as

follows: λ1 = 10, λ2 = 0.001. We set the hyperparameters

of the optimizer as follows: α = 10−4, β1 = 0, β2 = 0.9,

ǫ = 10−8. Please refer to supplementary material for full

details on network architectures and training procedures.

4.2. Qualitative Results

As shown in Fig. 3, FNM can generate high-fidelity and

identity-preserved normal face on unconstrained dataset

IJB-A [18]. There are intricate face variations in uncon-

strained environment. These results demonstrate robustness

Table 2. Rank-1 recognition rates (%) across poses and illumina-

tions under Multi-PIE Setting-1. FNM is incorporated into two

face recognition framework VGG-Face [24] and Light CNN [26]

as a pre-processing procedure.
Method ±90◦ ±75◦ ±60◦ ±45◦ ±30◦ ±15◦

HPN [8] 29.82 47.57 61.24 72.77 78.26 84.23

c-CNN [27] 47.26 60.7 74.4 89.0 94.1 97.0

TP-GAN [16] 64.0 84.1 92.9 98.6 99.9 99.8

PIM [33] 75.0 91.2 97.7 98.3 99.4 99.8

CAPG-GAN [29] 77.1 87.4 93.7 98.3 99.4 99.9

VGG-Face [24] 2.1 5.8 38.0 73.5 85.8 94.9

FNM+VGG-Face 41.1 67.3 83.6 93.6 97.2 99.0

Light CNN [26] 2.6 10.5 32.7 71.2 95.1 99.8

FNM+Light CNN 55.8 81.3 93.7 98.2 99.5 99.9

of FNM to large pose, lighting, occlusion and expression.

Specially, our FNM performs well in large-pose challenge

with 90◦ yaw angle. It’s worth noting that the difficulty

of face normalization on unconstrained environment lies in

not only extreme variations but mixture of these variations.

With the robustness of face recognition model, our model

generates normalized face from high-level semantic feature

instead of image. Surprisingly, we observe FNM’s ability

in super resolution, while we don’t have special setting in

training process.

The proposed FNM provides a further insight into the

structure of the identity feature space. Moustache, hair and

glasses are preserved in normalizing procedure. Normal

face set is from controlled environment with the same back-

ground, which likely results in overfitting on the images’

backgrounds. From another aspect, it also verifies that face

recognition would not be affected by background.

Further synthesis results on the controlled database

Multi-PIE are shown in Fig. 4.

4.3. Quantitative Results

We conduct unconstrained face recognition (i.e., verifi-

cation and identification) on IJB-A database to quantita-

tively verify the superiority of FNM on “recognition via

generation”. In addition, we evaluate our model on con-

trolled database Multi-PIE for comparison. FNM is incor-

porated into two pre-trained face recognition models, VGG-

Face [24] and Light CNN [26]. More specifically, we use
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Figure 5. The results produced by two variations of FNM. (a) In-

put face. (b) FNM without Lp. (c) FNM without face attention

mechanism. (d) our FNM.

Table 3. Component analysis: rank-1 recognition rates (%) across

poses and illuminations under Multi-PIE Setting-1. Light CNN

[26] is choose as baseline.
Method ±90◦ ±75◦ ±60◦ ±45◦ ±30◦ ±15◦

Light CNN [26] 2.6 10.5 32.7 71.2 95.1 99.8

w/o Lp 46.9 62.0 70.4 78.5 81.2 90.3

w/o attention 41.3 66.6 83.4 92.3 96.0 97.6

FNM+Light CNN 55.8 81.3 93.7 98.2 99.5 99.9

FNM as a pre-processing procedure and then apply the same

face recognition process. The results of VGG-Face and

Light CNN on the original images are used as the baselines

of our method.

As shown in Table 1, we evaluate the face recognition

performance on our normalized images of IJB-A database

with two baselines and other state-of-the-art methods. The

results of VGG-Face [24] and Light CNN [26] demon-

strate that FNM has a clear advantage to enhance the per-

formance of face recognition model. Our method achieves

consistently significant improvement compared to the base-

line methods. In particular, FNM with Light CNN achives

10.7% improvement at FAR 0.01 and 16.4% improvement

at FAR 0.001 on face verification, 7.5% improvement at

Rank-1 and 6.0% improvement at Rank-5 on identification.

Face alignment is not necessary for VGG-Face, but neces-

sary for Light CNN. Our FNM provide a different way of

face alignment in unconstrained environment. It might be

the reason that FNM performs better on Light CNN than on

VGG-Face.

As shown in Table 2, we evaluate the face recogni-

tion performance on our normalized images of Multi-PIE

database. The accuracies of FNM achieve comparable per-

formance with the state-of-the-art methods. The perfor-

mance gap with the other methods lies in two points: 1)

These methods fine-tune the baseline (Light-CNN) on the

Multi-PIE database, while our FNM is directly incorpo-

rated to face recognition model; 2) These methods train

with paired data and identity information while our FNM

keeps the same training strategy with uncontrolled environ-

LFW PIM TP-GAN DR-GAN Hassner et al. FNM

Figure 6. Comparison of face frontalization on LFW[15].

ments. Under extreme pose, our FNM achieves incredible

improvements (i.e. 2.6% to 55.8% under ±90◦)

4.4. Ablation Study

To verify the superiority of FNM as well as the con-

tribution of each component, we train two partial variants

of FNM in terms of without Lp and without face attention

mechanism (i.e., only one discriminator for the whole im-

age). Fig. 5 illustrates the perceptual performance of these

variants. The results on the first row show dropping of qual-

ity even in the case of near-front input face. The results on

the second row demonstrate that our elaborate face attention

discriminators have a notable performance in perceiving lo-

cal texture. Detailed recognition performance is reported in

Table 3.

5. Conclusion

In this paper, we propose a novel Face Normalization

Model (FNM) for unsupervised face normalization in con-

dition of unconstrained environment. FNM uses a face ex-

pert network to produce face identity features and preserve

identity, which decomposes the task of generator to employ

high-level semantic feature instead of image. A pixel-wise

loss is introduced by a novel way for stabilizing training

optimization and high quality result. Face attention mecha-

nism helps to refine the local texture effectively. The advan-

tage of FNM is that it can be easily incorporated into off-

the-shelf face recognition framework as a pre-processing

procedure. Extensive quantitative and qualitative results

validate the superiority of FNM on visual applications and

boosting recognition performance of face recognition.
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