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Abstract

Most studies in zero-shot learning model the relation-

ship, in the form of a classifier or mapping, between features

from images of seen classes and their attributes. Therefore,

the degree of a model’s generalization ability for recog-

nizing unseen images is highly constrained by that of im-

age features and attributes. In this paper, we discuss two

questions about generalization that are seldom discussed.

Are image features trained with samples of seen classes

expressive enough to capture the discriminative informa-

tion for both seen and unseen classes? Is the relationship

learned from seen image features and attributes sufficiently

generalized to recognize unseen classes. To answer these

two questions, we propose a model to learn discriminative

and generalizable representations from image features un-

der an auto-encoder framework. The discriminative latent

features are learned through a group-wise disentanglement

over feature groups with a hierarchical structure. On pop-

ular benchmark data sets, a significant improvement over

state-of-the-art methods in tasks of typical and generalized

zero-shot learning verifies the generalization ability of la-

tent features for recognizing unseen images.

1. Introduction

The significant performance improvement of deep neural

networks in recent years is partly due to the wide availabil-

ity of large labeled datasets. However, for some uncommon

objects, only a limited number of samples can be provided,

and new categories of objects may even emerge dynami-

cally. In such a situation, problems may arise regarding

∗contribute equally to this paper. Chao Wang did this work during the

internship at Hitachi.

state-of-the-art methods recognizing new categories. Zero-

shot learning [27, 45, 47, 15, 32, 16, 7, 6, 48] addresses

the problem of recognizing objects of unseen classes by

transferring knowledge from seen classes via mid-level de-

scriptors, such as attributes [27], which bridge semantically

low-level image features and high-level concepts such as

class labels. For transferring such knowledge, most stud-

ies in zero-shot learning model the relationship, in the form

of a mapping or classifier, between visual features and at-

tributes. However, this relationship has a limited capability

for recognizing unseen images, and it even performs worse

for generalized zero-shot learning, in which both seen and

unseen classes have to be recognized. We argue that this

incapability boils down to the following limitations that are

however seldom discussed in previous studies.

For convolutional neural network (CNN) features trained

with seen images, seen classes are well separated in the

feature space. However, these features are less capable

of discriminating seen and unseen classes, which may hurt

the performance of generalized zero-shot learning. Figure

1(a) shows that seen classes unnecessarily overlap unseen

classes if image features are trained with classifying seen

classes only. Figure 1(b) shows that the degree of discrim-

ination in both seen and unseen classes significantly de-

creases, compared to that in seen classes. Figure 1(c) shows

how unseen classes separate from seen classes when the di-

mensions of features are ranked by variances in descend-

ing order. We observed that not all dimensions of features

contribute to the discrimination between seen and unseen

classes. Features with low variances even hurt the discrim-

ination between seen and unseen classes. The above obser-

vations explain part of the reason why state-of-the-art meth-

ods behave poorly in recognizing both seen and unseen im-

ages in more realistic settings such as generalized zero-shot

learning.

11467



Figure 1. Observations of image features. For image features, we use Res-net features [19] for data sets, such as aPY, CUB, SUN, AWA1

and AWA2. Figure 1(a) is t-SNE visualization of features in AWA1. ‘s’ and ‘u’ denote seen and unseen classes with orange and green

colors, respectively. In both seen and unseen, different classes correspond to different shapes and shades of the same color. Other data sets

behave similarly. Figure 1(b) and Figure 1(c) show the degree of discrimination between seen and unseen classes. Discrimination between

seen and unseen classes is measured by the ratio of between-class scatter (BS) to within-class scatter. The bigger the ratio is, the more

discriminative the seen and unseen classes are. Figure 1(b) is a histogram of discrimination ratio for (1) unseen classes and (2) both seen &

unseen classes. In case (1), BS is the average of the distances between centroids of each unseen class and its nearest class. In case (2), BS

is the average of the distances between centroids of each unseen class and its nearest seen class, which was also used for plotting Figure

1(c). In Figure 1(c), the ranked variance is calculated as follows. Suppose the data matrix X = [x1,x2, . . . ,xN ] ∈ R
N×d, where N is

the number of data and d denotes the dimension of features. The variance σi is calculated for the i-th column, i.e., xi. The variances are

ranked in descending order and columns xi are ranked accordingly.

