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Abstract

Egocentric activity recognition is one of the most chal-

lenging tasks in video analysis. It requires a fine-grained

discrimination of small objects and their manipulation.

While some methods base on strong supervision and atten-

tion mechanisms, they are either annotation consuming or

do not take spatio-temporal patterns into account. In this

paper we propose LSTA as a mechanism to focus on features

from relevant spatial parts while attention is being tracked

smoothly across the video sequence. We demonstrate the ef-

fectiveness of LSTA on egocentric activity recognition with

an end-to-end trainable two-stream architecture, achieving

state-of-the-art performance on four standard benchmarks.

1. Introduction

Recognizing human actions from videos is a widely

studied problem in computer vision. Most research is de-

voted to the analysis of videos captured from distant, third-

person views. Egocentric (first-person) video analysis is an

important and relatively less explored branch with poten-

tial applications in robotics, indexing and retrieval, human-

computer interaction, or human assistance, just to mention

a few. Recent advances in deep learning highly benefited

problems such as image classification [12, 39] and object

detection [19, 11]. However, the performance of deep learn-

ing action recognition from videos is still not comparable to

the advances made in object recognition from still images

[12]. One of the main difficulties in action recognition is

the huge variations present in the data caused by the highly

articulated nature of the human body. Human kinesics, be-

ing highly flexible in nature, results in high intra-subject and

low inter-subject variabilities. This is further challenged by

the variations introduced by the unconstrained nature of the

environment where the video is captured. Since videos are

composed of image frames, this introduces an additional di-

mension to the data, making it more difficult to define a

model that properly focuses on the regions of interest that

better discriminate particular action classes. In order to mit-

igate these problems, one approach could be the design of a

large scale dataset with fine-grain annotations covering the

space of spatio-temporal variabilities defined by the prob-

lem domain, which would be unfeasible in practice.

Here, we consider the problem of identifying fine-

grained egocentric activities from trimmed videos. This is

a comparatively difficult task considered to action recogni-

tion since the activity class depends on the action and the

object on to which the action is applied to. This requires

the development of a method that can simultaneously rec-

ognize the action as well as the object. In addition, the

presence of strong ego-motion caused by the sharp move-

ments of the camera wearer introduces noise to the video

that complicates the encoding of motion in the video frame.

While incorporating object detection can help the task of

egocentric action recognition, still this would require fine-

grain frame level annotations, becoming costly and imprac-

tical in a large scale setup.

Attention in deep learning was recently proposed to

guide networks to focus on regions of interest relevant for a

particular recognition task. This prunes the network search

space and avoids computing features from irrelevant im-

age regions, resulting in a better generalization. Existing

works explore both bottom-up [41] and top-down attention

mechanisms [32]. Bottom-up attention relies on the salient

features of the data and is trained to identify such visual

patterns that distinguish one class from another. Top-down

attention applies prior knowledge about the data for devel-

oping attention, e.g. the presence of certain objects which

can be obtained from a network trained for a different task.

Recently, attention mechanisms have been successfully ap-

plied to egocentric action recognition [15, 32], surpassing

the performance of non-attentive alternatives. Still, very

few attempts have been done to track attention into spatio-

temporal egocentric action recognition data. As a result,

current models may lose a proper smooth tracking of atten-

tion regions in egocentric action videos. Furthermore, most
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current models base on separate pre-training with strong su-

pervision, requiring complex annotation operations.

To address these limitations, in this work we investigate

on the more general question of how a video CNN-RNN

can learn to focus on the regions of interest to better dis-

criminate the action classes. We analyze the shortcomings

of LSTMs in this context and derive Long Short-Term At-

tention (LSTA), a new recurrent neural unit that augments

LSTM with built-in spatial attention and a revised output

gating. The first enables LSTA to attend the feature regions

of interest while the second constraints it to expose a dis-

tilled view of internal memory. Our study confirms that it is

effective to improve the output gating of recurrent unit since

it does not only affect prediction overall but controls the re-

currence, being responsible for a smooth and focused track-

ing of the latent memory state across the sequence. Our

main contributions can be summarized as follows:

• We present Long Short-Term Attention (LSTA), a new

recurrent unit that addresses shortcomings of LSTM

when the discriminative information in the input se-

quence can be spatially localized;

• We deploy LSTA into a two stream architecture with

cross-modal fusion, a novel control of the bias param-

eter of one modality by using the other1;

• We report an ablation analysis of the model and eval-

uate it on egocentric activity recognition, providing

state-of-the-art results in four public datasets.

