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Figure 1. Synthetic virtual scenes generated by our method. Our model can generate a large variety of such scenes, as well as complete

partial scenes, in under two seconds per scene. This performance is enabled by a pipeline of multiple deep convolutional generative models

which analyze a top-down representation of the scene.

Abstract

We present a new, fast and flexible pipeline for in-

door scene synthesis that is based on deep convolu-

tional generative models. Our method operates on a

top-down image-based representation, and inserts ob-

jects iteratively into the scene by predicting their cate-

gory, location, orientation and size with separate neu-

ral network modules. Our pipeline naturally supports

automatic completion of partial scenes, as well as syn-

thesis of complete scenes. Our method is significantly

faster than the previous image-based method and gen-

erates result that outperforms it and other state-of-the-

art deep generative scene models in terms of faithful-

ness to training data and perceived visual quality.

1. Introduction

People spend a large percentage of their lives indoors: in

bedrooms, living rooms, offices, kitchens, and other such

∗Equal contribution

spaces. The demand for virtual versions of these real-world

spaces has never been higher. Games, virtual reality, and

augmented reality experience often take place in such en-

vironments. Architects often create virtual instantiations of

proposed buildings, which they visualize for customers us-

ing computer-generated renderings and walkthrough anima-

tions. People who wish to redesign their living spaces can

benefit from a growing array of available online virtual inte-

rior design tools [25, 21]. Furniture design companies, such

as IKEA and Wayfair, increasingly produce marketing im-

agery by rendering virtual scenes, as it is faster, cheaper, and

more flexible to do so than to stage real-world scenes [10].

Finally, and perhaps most significantly, computer vision and

robotics researchers have begun turning to virtual environ-

ments to train data-hungry models for scene understanding

and autonomous navigation [2, 3, 8].

Given the recent interest in virtual indoor environments,

a generative model of interior spaces would be valuable.

Such a model would provide learning agents a strong prior

over the structure and composition of 3D scenes. It could
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also be used to automatically synthesize large-scale virtual

training corpora for various vision and robotics tasks.

We define such a scene synthesis model as an algorithm

which, given an empty interior space delimited by archi-

tectural geometry (floor, walls, and ceiling), decides which

objects to place in that space and where to place them. Any

model which solves this problem must reason about the ex-

istence and spatial relationships between objects in order to

make such decisions. In computer vision, the most flexible,

general-purpose mechanism available for such reasoning is

convolution, especially as realized in the form of deep con-

volutional neural networks (CNNs) for image understand-

ing. Recent work has attempted to perform scene synthe-

sis using deep CNNs to construct priors over possible ob-

ject placements in scenes [13]. While promising, this first

attempt suffers from many limitations. It reasons locally

about object placements and can struggle to globally coor-

dinate an entire scene (e.g. failing to put a sofa into a living

room scene). It does not model the size of objects, lead-

ing to problems with inappropriate object selection (e.g. an

implausibly-long wardrobe which blocks a doorway). Fi-

nally, and most critically, it is extremely slow, requiring

minutes to synthesize a scene due to its use of hundreds

of deep CNN evaluations per scene.

We believe that image-based synthesis of scenes is

promising because of the ability to perform precise, pixel-

level spatial reasoning, as well as the potential to leverage

existing sophisticated machinery developed for image un-

derstanding with deep CNNs. In this paper, we present a

new image-based scene synthesis pipeline, based on deep

convolutional generative models, that overcomes the issues

of prior image-based synthesis work. Like the previous

method mentioned above, it generates scenes by iteratively

adding objects. However, it factorizes the step of adding

each object into a different sequence of decisions which al-

low it (a) to reason globally about which objects to add, and

(b) to model the spatial extent of objects to be added, in ad-

dition to their location and orientation. Most importantly,

it is fast: two orders of magnitude faster than prior work,

requiring on average under 2 seconds to synthesize a scene.

We evaluate our method by using it to generate syn-

thetic bedrooms, living rooms, offices, and bathrooms (Fig-

ure 1). We also show how, with almost no modification

to the pipeline, our method can synthesize multiple auto-

matic completions of partial scenes using the same fast gen-

erative procedure. We compare our method to the prior

image-based method, another state-of-the art deep gener-

ative model based on scene hierarchies, and scenes created

by humans, in several quantitative experiments and a per-

ceptual study. Our method performs as well or better than

these prior techniques.