For most methods in zero-shot learning, attributes and

image features are mapped to a common visual-semantic

space. In inference phase, an unseen image is categorized

with the label of the closest attribute representation via

nearest-neighbor search. In this framework, correct recog-

nition heavily depends on how well the features of seen

classes and human-made attributes can encode the infor-

mation invariant to both seen and unseen classes. As ex-

plained above, image features trained with seen classes are

insufficient to encode all discrimination information in both

seen and unseen classes. In addition, not all attributes are

visually discriminative, as they are not designed for classi-

fication tasks. The mapping learned from seen classes can

not encode all possible combinations of visual appearance

and attributes only appearing in unseen classes. Therefore,

some mappings of unseen images are more likely to fall into

areas of seen images’ attributes rather than those of unseen

images’ attributes [14].

The above limitations suggest that both dimensions of

image features and hand-made attributes are highly cor-

related, such that the mapping learned from seen classes

is variant or sensitive to unseen classes. Unlike previous

studies, we address the zero-shot learning from a differ-

ent perspective. We learn discriminative latent represen-

tations from image features, which are invariant to unseen

classes. Disentangled representation is one choice of such

latent representations. Bengio et al. described it in [5]:

a representation where a change in one dimension corre-

sponds to a change in one factor of variation, while being

relatively invariant to changes in other factors. Disentan-

gled representation can generalize the knowledge beyond

the training distribution by recombining previously-learned

independent factors [5, 9, 20].

In this work, we explain the image feature space from

perspectives of discrimination and interpretability. We fac-

torize a CNN feature into three latent features, including

semantic feature, non-semantic but discriminative feature,

and non-discriminative feature. Unlike previous studies that

have dimension-wise disentanglement of features, we per-

form hierarchical disentanglement over groups of dimen-

sions. The dimensions in a group can be correlated each

other but in whole represent a most fine-grained concept of

an image. The fusion of semantic and non-semantic latent

features can be taken as a variant of an image feature, which

is discriminative but more generalizable than the original

image feature. This variant of an image feature and at-

tributes are further used for learning a visual-semantic map-

ping. Furthermore, learning such a mapping can be jointly

trained with disentangling the latent features, which creates

a unified framework for zero-shot recognition. The contri-

bution of our work is two-fold:

1. Our work provides a new perspective to address zero-

shot recognition, in which an image feature is disen-

tangled into three latent features via hierarchical struc-

ture of disentanglement.

2. With extensive evaluation on popular benchmark

datasets, we confirm a significant improvement over
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other state-of-the-art methods in both typical and gen-

eralized zero-shot recognition.

2. Related work

Our work is related to zero-shot learning and disentan-

gled representation learning. The most widely used inter-

mediate semantic representations in zero-shot learning are

called attributes. Human-made attributes [27] are in the

form of a category-attribute matrix, each element of which

shows if a class has an attribute. Relative attributes [33]

capture the semantic relationship, which measures the rel-

ative strength of each attribute for unseen classes. Data-

driven attributes [47] are a discriminative representation

automatically discovered from visual images but are non-

interpretable. Word embedding [31] has recently been in-

troduced as a drop-in replacement for attributes [15], which

can currently be efficiently trained on a large text corpus.

There are two lines of models for zero-shot recogni-

tion based on such attributes. The first line is to learn at-

tribute classifiers for each attribute [27, 22]. Several stud-

ies [22, 13] claimed that not all image features are useful

for learning a classifier for a given attribute. This prob-

lem occurs when a few of the attributes are highly corre-

lated. A feature selection method, such as lasso, is intro-

duced to learn a robust attribute classifier. The second line

is to learn a mapping between image features and attributes,

and a nearest neighbor search in the mapped space is car-

ried out to predict the class label. There are three different

approaches for learning the embedding function: (1) map-

ping visual features onto the space of intermediate represen-

tations [15], (2) mapping the intermediate representations

onto the space of visual features [38], and (3) mapping both

the visual features and intermediate representations into a

common latent space [46, 28, 23]. Most studies learn the

embedding function directly from a whole image feature.