2. Related Work

We discuss the most relevant deep learning methods for

addressing egocentric vision problems in this section.

2.1. First Person Action Recognition

The works of [21, 30, 43] train specialized CNN for hand

segmentation and object localization related to the activi-

ties to be recognized. These methods base on specialized

pre-training for hand segmentation and object detection net-

works, requiring high amounts of annotated data for that

purpose. Additionally, they just base on single RGB images

for encoding appearance without considering temporal in-

formation. In [24, 40] features are extracted from a series

of frames to perform temporal pooling with different oper-

ations, including max pooling, sum pooling, or histogram

of gradients. Then, a temporal pyramid structure allows the

encoding of both long term and short term characteristics.

However, all these methods do not take into consideration

the temporal order of the frames. Techniques that use a

recurrent neural network such as Long Short-Term Mem-

ory (LSTM) [2, 36] and Convolutional Long Short-Term

Memory (ConvLSTM) [31, 32] are proposed to encode the

1Code is available at https://github.com/swathikirans/LSTA

temporal order of features extracted from a sequence of

frames. Sigurdsson et al. [28] proposes a triplet network

to develop a joint representation of paired third person and

first person videos. Their method can be used for trans-

ferring knowledge from third person domain to first per-

son domain thereby partially solving the problem of lack

of large first person datasets. Tang et al. [34, 35] add an

additional stream that accepts depth maps to the two stream

networkenabling it to encode 3D information present in the

scene. Li et al. [15] propose a deep neural network to jointly

predict the gaze and action from first person videos, which

requires gaze information during training.

Majority of the state-of-the-art techniques rely on addi-

tional annotations such as hand segmentation, object bound-

ing box or gaze information. This allows the network to

concentrate on the relevant regions in the frame and helps in

distinguishing each activity from one another better. How-

ever, manually annotating all the frames of a video with

these information is impractical. For this reason, develop-

ment of techniques that can identify the relevant regions of

a frame without using additional annotations is crucial.

2.2. Attention

Attention mechanism was proposed for focusing atten-

tion on features that are relevant for the task to be recog-

nized. This includes [32, 15, 26] for first person action

recognition, [1, 20, 37] for image and video captioning and

[22, 1, 18] for visual question answering. The works of

[25, 10, 33, 32, 41, 15] use an attention mechanism for

weighting spatial regions that are representative for a par-

ticular task. Sharma et al. [25] and Zhang et al. [41] gener-

ate attention masks implicitly by training the network with

video labels. Authors of [10, 33, 32] use top-down attention

generated from the prior information encoded in a CNN pre-

trained for object recognition while [15] uses gaze informa-

tion for generating attention. The work of [23, 26] uses at-

tention for weighting relevant frames, thereby adding tem-

poral attention. This is based on the idea that not all frames

present in a video are equally important for understanding

the action being carried out. In [23] a series of temporal

attention filters is learnt that weight frame level features de-

pending on their relevance for identifying actions. [26] uses

change in gaze for generating the temporal attention. [17, 5]

apply attention on both spatial and temporal dimensions to

select relevant frames and the regions present in them.

Most existing techniques for generating spatial attention

in videos consider each frame independently. Since video

frame sequences have an absolute temporal consistency, per

frame processing results in the loss of valuable information.

2.3. Relation to stateoftheart alternatives

The proposed LSTA method generates the spatial atten-

tion map in a top-down fashion utilizing prior information
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encoded in a CNN pre-trained for object recognition and

another pre-trained for action recognition. [32] proposes

a similar top-down attention mechanism. However, they

generate the attention map independently in each frame

whereas in the proposed approach, the attention map is gen-

erated in a sequential manner. This is achieved by propa-

gating the attention map generated from past frames across

time by maintaining an internal state for attention. Our

method uses attention on the motion stream followed by a

cross-modal fusion of the appearance and motion streams,

thereby enabling both streams to interact earlier in the lay-

ers to facilitate flow of information between them. [41]

proposes an attention mechanism that takes in to consid-

eration the inputs from past frames. Their method is based

on bottom-up attention and generates a single weight ma-

trix which is trained with the video level label. However,

the proposed method generates attention, based on the in-

put, from a pool of attention maps which are learned using

video level label alone.