2. Related Work

Indoor Scene Synthesis A considerable amount of effort

has been devoted to studying indoor scene synthesis. Some

of the earliest work in this area utilizes interior design prin-

ciples [19] and simple statistical relationships [31] to ar-

range pre-specified sets of objects. Other early work at-

tempts fully data-driven scene synthesis [6] but is limited to

small scale scenes due to the limited availability of training

data and the learning methods available at the time.

With the availability of large scene datasets such as

SUNCG [28], new data-driven methods have been pro-

posed. [20] uses a directed graphical model for object se-

lection but relies on heuristics for object layout. [23] uses

a probabilistic grammar to model scenes, but also requires

data about human activity in scenes (not readily available

in all datasets) as well as manual annotation of important

object groups. In contrast, our model uses deep convolu-

tional generative models to generate all important object

attributes—category, location, orientation and size—fully

automatically.

Other recent methods have adapted deep neural networks

for scene synthesis. [33] uses a Generative Adversarial Net-

work to generate scenes in an attribute-matrix form (i.e. one

column per scene object). More recently, GRAINS [16]

uses recursive neural networks to encode and sample struc-

tured scene hierarchies. Most relevant to our work is [13],

which also uses deep convolutional neural networks that op-

erate on top-down image representations of scenes and syn-

thesizes scenes by sequentially placing objects. The main

difference between our method and theirs is that (1) our

method samples each object attribute with a single inference

step, while theirs perform hundreds of inferences, and (2)

our method models the distribution over object size in addi-

tion to category, location, and orientation. Our method also

uses separate modules to predict category and location, thus

avoiding some of the failure cases their method exhibits.

Deep Generative Models Deep neural networks are in-

creasingly used to build powerful models which generate

data distributions, in addition to analyzing them, and our

model leverages this capability. Deep latent variable mod-

els, in particular variational autoencoders (VAEs) [14] and

generative adversarial networks (GANs) [7], are popular

for their ability to pack seemingly arbitrary data distribu-

tions into well-behaved, lower-dimensional “latent spaces.”

Our model uses conditional variants of these models—

CVAEs [27] and CGANs [18]—to model the potentially

multimodal distribution over object orientation and spatial

extent. Deep neural networks have also been effectively

deployed for decomposing complex distributions into a se-

quence of simpler ones. Such sequential or autoregressive

generative models have been used for unsupervised parsing
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Figure 2. Overview of our automatic object-insertion pipeline. We extract a top-down-image-based representation of the scene, which is

fed to four decision modules: which category of object to add (if any), the location, orientation, and dimensions of the object.

of objects in images [5], generating natural images with se-

quential visual attention [9], parsing images of hand-drawn

diagrams [4], generating 3D objects via sequential assem-

blies of primitives [34], and controlling the output of pro-

cedural graphics programs [24], among other applications.

We use an autoregressive model to generate indoor scenes,

constructing them object by object, where each step is con-

ditioned on the scene generated thus far.

Training Data from Virtual Indoor Scenes Virtual in-

door scenes are rapidly becoming a crucial source of train-

ing data for computer vision and robotics systems. Sev-

eral recent works have shown that indoor scene under-

standing models can be improved by training on large

amounts of synthetically-generated images from virtual in-

door scenes [32]. The same has been shown for indoor 3D

reconstruction [2], as well as localization and mapping [17].

At the intersection of vision and robotics, researchers work-

ing on visual navigation often rely on virtual indoor envi-

ronments to train autonomous agents for tasks such as in-

teractive/embodied question answering [3, 8]. To support

such tasks, a myriad of virtual indoor scene simulation plat-

forms have emerged in recent years [26, 29, 1, 15, 30, 22].

Our model can complement these simulators by automati-

cally generating new environments in which to train such

intelligent visual reasoning agents.

3. Model

Our goal is to build a deep generative model of scenes

that leverages precise image-based reasoning, is fast, and

can flexibly generate a variety of plausible object arrange-

ments. To maximize flexibility, we use a sequential gen-

erative model which iteratively inserts one object at a time

until completion. In addition to generating complete scenes

from an empty room, this paradigm naturally supports par-

tial scene completion by simply initializing the process with

a partially-populated scene. Figure 2 shows an overview

of our pipeline. It first extracts a top-down, floor-plan im-

age representation of the input scene, as done in prior work

on image-based scene synthesis [13]. Then, it feeds this

representation to a sequence of four decision modules to

determine how to select and add objects into the scene.