We do not learn the visual-semantic embedding directly

from the whole image feature, since it may hurt the discrim-

ination between seen and unseen classes. In other studies,

learning the embedding function and inference are jointly

learned in a unified framework [7, 2, 37]. Recent work [44]

uses semantic attributes as a condition to generate image

features for unseen classes. A classifier is then trained on

the generated image features in a supervised manner.

There have been increasing efforts in the deep learn-

ing community towards learning factor variations in data

in supervised [34, 36], semi-supervised [39, 29] or unsu-

pervised [26] manners. Generative models, such as Boltz-

mann machine [11], auto-encoder [25] and its variants

[20, 30, 24, 42], are widely used for learning disentangled

representation from data. From a generative perspective,

data is generated via multiplicative interactions of indepen-

dent factors embedded in the data. InfoGAN [8] introduces

disentanglement to a subset of latent variables by maximiz-

ing the mutual information between it and the data. Vari-

ational autoencoder (VAE) [25, 35] and its variant β-VAE

[20] introduce a regularizer of Kullback-Leibler (KL) di-

vergence to a reconstruction error, which pushes the out-

put of the encoder toward a factorial Gaussian prior. Quite

recently, total correlation, which measures joint indepen-

dence for multivariate variables, has been widely used to

disentangle features [1, 24, 42]. However, estimations in

a mini-batch, such as the Monte-Carlo estimation [24] and

the density-ratio estimation [42], are inevitable. These es-

timations may result in unstable training. Other metrics

such as covariance [10] are also used for learning disen-

tangled representation. In addition, most studies that have

dimension-wise disentanglement use simple datasets such

as celebA and chairs. Independent factors such as az-

imuth, lighting and elevation can be factorized out. How-

ever, the dimension-wise disentanglement for complex real-

world images has not been studied due to the fact that inde-

pendent factors embedded in images might be too difficult

to be factorized out with state-of-the-art generative models.

3. The proposal

Image features, such as Res-net features [19], are seman-

tically low-level representations for image concepts. One

dimension of such features is strongly correlated with other

dimensions due to the spatial interactions across patches

from which the convolution operation is performed.

As shown in Figure 2(a), an image feature space can be

roughly decomposed into three latent feature spaces from

perspectives of discrimination and interpretability, which

are semantic, non-semantic and non-discriminative. An

overview of our model is shown in Figure 2(b). Our model

uses an auto-encoder architecture and factorizes an image

feature into these three latent features, which are used for

reconstructing the image feature. The semantic latent fea-

ture captures discriminative semantic information which is

related to human-made attributes. The non-semantic la-

tent feature captures discriminative information that is non-

interpretable. The non-discriminative latent feature may

consist of intra-class variations and common factors across

classes. It tends to have a lower variance of features than

the other two.

We denote seen images as S = {(xi, yi)}
N
i=1, where

xi ∈ R
d is an image feature, yi is its class label in

Ys = {s1, s2, . . . , sC} consisting of C class labels, and

N is the number of seen images. Each class si has a cor-

responding attribute ai ∈ R
da in an attribute set As =

{a1,a2, . . . ,aC}. For zero-shot learning, an attribute ai
is typically a per-class attribute vector with continuous val-

ues. In the auto-encoder architecture, the encoder learns a

mapping from an image feature to a latent factor z ∈ R
l,

from which the decoder reconstructs the image feature. In

our case, the latent factor can be a concatenation of the three
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Figure 2. (a) Three latent features in the space with interpretability and discrimination axes. (b) Framework of our model that factorizes

an image feature into three latent features. (c) Adversarial learning for a non-discriminative latent feature. (d) Hierarchical structure for a

latent feature.

latent features, which are the semantic feature zs ∈ R
ls , the

non-semantic feature zn ∈ R
ln , and the non-discriminative

feature zu ∈ R
lu , such that z = [zs, zn, zu] and l =

ls+ ln+ lu. Three main components, which include feature

selection, learning non-discriminative features, and hierar-

chical disentanglement, are used for learning these three la-

tent features. For simplicity, we use y and a in the follow-

ing sections to represent one-hot vector of class label and

class-level attribute for the image feature x, respectively.