3. Analysis of LSTM

LSTM is the widely adopted neuron design for process-

ing and/or predicting sequences. A latent memory state ct is

tracked across a sequence with a forget-update mechanism

ct = f ⊙ ct−1 + i⊙ c (1)

where (f, i) have a gating function on the previous state

ct−1 and an innovation term c. (f, i, c) are parametric func-

tions of input xt and a gated non-linear view of previous

memory state ot−1 ⊙ η(ct−1)

(i, f,ot, c) = (σ, σ, σ, η)(W [xt,ot−1 ⊙ η(ct−1)]) (2)

The latter, referred to as hidden state ht = ot⊙η(ct), is of-

ten exposed to realize a sequence prediction. For sequence

classification instead, the final memory state can be used as

a fixed-length descriptor of the input sequence.

Two features of LSTM design explain its success. First,

the memory update (Eq. 1) is flexibly controlled by (f, i): a

state can, in a single iteration, be erased (0, 0), reset (0, 1),
left unchanged (1, 0), or progressively memorize new input.

(1, 1) resembles residual learning [12], a key design pattern

in very deep networks - depth here translates to sequence

length. Indeed, LSTMs has strong gradient flow and learn

long-term dependencies [13]. Second, the gating functions

(Eq. 2) are learnable neurons and their interaction in mem-

ory updating is transparent (Eq. 1). When applied to video

classification, a few limitations are to be discussed:

1. Memory. Standard LSTMs use fully connected neu-

ron gates and consequently, the memory state is unstruc-

tured. This may be desired e.g. for image captioning where

one modality (vision) has to be translated into another (lan-

guage). For video classification it might be advantageous
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Figure 1: LSTA extends LSTM with two novel components:

recurrent attention and output pooling. The first (red part)

tracks a weight map s to focus on relevant features, while

the second (green part) introduces a high-capacity output

gate. At the core of both is a pooling operation ς , that selects

one out of a pool of specialized mappings to realize smooth

attention tracking and flexible output gating. Circles indi-

cate point-wise or concat operations, square blocks are lin-

ear/convolutional parametric nodes with non-linearities in-

dicated by their symbols. Recurrent variables in bold.

to preserve the spatial layout of images and their convo-

lutional features by propagating a memory tensor instead.

ConvLSTM [27] addresses this shortcoming through con-

volutional gates in the LSTM.

2. Attention. The discriminative information is often con-

fined locally in the video frame. Thus, not all convolutional

features are equally important for recognition. In LSTMs

the filtering of irrelevant features (and memory) is deferred

to the gating neurons, that is, to a linear transformation (or

convolution) and a non-linearity. Attention neurons were

introduced to suppress activations from irrelevant features

ahead of gating. We augment LSTM with built-in attention

that directly interacts with the memory tracking in Sec. 4.1.

3. Output gating. Output gating not only impacts sequence

prediction but it critically affects memory tracking too, cf.

Eq 2. We replace the output gating neuron of LSTM with

a high-capacity neuron whose design is inspired by that of

attention. There is indeed a relation among them, we make

this explicit in Sec. 4.2.

4. External bias control. The neurons in Eq. 2 have a

bias term that is learnt from data during training, and it is

fixed at prediction time in standard LSTM. We leverage on

adapting the biases based on the input video for each pre-

diction. State-of-the-art video recognition is realized with

two-stream architectures, we use flow stream to control ap-

pearance biases in Sec. 5.3.

4. Long Short-Term Attention

We present a schematic view of LSTA in Fig. 1. LSTA

extends LSTM [9] with two newly designed components.

The core operation is a pooling ς , that selects one out of a
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pool of specialized mappings to realize attention tracking

(red part) and output gating (green part). The pooling

ς on features xt returns a map νa that is fed through a

conventional RNN cell with memory at and output gate

st. Its output state st ⊙ η(at) is added to the input νa and

softmax calibrated to obtain an attention map s. The map s

is then applied to xt, that is, s ⊙ xt is the attention filtered

feature for updating memory state ct using conventional

LSTM recurrence (black part). Our redesigned output

gating uses a filtered view of the updated memory state,

νc ⊙ ct, instead of xt. To obtain νc through pooling

we use s ⊙ xt to control the bias of operator ς , hereby

coupling attention tracking with output gating. This model

is instantiated for action recognition from egocentric video

in its convolutional version as

νa = ς(xt, wa) (3)

(ia, fa, st, a) = (σ, σ, σ, η)(Wa ∗ [νa, st−1 ⊙ η(at−1)])(4)

at = fa ⊙ at−1 + ia ⊙ a (5)

s = softmax(νa + st ⊙ η(at)) (6)

(ic, fc, c) = (σ, σ, η)(Wc ∗ [s⊙ xt,ot−1 ⊙ η(ct−1)])(7)

ct = fc ⊙ ct−1 + ic ⊙ c (8)

νc = ς(ct, wc + woǫ(s⊙ xt)) (9)

ot = σ(Wo ∗ [νc ⊙ ct,ot−1 ⊙ η(ct−1)]) (10)

Eqs. 3-6 implement our recurrent attention as detailed in

Sec. 4.1, Eqs. 9-10 is our coupled output gating of Sec. 4.2.