These modules decide which category of object to add to

the scene, if any (Section 3.1), where that object should be

located (Section 3.2), what direction it should face (Sec-

tion 3.3), and its physical dimensions (Section 3.4). This

is a different factorization than in prior work, which we

will show leads to both faster synthesis and higher-quality

results. The rest of this section describes the pipeline at

a high level; precise architectural details can be found in

the supplemental material, and the source code for our sys-

tem is available at https://github.com/brownvc/

fast-synth.

3.1. Next Object Category

The goal of our pipeline’s first module is, given a top

down scene image representation, to predict the category of

an object to add to the scene. The module needs to reason

about what objects are already present, how many, and the

available space in the room. To allow the model to also de-

cide when to stop, we augment the category set with an ex-

tra “<STOP>” category. The module uses a Resnet18 [11]

to encode the scene image. It also extract the counts of all

categories of objects in the scene (i.e. a “bag of categories”

representation), as in prior work [13], and encodes this with

a fully-connected network. Finally, the model concatenates

these two encodings and feeds them through another fully-

connected network to output a probability distribution over

categories. At test time, the module samples from the pre-

dicted distribution to select the next category.

Figure 3 shows some example partial scenes and the

most probable next categories that our model predicts for

them. Starting with an empty scene, the next-category

distribution is dominated by one or two large, frequently-

occurring objects (e.g. beds and wardrobes, for bedroom

scenes). The probability of other categories increases as

the scene begins to fill, until the scene becomes sufficiently

populated and the “<STOP>” category begins to dominate.

Prior work in image-based scene synthesis predicted cat-

egory and location jointly [13]. This lead to the drawback,

as the authors has noted, that objects which are very likely
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Figure 3. Distributions over the next category of object to add to

the scene, as predicted by our model. Empty scenes are dominated

by one or two large, frequent object types (top), partially populated

scenes have a range of possibilities (middle), and very full scenes

are likely to stop adding objects (bottom).

to occur in a location can be repeatedly (i.e. erroneously)

sampled, e.g. placing multiple nightstands to the left of a

bed. In contrast, our category prediction module reasons

about the scene globally and thus avoid this problem.

3.2. Object Location

In the next module, our model takes the input scene and

predicted category to determine where in the scene an in-

stance of that category should be placed. We treat this

problem as an image-to-image translation problem: given

the input top-down scene image, output a ‘heatmap’ image

containing the probability per pixel of an object occurring

there. This representation is advantageous because it can

be treated as a (potentially highly multimodal) 2D discrete

distribution, which we can sample to produce a new loca-

tion. This pixelwise discrete distribution is similar to that

of prior work, except they assembled the distribution pixel-

Double Bed Wardrobe Nightstand
Figure 4. Probability densities for the locations of different object

types predicted by our fully-convolutional network module.

(a) (b) (c) (d)

Figure 5. Probability distributions for nightstands, without ((a) &

(c)) and with ((b) & (d)) regularization.

by-pixel, invoking a deep convolutional network once per

pixel of the scene [13]. In contrast, our module uses a single

forward pass through a fully-convolutional encoder-decoder

network (FCN) to predict the entire distribution at once.

This module uses a Resnet34 encoder followed by an up-

convolutional decoder. The decoder outputs a 64×64×|C|
image, where |C| is the number of categories. The module

then slices out the channel corresponding to the category

of interest and treats it as a 2D probability distribution by

renormalizing it. We also experimented with using separate

FCNs per category that predict a 64 × 64 × 1 probability

density image but found it not to work as well. We suspect

that training the same network to predict all categories pro-

vides the network with more context about different loca-

tions, e.g. instead of just learning that it should not predict a

wardrobe at a location, it can also learn that this is because a

nightstand is more likely to appear there. Before renormal-

ization, the module zeros out any probability mass that falls

outside the bounds of the room. When predicting locations

for second-tier categories (e.g. table lamps), it also zeros

out probability mass that falls on top of an object that was

not observed as a supporting surface for that category in the

dataset. At test time, we sample from a tempered version of

this discrete distribution (we use temperature τ = 0.8 for

all experiments in this paper).