3.1. Feature selection

As suggested by Farhadi et al. [13], not all dimensions

of image features are suitable for predicting a specific at-

tribute. It is also intuitive that each latent feature is trans-

formed from disjoint subsets of feature dimensions. For ex-

ample, dimensions of a feature with low-variance can be

used to learn a non-discriminative latent feature, while di-

mensions with high-variance can be used to learn a discrim-

inative one. Therefore, we learn three transformation matri-

ces that extract different parts of information from an image

feature.

We denote transformation matrices Ws ∈ R
d×ls , Wn ∈

R
d×ln and Wu ∈ R

d×lu for the semantic feature zs, the

non-semantic feature zn, and the non-discriminative feature

zu, respectively. We denote W = [Ws,Wn,Wu] such

that W ∈ R
d×l. The objective function for the transforma-

tion matrix W is minimized, which is defined as

Lsparse = |W|1 + λ
∑

i 6=j

|wT
i wj | (1)

where the first term encourages vec(W) to be sparse, the

second term encourages different supports (non-zero ele-

ments) for vector pairs, and λ is the regularization parame-

ter. The sparse constraint in the first term serves as a feature

selector that decides which dimension in an image feature

contributes either of three latent features. We squeeze Ws,

Wn and Wu into vectors w1, w2, and w3, respectively,

by having a l2 norm for each row of the transformation ma-

trix. Take the i-th element of w1 as an example. It is l2

norm of the i-th row of Ws. The second term encourages

that non-zero elements in any two wi(i = 1, 2, 3) are dif-

ferent in dimensions. A extreme case is that if non-zero

elements in any two wi(i = 1, 2, 3) are disjoint, the second

term becomes zero. Note that Group lasso [22] might not be

suitable for our case. This is because group lasso may eas-

ily have one group much sparser than other groups, which

leads to inappropriate reconstruction for the image feature.

3.2. Learning non­discriminative features

Discriminative feature, including semantic and non-

semantic, can be extracted by setting a discriminative loss

function. However, without learning non-discriminative

feature, it does not guarantee that all discriminative infor-

mation is captured by semantic and non-semantic latent fea-

tures. Learning the non-discriminative feature is to extract

only non-discriminative information from an image feature.

The extraction in two directions help decompose discrimi-

native and non-discriminative information.

We learn non-discriminative features using the concept

of adversarial learning. Adversarial learning consists of a

generator and a discriminator, which are denoted as G(x) =
Wux and D(zu) = σ(Wczu), respectively, where Wc ∈
R

C×lu , σ is the softmax function that outputs the proba-

bilities of class labels, and zu denotes the output of the

generator. The discriminator tries to classify zu correctly.

The generator, however, tries to fool this classifier, which

means non-discriminative information is generated from x

via Wu. The latent feature zu is likely to have less dis-

criminative information in an image feature. The diagram

of adversarial learning is illustrated in Figure 2(c). To be

more specific, the value function V (D,G) is as follows:

min
D

max
G

V (D,G) = Ex∼p(x)Le(D(G(x)),y) (2)

where Le is a cross-entropy loss for classification and

y is the label of image feature x. Learning non-

discriminative features can be done by minimizing two

functions LD
adversarial = Le(D(G(x)),y) and LG

adversarial =
−Le(D(G(x)),y).
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3.3. Hierarchical disentanglement

For a real world image, a dimension of the image fea-

ture can not express the most fine-grained factors (concepts)

[24, 42]. A group-wise disentanglement is an alternative to

capture those fine-grained factors. It is also intuitive that

a number of fine-grained factors (low-level concepts) com-

pose a high-level concept, such as tail and head of an an-

imal. The high-level concept helps the generalization to

unseen classes. Therefore, besides a group-wise disentan-

glement, we encourage a hierarchical structure of disentan-

glement over groups for semantic and non-semantic latent

features, as illustrated in Figure 2(d). Note this hierarchical

structure is different from [21, 12].