Bold symbols represent the recurrent variables: (at, st) of

shape N×1, (ct,ot) of shape N×K. Trainable parameters

are: (Wa,Wc) are both K convolution kernels, (wa, wc)
have shape K × C, wo has shape C × C. N,K,C are in-

troduced below. σ, η are sigmoid and tanh activation func-

tions, ∗ is convolution, ⊙ is point-wise multiplication. ς, ǫ

are from the pooling model presented next.

4.1. Attention Pooling

Given a matrix view xik of convolutional feature tensor

x where i indexes one of N spatial locations and k indexes

one of K feature planes, we aim at suppressing those activa-

tions xi that are uncorrelated with the recognition task. That

is, we seek a ς(x, w) of shape 1×N such that parameters w

can be tuned in a way that ς(x, w)⊙x are the discriminative

features for recognition. For egocentric activity recognition

these can be from objects, hands, or implicit patterns repre-

senting object-hand interactions during manipulation.

Our design of ς(x, w) is grounded on the assumption that

there is a limited number of pattern categories that are rel-

evant for an activity recognition task. Each category itself

can, however, instantiate patterns with high variability dur-

ing and across executions. We therefore want ς to select

from a pool of category-specific mappings, based on the

current input x. We want both the selector and the pool

of mappings be learnable and self-consistent, and realized

with fewer tunable parameters.

A selector with parameters w maps an image features

x into a category-score space C from which the category

c∗ ∈ C obtaining the highest score is returned. Our se-

lector is of the form c∗ = argmaxc π(ǫ(x), θc) where ǫ is

a reduction and θc ∈ w are the parameters for scoring x

against category c. If π is chosen to be equivariant to re-

duction ǫ then π(ǫ(x), θc) = ǫ(π(x, θc)) and we can use

{ǫ⊥(π(·, θc)), c ∈ C} as the pool of category-specific map-

pings associated to ǫ. Here ǫ⊥ denotes the ǫ-orthogonal re-

duction, e.g. if ǫ is max-pooling along one dimension then

ǫ⊥ is max-pooling along the other dimensions. That is, our

pooling model is determined by the triplet

(ς) = (ǫ, π, {θc}) , π is ǫ-equivariant (11)

and realized on a feature tensor x by

ς(x, {θc}) = ǫ⊥(π(x, θc∗)) (12)

where c∗ = argmax
c

π(ǫ(x), θc) (13)

In our model we choose

ǫ(x) ← spatial average pooling

π(ǫ, θc) ← linear mapping

so ς(x, {θc}) is a differentiable spatial mapping, i.e., we can

use ς as a trainable attention model for x. This is related to

class activation mapping [42] introduced for discriminative

localization. Note however that, in contrast to [42] that uses

strong supervision to train the selector directly, we lever-

age video-level annotation to implicitly learn an attention

mechanism for video classification. Our formulation is also

a generalization: other choices are possible for the reduc-

tion ǫ, and the use of differentiable structured layers [14] in

this context are an interesting direction for future work.

To inflate attention in LSTA, we introduce a new state

tensor at of shape N × 1. Its update rule is that of stan-

dard LSTM (Eq. 5) with gatings (fa, ia, st) and innova-

tion a computed from the pooled νa = ς(xt, wa) as input

(Eq. 4). We compute the attention tensor s using the hidden

state st ⊙ η(at) as residual (Eq. 6), followed by a softmax

calibration. Eqs. 7-10 implement the LSTA memory update

based on the filtered input s⊙ xt, this is described next.