Figure 4 shows examples of predicted location distribu-

tions for different scenes. The predicted distributions for

bed and wardrobe avoid placing probability mass in loca-

tions which would block the doors. The distribution for

nightstand is bimodal, with each mode tightly concentrated

around the head of the bed.

To train the network, we use pixel-wise cross entropy

loss. As in prior work, we augment the category set with

a category for “empty space,” which allows the network

6185



Nightstand Table Lamp Armchair
Figure 6. High-probability object orientations sampled by our

CVAE orientation predictor (visualized as a density plot of front-

facing vectors). Objects typically either snap to one orientation

(left) or multiple orientation modes (middle), or have a range of

values clustered around a single mode (right).

to reason about where objects should not be, in addition

to where they should. Empty-space pixels are weighted 10
times less heavily than occupied pixels in the training loss

computation. As the ground truth label for each train-

ing example is a single location instead of a distribution,

our model has the potential to overfit to that exact location.

This is shown in Figures 5a & 5c, where the predicted dis-

tribution collapses to single-point locations. In the second

case, the network likely tries to match the input room to

several memorized ones, none of which makes sense. To

deal with this problem, we handicap the capacity of the net-

work by applying L2 regularization and dropout, forcing it

to learn a latent space where structurally similar scenes are

close together. This results in averaged output locations, i.e.

a continuous distribution of locations (Figures 5b & 5d).

Before moving on to the next module, our system trans-

lates the input scene image so that it is centered about the

predicted location. This makes the subsequent modules

translation-invariant.

3.3. Object Orientation

Given a translated top-down scene image and object cat-

egory, the orientation module predicts what direction an ob-

ject of that category should face if placed at the center of

the image. We assume each category has a canonical front-

facing direction. Rather than predict the angle of rotation

θ, which is circular, we instead predict the front direction

vector, i.e. [cos θ, sin θ]. This must be a normalized vec-

tor, i.e. the magnitude of sin θ must be
√
1− cos2 θ. Thus,

our module predicts cos θ along with a Boolean value giv-

ing the sign of sin θ. Here, we found using separate network

weights per category to be most effective.

The set of possible orientations has the potential to be

multimodal: for instance, a bed in the corner of a room may

be backed up against either wall of the corner. To allow

our module to model this behavior, we implement it with a

conditional variational autoencoder (CVAE) [27]. Specifi-

cally, we use a CNN to encode the input scene, which we

then concatenate with a latent code z sampled from a mul-

Double Bed TV Stand Ottoman
Figure 7. High-probability object dimensions sampled by our

CVAE-GAN dimension predictor (visualized as a density plot of

bounding boxes). Objects in more constrained locations have

lower-variance size distributions (right).

tivariate unit normal distribution, and then feed to a fully-

connected decoder to produce cos θ and the sign of sin θ. At

training time, we use the standard CVAE loss formulation

(i.e. with an extra encoder network) to learn an approximate

posterior distribution over latent codes).

Since interior scenes are frequently enclosed by rectilin-

ear architecture, objects in them are often precisely aligned

to cardinal directions. A CVAE, however, being a proba-

bilistic model, samples noisy directions. To allow our mod-

ule to produce precise alignments when appropriate, this

module includes a second CNN which takes the input scene

and predicts whether the object to be inserted should have

its predicted orientation “snapped” to the nearest of the four

cardinal directions.

Figure 6 shows examples of predicted orientation distri-

butions for different input scenes. The nightstand snaps to

a single orientation, being highly constrained by its rela-

tions to the bed and wall. Table lamps are often symmet-

ric, which leads to a predicted orientation distribution with

multiple modes. An armchair to be placed in the corner of

a room is most naturally oriented diagonally with respect to

the corner, but some variability is possible.

Before moving on to the next module, our system ro-

tates the input scene image by the predicted angle of rota-

tion. This transforms the image into the local coordinate

frame of the object category to be inserted, making sub-

sequent modules rotation-invariant (in addition to already

being translation-invariant).