In our model, we propose to use distance covariance

[40, 41] to measure the mutual independence between two

multivariate variables. Distance covariance is equal to zero

if and only if the two variables are mutually independent.

This good property is not held by other metrics such as to-

tal correlation and covariance. Suppose semantic and non-

semantic latent features have the same hierarchical struc-

ture. To have concise formulas, here we abuse z to represent

either semantic latent feature or non-semantic latent feature.

In the l-th layer of the hierarchical structure, we have

z = {zil}
cl
i=1, where zil represents a group of dimensions,

and cl represents the number of groups in the l-th layer. At

each layer, the distance covariances of any different group

pairs are averaged. We have a constraint on cl such that

cl ≥ 2. The disentanglement loss for the latent feature z

can be written as

L
′

disentangle =
∑

l

2

cl(cl − 1)

cl∑

i 6=j

dCov2(zil, z
j
l ), (3)

where dCov2(·, ·) denotes the distance covariance. Distance

covariance dCov2(h, l) can be calculated as follows. Sup-

pose H ∈ R
n×dh and L ∈ R

n×dl are two groups of dimen-

sions, where dh and dl are dimensions of these two groups

and n is the number of observations. Note that n is the batch

size in the experiment. We denote aij = |hi − hj |, where

i, j = 1, 2, . . . , n, hi, hj ∈ R
dh , | · | denotes the Euclidean

norm, âi = 1
n

∑n

k=1 aik, âj = 1
n

∑n

l=1 alj , and â =
1
n2

∑n

k,l=1 akl. Then we have Ai,j = aij−âi−âj+â. This

also applies to L, and we then have Bi,j = bij− b̂i− b̂j+ b̂.
Finally, we have dCov2(h, l) = 1

n2

∑n

i,j Ai,jBi,j . An ex-

ample is given as illustrated in Figure 2(d). Suppose z is

composed of four groups {g1, g2, g3, g4}, we can have the

loss for z by summing the losses of the first and second lay-

ers, which are denoted by Ld1
and Ld2

, respectively. There

is no loss for the third layer because only one group exists.

We can easily have Ld1
= 1

6

∑
dCov2(gi, gj) (i 6= j) and

Ld2
= dCov2({g1, g2}, {g3, g4}).

We have a loss function for both semantic and

non-semantic latent features, which is represented by

Ldisentangle = Ls
disentangle + Ln

disentangle. Ls
disentangle and

Ln
disentangle denote the losses calculated by Equation 3 for

semantic and non-semantic latent features, respectively.

3.4. Learning and inference

We introduce the other components for disentangling the

image feature. They are (1) reconstruction loss Lrecon: this

loss is minimized, which is denoted as Lrecon = ||x−Vz||,
where V ∈ R

d×l is a transformation matrix and z =
[zs, zn, zu]; (2) classification loss Lclassification: both seman-

tic and non-semantic latent features are responsible for clas-

sification. Cross entropy loss is calculated from σ(Wdzd)
and ground-truth class label, where σ is the softmax func-

tion, Wd ∈ R
C×(ls+ln), and zd = [zs, zn]; (3) regular-

ization loss Lregularization: this loss function encourages the

semantic latent feature semantically close to human-made

attributes. This is achieved by minimizing Lregularization =
||a−Wazs|| where Wa ∈ R

da×ls is a transformation ma-

trix.