4.2. Output Pooling

If we analyze standard LSTM Eq. 2 with input s ⊙ xt

instead of xt, it becomes evident that ot−1 (output gating)

has on ct−1 a same effect as s (attention) has on xt. In-

deed, in Eq. 7 the gatings and innovation are all computed

from [s⊙xt,ot−1⊙ η(ct−1)]. We build upon this analogy

to enhance the output gating capacity of LSTA and, conse-

quently, its forget-update behavior of memory tracking.
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We introduce attention pooling in the output gating up-

date. Instead of computing ot as by Eq. 2 we replace s⊙xt

with νc ⊙ ct to obtain update Eqs. 9-10, that is

σ(Wo ∗ [s⊙ xt,ot−1 ⊙ η(ct−1)]) ← standard

gating

σ(Wo ∗ [νc ⊙ ct,ot−1 ⊙ η(ct−1)])

with νc = ς(ct, wc + woǫ(s⊙ xt))
← output

pooling

This choice is motivated as follows. We want to pre-

serve the recursive nature of output gating, which is we

keep right-concatenating ot−1 ⊙ η(ct−1) to obtain the

2N × K-shaped tensor to convolve and tanh point-wise.

Since the new memory state ct is available at this stage,

which already integrates s ⊙ xt, we can use this for left-

concatenating instead of the raw attention-pooled input ten-

sor. This is similar to a peephole connection in the output

gate [8]. We can even produce a filtered version νc ⊙ ct

of it if we introduce a second attention pooling neuron for

localizing the actual discriminative memory component of

ct, that is via νc, Eq. 9. Note that ct integrates informa-

tion from past memory updates by design, so localizing cur-

rent activations is pretty much required here. Consequently,

and in contrast to feature tensors xt, the memory activations

might not be well localized spatially. We thus use a slightly

different version of Eq. 12 for output pooling, we remove

ǫ⊥ to obtain a full-rank N ×K-shaped attention tensor νc.

To further enhance active memory localization, we use

s ⊙ xt to control the bias term of attention pooling, Eq. 9.

We apply a reduction ǫ(s⊙xt) followed by a linear regres-

sion with learnable parameters wo to obtain the instance-

specific bias woǫ(s⊙xt) for activation mapping. Note that ǫ

is the reduction associated to ς so this is consistent. We will

use a similar idea in Sec. 5.3 for cross-modal fusion in two-

stream architecture. Our ablation study in Sec. 6.4 confirms

that this further coupling of ct with xt boosts the mem-

ory distillation in the LSTA recursion, and consequently its

tracking capability, by a significant margin.

5. Two Stream Architecture

In this section, we explain our network architecture

for egocentric activity recognition incorporating the LSTA

module of Sec. 4. Like the majority of the deep learning

methods proposed for action recognition, we also follow the

two stream architecture; one stream for encoding appear-

ance information from RGB frames and the second stream

for encoding motion information from optical flow stacks.

5.1. Attention on Appearance Stream

The network consists of a ResNet-34 pre-trained on im-

ageNet for image recognition. We use the output of the last

convolution layer of block conv5_3 of ResNet-34 as the

input of the LSTA module. From this frame level features,

LSTA generates the attention map which is used to weight

the input features. We select 512 as the depth of LSTA

memory and all the gates use a kernel size of 3 × 3. We

use the internal state (ct) for classification.

We follow a two stage training. In the first stage, the

classifier and the LSTA modules are trained while in the

second stage, the convolutional layers in the final block

(conv5_x) and the FC layer of ResNet-34 along with the

layers trained in stage 1 are trained.

5.2. Attention on Motion Stream

We use a network trained on optical flow stacks for ex-

plicit motion encoding. For this, we use a ResNet-34 CNN.

The network is first trained on action verbs (take, put, pour,

open, etc.) using an optical flow stack of 5 frames. We

average the weights in the input convolutional layer of an

imagenet pre-trained network and replicate it 10 times to

initialize the input layer. This is analogous to the ima-

geNet pre-training done on the appearance stream. The

network is then trained for activity recognition as follows.

We use the action-pretrained ResNet-34 FC weights as the

parameter initialization of attention pooling (Eqs. 12-13)

on conv5_3 flow features. We use this attention map to

weight the features for classification. Since the activities are

temporally located in the videos and they are not sequential

in nature, we take the optical flow corresponding to the five

frames located in the temporal center of the videos.

5.3. Crossmodal Fusion

Majority of the existing methods with two stream archi-

tecture perform a simple late fusion by averaging for com-

bining the outputs from the appearance and motion streams

[29, 38]. Feichtenhofer et al. [7] propose a pooling strat-

egy at the output of the final convolutional layer for im-

proved fusion of the two streams. In [6] the authors observe

that adding a residual connection from the motion stream to

the appearance stream enables the network to improve the

joint modeling of the information flowing through the two

streams. Inspired by the aforementioned observations, we

propose a novel cross-modal fusion strategy in the earlier

layers of the network in order to facilitate the flow of infor-

mation across the two modalities.