3.4. Object Dimensions

Given a scene image transformed into the local coordi-

nate frame of a particular object category, the dimensions

module predicts the spatial extent of the object. That is, it

predicts an object-space bounding box for the object to be

inserted. This is also a multimodal problem, even more so

than orientation (e.g. many wardrobes of varying lengths

can fit against the same wall). Again, we use a CVAE for

this: a CNN encodes the scene, concatenates it with z, and

then uses a fully-connected decoder to produce the [x, y]
dimensions of the bounding box.
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The human eye is very sensitive to errors in size, e.g.

an object that is too large and thus penetrates the wall next

to it. To help fine-tune the prediction results, we also in-

clude an adversarial loss term in the CVAE training. This

loss uses a convolutional discriminator which takes the in-

put scene concatenated channel-wise with the signed dis-

tance field (SDF) of the predicted bounding box. As with

the orientation module, this module also uses separate net-

work weights per category.

Figure 7 visualizes predicted size distributions for differ-

ent object placement scenarios. The predicted distributions

capture the range of possible sizes for different object cat-

egories, e.g. TV stands can have highly variable length.

However, in a situation such as Figure 7 Right, where an

ottoman is to be placed between the nightstand and the

wall, the predicted distribution is lower-variance due to this

highly constrained location.

3.5. Object Insertion

To choose a specific 3D model to insert given the pre-

dicted category, location, orientation, and size, we per-

form a nearest neighbor search through our dataset to find

3D models that closely fit the predicted object dimensions.

When multiple likely candidate models exist, we favor ones

that have frequently co-occurred in the dataset with other

objects already in the room, as this slightly improves the

visual style of the generated rooms (though it is far from a

general solution to the problem of style-aware scene synthe-

sis). Occasionally, the inserted object collides with existing

objects in the room, or, for second-tier objects, overhangs

too much over its supporting surface. In such scenarios, we

choose another object of the same category. In very rare sit-

uations (less than 1%), no possible insertions exist. If this

occurs, we resample a different category from the predicted

category distribution and try again.

4. Data & Training

We train our model using the SUNCG dataset, a collec-

tion of over forty thousand scenes designed by users of an

online interior design tool [28]. In this paper, we focus our

experiments on four common room types: bedrooms, liv-

ing rooms, bathrooms, and offices. We extract rooms of

these types from SUNCG, performing pre-processing to fil-

ter out uncommon object types, mislabeled rooms, etc. Af-

ter pre-processing, we obtained 6300 bedrooms (with 40

object categories), 1400 living rooms (35 categories), 6800

bathrooms (22 categories), and 1200 offices (36 categories).

Further details about our dataset and pre-processing proce-

dures can be found in the supplemental material.

To generate training data for all of our modules, we fol-

low the same general procedure: take a scene from our

dataset, remove some subset of objects from it, and task the

module with predicting the ‘next’ object to be added (i.e.

one of the removed objects). This process requires an or-

dering of the objects in each scene. We infer static support

relationships between objects (e.g. lamp supported by table)

using simple geometric heuristics, and we guarantee that

all supported objects come after their supporting parents in

this ordering. We further guarantee that all such supported

‘second-tier’ objects come after all ‘first-tier’ objects (i.e.

those supported by the floor). For the category prediction

module, we further order objects based on their importance,

which we define to be the average size of a category multi-

plied by its frequency of occurrence in the dataset. Doing

so imposes a stable, canonical ordering on the objects in the

scene; without such an ordering, we find that there are too

many valid possible categories at each step, and our model

struggles to build coherent scenes across multiple object in-

sertions. For all other modules, we use a randomized order-

ing. Finally, for the location module, the FCN is tasked with

predicting not the location of a single next object, but rather

the locations of all missing objects removed from the train-

ing scene whose supporting surface is present in the partial

scene.

We train each module in our pipeline separately for dif-

ferent room categories. Empirically, we find that the cate-

gory module performs best after seeing ∼ 300, 000 train-

ing examples, and the location module performs best after

∼ 1, 000, 000 examples. As the problems that the orienta-

tion and dimension models are solving is more local, their

behavior is more stable across different epochs. In practice,

with use orientation modules trained with ∼ 2, 000, 000 ex-

amples and dimension modules trained with ∼ 1, 000, 000
examples.

5. Results & Evaluation

Complete scene synthesis Figure 1 shows examples of

complete scenes synthesized by our model, given the ini-

tial room geometry. Our model captures multiple possible

object arrangement patterns for each room type: bedrooms

with desks vs. those with extra seating, living rooms for

conversation vs. watching television, etc.