By using the auto-encoder framework shown in Fig-

ure 2(b), the image feature is disentangled into three

parts, which are semantic (zs), non-semantic (zn) and non-

discriminative (zu). The fusion of zs and zn, which is taken

a variant of image feature, is further used for learning the

visual-semantic embedding function. The fusion could be a

simple concatenation or a more sophisticated compact bilin-

ear pooling [17]. For learning the embedding function, we

can use any state-of-the-arts such as DeViSE [15]. We de-

note the objective function of learning the embedding func-

tion as Lembedding, which is a margin hinge loss in DeViSE.

The fundamental idea in DeViSE is that the similarity be-

tween a latent feature of a class and its attribute represen-

tation should be larger than that between a latent feature

of another class and the attribute representation. Learning

three latent features and embedding function can be trained

jointly. In the inference stage, semantic and non-semantic

latent features are extracted from an unseen image, and

these two latent features are mapped to a visual-semantic

space. The unseen image is assigned to the label of the

closest attribute representation via nearest-neighbor search

in that space.

We observed through experiments that simply comb-

ing all loss functions for disentangling feature often re-

sults in poor performance. Therefore, we optimize the

parameters of our model by jointly learning the follow-

ing loss functions, i.e., L, Ldisentangle, LD
adversarial, L

G
adversarial,

and Lembedding. L = Lrecon + αLsparse + βLclassification +
γLregularization, where α, β, and γ are regularization param-

eters. Our model is not sensitive to parameter settings. In

our experiments, superior performances were achieved by

simply setting the same values of α, β, and γ for all data

sets.
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Table 1. Performances of models in popular benchmark data sets.

traditional zero-shot learning generalized zero-shot learning

Method SUN CUB AWA1 AWA2 aPY SUN CUB AWA1 AWA2 aPY

DeViSE[15] 56.5 52.0 54.2 59.7 39.8 20.9 32.8 22.4 27.8 9.2

ALE[3] 58.1 54.9 59.9 62.5 39.7 26.3 34.4 27.5 23.9 8.7

SJE[4] 53.7 53.9 65.6 61.9 32.9 19.8 33.6 19.6 14.4 6.9

DLFZRL+w/o D 55.6 53.4 58.9 61.5 39.1 21.7 34.2 34.8 38.4 23.1

DLFZRL+w/o HD 57.2 55.1 57.9 63.1 41.6 23.2 35.4 37.1 40.6 30.7

DLFZRL 59.3 57.8 66.3 63.7 44.5 24.6 37.1 40.5 45.1 31.0

f-CLSWGAN[44] 60.8 57.3 68.2 - - 39.4 49.7 59.6 - -

DLFZRL+softmax 61.3 61.8 71.3 70.3 46.7 42.5 51.9 61.2 60.9 38.5

4. Experiments

4.1. Experimental Settings

We used the most widely used data sets for evaluating

the performance of zero-shot learning. The datasets were

Animals with Attribute (AwA), CUB-200-2011 (CUB),

SUN with Attribute (SUN) and Attribute Pascal and Ya-

hoo (aPY). We used new partitions for the above data sets

proposed by Xian et al. [45] for a fair comparison, since

some classes of images are unfairly used for training a CNN

model. We used Res-net-101 [19] as the image features for

both seen and unseen classes. Following [45], we used the

average top-1 recognition accuracy of each class to evaluate

the performance of typical zero-shot learning. For general-

ized zero-shot learning, we used the harmonic mean, which

is defined as 2× (ctr × cte)/(ctr + cte), where ctr and cte are

the top-1 recognition accuracies for seen and unseen im-

ages, respectively.