In the proposed cross-modal fusion approach, each

stream is used to control the biases of the other as follows.

To perform cross-modal fusion on the appearance stream,

the flow feature from the conv5_3 of the motion stream

CNN is applied as bias to the gates of the LSTA layer. To

perform cross-modal fusion on the motion stream instead,

the sequence of features from the conv5_3 of the RGB

stream CNN are 3D convolved into a summary feature. We

add a ConvLSTM cell of memory size 512 in the motion

stream as an embedding layer and use the RGB summary

feature to control the bias of the ConvLSTM gates.
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In this way, each individual stream is made to influence

the encoding of the other so that we have a flow of informa-

tion between them deep inside the neural network. We then

perform a late average fusion of the two individual streams’

output to obtain the class scores.

6. Experiments and Results

6.1. Datasets

We evaluate the proposed method on four standard first

person activity recognition datasets namely, GTEA 61,

GTEA 71, EGTEA Gaze+ and EPIC-KITCHENS. GTEA

61 and GTEA 71 are relatively small scale datasets with

61 and 71 activity classes respectively. EGTEA Gaze+

is a recently developed large scale dataset with approxi-

mately 10K samples having 106 activity classes. EPIC-

KITCHENS dataset is the largest egocentric activities

dataset available now. The dataset consists of more than

28K video samples with 125 verb and 352 noun classes.

6.2. Experimental Settings

The appearance and motion networks are first trained

separately followed by a combined training of the two

stream cross-modal fusion network. We train the networks

for minimizing the cross-entropy loss. The appearance

stream is trained for 200 epochs in stage 1 with a learning

rate of 0.001 which is decayed after 25, 75 and 150 epochs

at a rate of 0.1. In the second stage, the network is trained

with a learning rate of 0.0001 for 100 epochs. The learn-

ing rate is decayed by 0.1 after 25 and 75 epochs. We use

ADAM as the optimization algorithm. 25 frames uniformly

sampled from the videos are used as input. The number

of classes used in the output pooling (wc in 4.2) is chosen

as 100 for GTEA 61 and GTEA 71 datasets after empiri-

cal evaluation on the fixed split of GTEA 61. For EGTEA

Gaze+ and EPIC-KITCHENS datasets, the value is scaled

to 150 and 300 respectively, in accordance with the relative

increase in the number of activity classes.

For the pre-training of the motion stream on action clas-

sification task, we use a learning rate of 0.01 which is re-

duced by 0.5 after 75, 150, 250 and 500 epochs and is

trained for 700 epochs. In the activity classification stage,

we train the network for 500 epochs with a learning rate of

0.01. The learning rate is decayed after 50 and 100 epochs

by 0.5. SGD algorithm is used for optimizing the parameter

updates of the network.

The two stream network is trained for 200 epochs for

GTEA 61 and GTEA 71 datasets while EGTEA is trained

till 100 epochs, with a learning rate of 0.01 using ADAM al-

gorithm. Learning rate is reduced by 0.99 after each epoch.

We use a batch size of 32 for all networks. We use random

horizontal flipping and multi-scale corner cropping tech-

niques proposed in [38] during training and the center crop

of the frame is used during inference.

Ablation Accuracy (%)

Baseline 51.72

Baseline + output pooling 62.07

Baseline + attention pooling 66.38

Baseline + pooling 68.1

LSTA 74.14

LSTA two stream late fusion 78.45

LSTA two stream cross-modal fusion 79.31

Table 1: Ablation analysis on GTEA 61 fixed split.

6.3. Ablation Study

An extensive ablation analysis2 has been carried out, on

the fixed split of GTEA 61 dataset, to determine the perfor-

mance improvement obtained by each component of LSTA.

The results are shown in Tab. 1, which compares the perfor-

mance of RGB and two stream networks on the top and bot-

tom sections respectively. We choose a network with vanilla

ConvLSTM as the baseline since LSTA without attention

and output pooling converges to the standard ConvLSTM.