Scene completion Figure 8 shows examples of partial

scene completion, where our model takes an incomplete

scene as input and suggests multiple next objects to fill the

scene. Our model samples a variety of different comple-

tions for the same starting partial scene. This example also

highlights our model’s ability to cope with non-rectangular

rooms (bottom row), one of the distinct advantages of pre-

cise pixel-level reasoning with image-based models.

Object category distribution For a scene generative

model to capture the training data well, a necessary condi-

tion is that the distribution of object categories which occurs
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Input Partial Scene Synthesized Completions

Figure 8. Given an input partial scene (left column), our method

can generate multiple automatic completions of the scene. This re-

quires no modification to the method’s sampling procedure, aside

from seeding it with a partial scene instead of an empty one.

Method Bedroom Living Bathroom Office

Uniform 0.6202 0.8858 1.3675 0.7219

Deep Priors [13] 0.2017 0.4874 0.2479 0.2138

GRAINS [16] 0.2135 0.3217 — —

Ours 0.0095 0.0179 0.0240 0.0436

Table 1. KL divergence between the distribution of object cate-

gories in synthesized results vs. training set. Lower is better. Uni-

form is the uniform distribution over object categories.

in its synthesized results should closely resemble that of the

training set. To evaluate this, we compute the Kullback-

Leibler divergence DKL(Psynth||Pdataset) between the cat-

egory distribution of synthesized scenes and that of the

training set. Note that we cannot compute a symmetrized

Jensen-Shannon divergence because some of the methods

we compare against have zero probability for certain cate-

gories, making the divergence infinite. Table 1 shows the

category distribution KL divergence of different methods.

Our method generates a category distribution that are more

faithful to that of the training set than other approaches.

Scene classification accuracy Looking beyond cate-

gories, to evaluate how well the distribution of our gener-

ated scenes match that of the training scenes, we train a

classifier tasked to distinguish between “real” scenes (from

the training set) and “synthetic” scenes (generated by our

method). The classifier is a Resnet34 that takes as input the

same top-down multi-channel image representation that our

model uses. The classifier is trained with 1,600 scenes, half

real and half synthetic. We evaluate the classifier perfor-

Method Acc Method Acc

GRAINS [16] 96.56 No Input Alignment (Orient) 94.10

Deep Priors [13] 84.69 No Input Alignment (Dims) 76.60

Ours 58.75 Joint Category + Location 81.70

Perturbed (1%) 50.00 Category from [13] 89.30

Perturbed (5%) 54.69 Location from [13] 83.60

Perturbed (10%) 64.38 Orient + Dims from [13] 67.30

Table 2. Real vs. synthetic classification accuracy for scenes gen-

erated by different methods (Left) and our method, modified by

changing the design of some of the components or substituting

them with similar components from prior works (Right). Lower

(closer to 50%) is better.

Figure 9. Correcting failure cases from [13], Fig 14. (Left) Our

model does not omit sofas for seating. (Right) Our model chooses

a cabinet that does not block the door.

mance on 320 held out test scenes.

Table 2 shows the performance against different base-

lines. Compared to previous methods, our results are sig-

nificantly harder for the classifier to distinguish. In fact,

it is marginally harder to distinguish our scenes from real

training scenes that it is to do so for scenes in which ev-

ery object is perturbed by a small random amount (standard

deviation of 10% of the object’s bounding box dimensions).

Effectiveness of our design choices We use the same

classification setup to investigate the effectiveness of our

individual design choices. As Table 2 suggests, swapping

out our model components for those of [13], omitting input

alignment for the orient and dimension modules, and pre-

dicting location + category jointly all lead to worse results

than the full model. We also show qualitatively in Fig 9 that

our strategy help to avoid common failure cases from prior

work [13]. Using a separate category module allows our

model to generate seats for the living room (left), and intro-

ducing a dimension module prevents the use of a too-large

cabinet that blocks the office door.