Since the embedding function in DeViSE [15] is a simple

yet effective embedding model, we used it as the baseline

embedding function to compete with other sophisticated

methods for zero-shot learning. We call our model Discrim-

inative Latent Features for Zero-shot Learning (DLFZRL),

which includes latent-feature learning and embedding func-

tion in DeViSE. DLFZRL+w/o D denotes our full model

without using disentanglement. DLFZRL+w/o HD denotes

our model using group-wise disentanglement but without

a hierarchical structure of disentanglement. The setting of

the parameters shared by all datasets was as follows. Adam

was used as the optimizer, and its initial learning rate was

set to 2 × 10−4. The activation function after the transfor-

mations from the image feature to zs, zn, and zu was set

to ReLU. The batch size was set to 128. The λ value was

set to 2 × 10−3. The α, β, and γ values were set to 0.01,

1.0, and 1.0, respectively. The dimensions of features for

zs, zn, and zd were set to 512. The hierarchical structure of

disentanglement has two layers, in which the dimension of

a group in the first and second layers was set to 16 and 64,

respectively. For these partition, we made a grid search for

partitions in sizes of exponents of two and chose the best

ones. For learning the embedding in DeViSE, the margin

was set to 0.1.

4.2. Results on image recognition

Table 1 shows the performances of our model and its

variants in the benchmark data sets. f-CLSWGAN [44]

is the model including a variant of an improved WGAN

(f-WGAN) [18] and a softmax classifier. Seen image fea-

tures and class-level attributes are used to train f-WGAN

and image features of unseen classes can be generated

given unseen class-level attributes. The softmax classi-

fier with a one-layer neural network is trained for classi-

fying the generated unseen images in a supervised manner.

DLFZRL+softmax denotes the model in which we train f-

WGAN by using semantic and non-semantic latent features

and class-level attributes from seen classes, and the softmax

classifier as [44] is used. For fair comparison, we directly

cite the results in [45][44], except DLFZRL and its variants.

Due to limited space, we only cited methods that tend to

achieve best performances in [45][44]. Among all methods,

DLFZRL tended to perform the best on most data sets, no

matter if the setting was traditional or generalized zero-shot

learning. Compared with traditional zero-shot learning, the

improvements achieved for generalized zero-shot learning

are more significant. The performance improved by 18.1,

17.3 and 21.8 points for AWA1, AWA2 and aPY, respec-

tively. Note that f-CLSWGAN is a method for converting

the problem of zero-shot learning into a supervised-learning

problem, making it a transductive method that can access

the manifold of unseen classes. Direct comparison of its

performance with embedding methods is not fair, as they

are inductive and do not use the manifold of unseen classes.

To verify the effectiveness of semantic and non-semantic

latent features, we train f-WGAN by using our latent fea-

tures and generate features of unseen classes given unseen

class-level attributes. We can see that DLFZRL+softmax

was superior to f-CLSWGAN in all cases. We also ob-

served that, without group-wise disentanglement or hierar-

chical disentanglement over groups, DLFZRL+w/o D and

DLFZRL+w/o HD were inferior to DLFZRL for both tra-
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Figure 3. Variance in each latent feature. The non-discriminative

latent feature zu has the lowest variance. The semantic and non-

semantic latent features, i.e., zs and zn, have much higher vari-

ances than the non-discriminative latent feature.
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Figure 4. Relatedness of attributes. Relatedness is measured by

mutual information between each dimension of latent feature and

attribute. In Figure 4(a), the average relatedness of each attribute

is represented by a horizontal line for each latent feature.

ditional and generalized zero-shot learning. This implies

that group-wise disentanglement and hierarchical disentan-

glement over groups are helpful for learning discriminative

and more generalizable latent features. DLFZRL outper-

formed current methods in most cases, which further con-

firms the superiority of DLFZRL.

4.3. Analysis and Discussion

We examine if the non-discriminative latent feature cap-

tures low-variance information in the image feature. Figure

3(a) shows the variance of each dimension in descending

order for each latent feature in the CUB data set. Figure

3(b) shows the average variance for each latent feature in

different data sets. We can see that the non-semantic latent

feature had even higher variance than the semantic latent

feature. This is consistent with the intuition that the human-

made attributes are discriminative to some extent, while the

non-semantic latent feature is data-driven, which tends to

be more discriminative.