The baseline model results in an accuracy of 51.72%. We

then analyze the impact of each of the contributions ex-

plained in Sec 4. We first analyze the effect of output pool-

ing on the baseline. By adding output pooling the perfor-

mance is improved by 8%. We analyzed the classes that are

improved by adding output pooling over the baseline model

and observe that the major improvement is achieved by pre-

dicting the correct action classes. Output pooling enables

the network to propagate a filtered a version of the memory

which is localized on the most discriminative components.

Adding attention pooling to the baseline improves the

performance by 14%. Attention pooling enables the net-

work to identify the relevant regions in the input frame and

to maintain a history of the relevant regions seen in the past

frames. This enables the network to have a smoother track-

ing of attentive regions. Detailed analysis show that atten-

tion pooling enables the network to correctly classify ac-

tivities with multiple objects. It should be noted that this

is equivalent to a network with two ConvLSTMs, one for

attention tracking and one for frame level feature tracking.

Incorporating both attention and output pooling to the

baseline results in a gain of 16%. By analyzing the top im-

proved classes, we found that the model has increased its

capacity to correctly classify both actions and objects. By

adding bias control, as explained in Sec. 4, we obtain the

proposed LSTA model and gains an additional improvement

of 6% in recognition accuracy.

Compared to the network with the vanilla ConvLSTM,

LSTA achieves an improvement of 22%. From the previous

analyses we have seen the importance of attention pooling

and output pooling present in LSTA. This enables the net-

work to focus on encoding the features more relevant for

2Detailed analysis available in the supplementary document.
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Method Accuracy (%)

eleGAtt [41] 59.48

ego-rnn [32] 63.79

LSTA 74.14

ego-rnn two stream [32] 77.59

LSTA two stream 79.31

Table 2: Comparative analysis on GTEA 61 fixed split.

the concrete classification task. Detailed analysis shows

ConvLSTM confuses with both activities involving same

action with different objects as well as activities consist-

ing of different action with same objects. With the attention

mechanism, LSTA weights the most discriminant features,

thereby allowing the network to distinguish between the dif-

ferent activity classes.

We also evaluated the performance improvement

achieved by applying attention to the motion stream. The

baseline is a ResNet-34 pre-trained on actions followed by

training for activities. We obtained an accuracy of 40.52%
for the network with attention compared to the 36.21% of

the baseline. Fig. 2 (fourth row) visualizes the attention map

generated by the network. For visualization, we overlay

the resized attention map on the RGB frames correspond-

ing to the optical flow stack used as input. From the fig-

ure, it can be seen that the network generates the attention

map around/near the hands, where the discriminant motion

is occurring, thereby enabling the network to recognize the

activity undertaken by the user. It can also be seen that

the attention maps generated by the appearance stream and

the flow stream are complementary to each other; appear-

ance stream focuses on the object regions while the mo-

tion stream focuses on hand regions. We also analyzed the

classes where the network with attention performs better

compared to the standard flow network and found that the

network with attention is able to recognize actions better

than the standard network. This is because the attention

mechanism enables the network to focus on regions where

motion is occurring in the frame.

Next we compare the performance of the cross-modal

fusion technique explained in Sec. 5.3 over traditional late

fusion two stream approach. The cross-modal fusion ap-

proach improves by 1% over late fusion. Analysis shows

that the cross-modal fusion approach is able to correctly

identify activities with same objects. The fifth and sixth

rows of Fig. 2 visualize the attention maps generated after

cross-modal fusion training. It can be seen that the motion

stream attention expands to regions containing objects. This

validates the effect of cross-modal fusion where the two net-

works are made to interact deep inside the network.

6.4. Comparative Analysis

In this section, we compare the performance of LSTA

over two closely related methods, namely, eleGAtt [41] and

ego-rnn [32]. Results are shown in Tab. 2. EleGAtt is an

attention mechanism which can be applied to any generic

RNN using its hidden state for generating the attention map.

We evaluated eleGAtt on LSTM, consisting of 512 hidden

units, with the same training setting as LSTA for fair com-

parison. EleGAtt learns a single weight matrix for gener-

ating the attention map irrespective of the input whereas

LSTA generates the attention map from a pool of weights

which are selected in a top-down manner based on input.