Speed comparisons Table 3 shows the time taken for dif-

ferent methods to synthesize a complete scene. It takes on

average less than 2 seconds for our model to generate a

complete scene on a NVIDIA Geforce GTX 1080Ti GPU,

which is two orders of magnitudes faster than the previous

image based method (Deep Priors). While slower than end-

to-end methods such as [16], our model can also perform

tasks such as scene completion and next object suggestion,

both of which can be useful in real time applications.
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Method Avg. Time ( s)

Deep Priors [13] ∼ 240

GRAINS [16] 0.1027

Ours 1.858

Table 3. Average time in seconds to generate a single scene for

different methods. Lower is better.

Perceptual study We also conducted a two-alternative

forced choice (2AFC) perceptual study on Amazon Me-

chanical Turk to evaluate how plausible our generated

scenes appear compared those generated by other methods.

Participants were shown two top-down rendered scene im-

ages side by side and asked to pick which one they found

more plausible. Images were rendered using solid colors

for each object category, to factor out any effect of material

or texture appearance. For each comparison and each room

type, we recruited 10 participants, which was sufficient to

produce strong 95% confidence intervals. Each participant

performed 55 comparisons; 5 of these were “vigilance tests”

comparing against a randomly jumbled scene to check that

participants were paying attention. We filter out participants

who did not pass all vigilance tests.

Table 4 shows the results of this study. Our gener-

ated scenes are significantly preferred to those generated by

GRAINS across all room types (GRAINS does not provide

bathroom or office results). Due to format differences, our

reconstruction of GRAINs room geometry is imperfect. We

manually removed rooms where objects intersect with the

walls, but it should be noted that the reconstructed rooms

might still differ slightly from the results presented in their

work. Compared to the Deep Priors method, our scenes are

preferred for bedrooms and bathrooms, and judged indis-

tinguishable for living rooms. Our generated office scenes

are less preferred, however. We hypothesize that this is be-

cause the office training data is highly multimodal, contain-

ing personal offices, group offices, conference rooms, etc.

It appears to us that the rooms generated by the Deep Priors

method are mostly personal offices. We also generate high

quality personal offices consistently. However, when the

category module tries to sample other types of offices, this

intent is not communicated well to other modules, result-

ing in unorganized results e.g. a small table with ten chairs.

Finally, compared to held-out human-created scenes from

SUNCG, our results are indistinguishable for bedrooms and

bathrooms, nearly indistinguishable for living rooms, and

again less preferred for offices.

6. Conclusion

In this paper, we presented a new pipeline for indoor

scene synthesis using image-based deep convolutional gen-

erative models. Our system analyzes top-down view repre-

sentations of scenes to make decisions about which objects

Ours vs.

Room Type GRAINS [16] Deep Priors [13] SUNCG

Bedroom 82.7± 3.6 56.1± 4.1 48.0± 4.7

Living 74.1± 3.8 52.7± 4.5 45.0± 4.5

Bathroom — 68.6± 3.9 50.0± 4.5

Office — 36.3± 4.5 34.8± 5.1

Table 4. Percentage (± standard error) of forced-choice compar-

isons in which scenes generated by our method are judged as more

plausible than scenes from another source. Higher is better. Bold

indicate our scenes are preferred with > 95% confidence; gray in-

dicates our scenes are dis-preferred with > 95% confidence; reg-

ular text indicates no preference. — indicates unavailable results.

to add to a scene, where to add them, how they should be

oriented, and how large they should be. Combined, these

decision modules allow for rapid (under 2 seconds) synthe-

sis of a variety of plausible scenes, as well as automatic

completion of existing partial scenes. We evaluated our

method via statistics of generated scenes, the ability of a

classifier to detect synthetic scenes, and the preferences of

people in a forced-choice perceptual study. Our method out-

performs prior techniques in all cases.

There are still many opportunities for future work in

the area of automatic indoor scene synthesis. We would

like to address the limitations mentioned previously in

our method’s ability to generate room types with multiple

strong modes of variation, e.g. single offices vs. confer-

ence offices. One possible direction is to explore integrat-

ing our image-based models with models of higher-level

scene structure, encoded as hierarchies a la GRAINS, or

perhaps as graphs or programs. Neither our method, nor

any other prior work in automatic scene synthesis of which

we are aware, addresses the problem of how to generate

stylistically-consistent indoor scenes, as would be required

for interior design applications. Finally, to make automatic

scene synthesis maximally useful for training autonomous

agents, generative models must be aware of the functional-

ity of indoor spaces, and must synthesize environments that

support carrying out activities of interest.
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