This enables the selection of a proper attention map for each

input activity class. This leads to a performance gain of

13% over eleGAtt. Analyzing the classes with the highest

improvement by LSTA compared to eleGAtt reveals that el-

eGAtt fails in identifying the object while correctly classi-

fying the action. Ego-rnn [32] derives an attention map gen-

erated from class activation map to weight the discriminant

regions in the image which are then applied to a ConvLSTM

cell for temporal encoding. It generates a per frame at-

tention map which has no dependency on the information

present in the previous frames. This can result in select-

ing different objects in adjacent frames. On the contrary,

LSTA uses an attention memory to track the previous atten-

tion maps enabling their smooth tracking. This results in

a 10% improvement obtained by LSTA over ego-rnn. De-

tailed analysis on the classification results show that ego-rnn

struggles to classify activities involving multiple objects.

Since the attention map generated in each frame is indepen-

dent of the previous frames, the network fails to track previ-

ously activated regions, thereby resulting in wrong predic-

tions. This is further illustrated by visualizing the attention

maps produced by ego-rnn and LSTA in Fig. 2. From the

figure, one can see that ego-rnn (second row) fails to iden-

tify the relevant object in the case of close chocolate exam-

ple and it failed to track the object in the final frames in the

case of the scoop coffee example. LSTA with cross-modal

fusion performs 2% better than ego-rnn two stream.

6.5. Stateoftheart comparison

Our approach is compared against the state-of-the-art

methods on Tab. 3. The methods listed in the first sec-

tion of the table uses strong supervision signals such as gaze

[16, 15], hand segmentation [21] or object bounding boxes

[21] during the training stage. Two stream [29], I3D [3] and

TSN [38] are methods proposed for action recognition from

third person videos while all other methods except eleGAtt

[41] are proposed for first-person activity recognition. ele-

GAtt [41] is proposed as a generic method for incorporating

attention mechanism to any RNN module. From the table,

we can see that the proposed method outperforms all the

existing methods for egocentric activity recognition.

In EPIC-KITCHENS dataset, the labels are provided in

the form of verb and noun, which are combined to form

an activity class. The fact that not all combinations of verbs
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Figure 2: Attention maps generated by ego-rnn (second row) and LSTA (third) for two video sequences. We show the 5

frames that are uniformly sampled from the 25 frames used as input to the corresponding networks. Fourth row shows the

attention map generated by the motion stream. Fifth and sixth rows show the attention map generated by the appearance and

flow streams after two stream cross-modal training. For flow, we visualize the attention map on the five frames corresponding

to the optical flow stack given as input. (∗: Attention map obtained after two stream cross-modal fusion training).

Methods GTEA61∗ GTEA61 GTEA71 EGTEA

Li et al. [16]∗∗ 66.8 64 62.1 46.5

Ma et al. [21]∗∗ 75.08 73.02 73.24 -

Li et al. [15]∗∗ - - - 53.3

Two stream [29] 57.64 51.58 49.65 41.84

I3D [3] - - - 51.68

TSN [38] 67.76 69.33 67.23 55.93

eleGAtt [41] 59.48 66.77 60.83 57.01

ego-rnn [32] 77.59 79 77 60.76

LSTA-RGB 74.14 71.32 66.16 57.94

LSTA 79.31 80.01 78.14 61.86

Table 3: Comparison with state-of-the-art methods on pop-

ular egocentric datasets, we report recognition accuracy in

%. (∗: fixed split; ∗∗: trained with strong supervision).

and nouns are feasible and that not all test classes might

have a representative training sample make it a challeng-

ing problem. We train the network for multi-task classifi-

cation with verb, noun and activity supervision. We

use activity classifier activations to control the bias of

verb and noun classifiers. The dataset provides two eval-

uation settings, seen kitchens (S1) and unseen kitchens (S2).

We obtained an accuracy of 30.16% (S1) and 15.88% (S2)

using RGB frames. The best performing baseline is a two

stream TSN that achieves 20.54% (S1) and 10.89% (S2) [4].

Our model is particularly strong on verb prediction (58%)

where we gain +10% points over TSN. verb in this context

is typically describing actions that develop into an activity

over time, confirming once more LSTA efficiently learns

encoding of sequences with localized patterns.

7. Conclusion

We presented LSTA that extends LSTM with two core

features: 1) attention pooling that spatially filters the in-

put sequence and 2) output pooling that exposes a distilled

view of the memory at each iteration. As shown in a de-

tailed ablation study, both contributions are essential for a

smooth and focused tracking of a latent representation of

the video to achieve superior performance in classification

tasks where the discriminative features can be localized spa-

tially. We demonstrate its practical benefits for egocentric

activity recognition with a two stream CNN-LSTA architec-

ture featuring a novel cross-modal fusion and we achieve

state-of-the-art accuracy on four standard benchmarks.
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