To examine if zs is able to encode the information in

attribute, we show in Figure 4(a) the relatedness of each at-

tribute with respect to each latent feature in the aPY data

set. Mutual information (MI) between two vectors is calcu-

lated by I(x,y) =
∑

xǫx

∑
yǫy p(x, y)log

p(x,y)
p(x)p(y) , where

x

y

(a) zn

x

y

(b) zu

Figure 5. t-SNE visualization of zn and zu. Different colors de-

note different classes.
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Figure 6. Discrimination ratios of different methods in different

data sets.

x and y are values in the vectors x and y, respectively.

This figure verifies that the semantic latent feature is the

most related to attributes compared with the other two la-

tent features, showing the effectiveness of regularization on

attributes. Figure 4(b) shows the relatedness of attributes

in different data sets. The semantic latent feature always

achieves the highest relatedness.

Figure 5 illustrates the latent features zn and zu for un-

seen classes in the CUB data set by using t-SNE [43]. Un-

seen classes are discriminative in zn as shown in Figure

5(a), while they have no discrimination in zu as shown

in Figure 5(b). Figure 6 shows the degree of discrimina-

tion between seen and unseen classes. As shown in Fig-

ure 1(a), features of seen classes are less discriminative to

that of unseen classes in the feature space. We calculate

the ratio of between-class scatter to within-class scatter for

image features and the combination of semantic and non-

semantic latent features. The larger the ratio, the more

seen classes are discriminative from unseen classes. The

group-wise disentanglement and hierarchical disentangle-

ment over groups for both semantic and non-semantic latent

features improved the degree of discrimination compared

with using whole image features.

Table 2 shows the impact of three components, which

are 1) feature selection, 2) learning non-discriminative fea-

tures, and 3) hierarchical disentanglement. We can see that

each component does contribute to the performance im-
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Table 2. Ablation study on three main components in DLFZRL.

Bold font denotes the most significant drop in performance.

w/o FL denotes DLFZRL without using feature selection, i.e.,

Equation 1; w/o ND denotes DLFZRL without learning non-

discriminative features, i.e., Equation 2; w/o HD denotes DLFZRL

without learning hierarchical disentanglement, i.e., Equation 3.

zero-shot learning (ZRL)

Method SUN CUB AWA1 AWA2 aPY

DLFZRL 59.3 57.8 66.3 63.7 44.5

w/o FL 58.3 55.6 62.9 62.5 42.2

w/o ND 58.6 56.1 64.3 63.3 41.5

w/o HD 57.2 55.1 57.9 63.1 41.6

generalized zero-shot learning (GZRL)

DLFZRL 24.6 37.1 40.5 45.1 31.0

w/o FL 23.2 33.1 36.3 41.2 27.1

w/o ND 23.8 34.3 38.4 40.9 28.5

w/o HD 23.2 35.4 37.1 40.6 30.7
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Figure 7. Relation between aPY’s attributes and two layers of

groups in semantic latent feature. Figure 7(a) and Figure 7(b) de-

note the relations in the first and second layers, respectively. The

x-axis and y-axis denote the number of groups and attributes, re-

spectively. The number of attributes in aPY is 64. The number of

groups in Figure 7(a) and Figure 7(b) are 32 and 8, respectively.

provement. In ZRL, the impact of components is ordered

as HD > FL > ND, while the order is FL > HD > ND

in GZRL. We can see that, in zero-shot learning, transfer-

able feature learned by HD from seen classes is essential

for classifying unseen classes. However, in GZRL, feature

selection, which can separate seen and unseen classes, is

more important than in ZRL. The average sparse ratios in

FL, which is the ratio of the number of near-zero entries to

the number of entries in W, over different data sets in ZRL

and GZRL are 0.49 and 0.54, respectively. This suggests

that FL plays more important role in GZRL and ZRL.

For a 512-dimensional semantic latent feature, suppose

the hierarchical structure of disentanglement has two layers.

The first layer has 32 groups, each of which has 16 dimen-

sion (16D group). The second layer has 8 groups, each of

which has 64 dimension (64D group).

First, we examine if the groups in both two layers are
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Figure 8. Mutual information between two groups in the two lay-

ers. Both x-axis and y-axis denote the number of groups. The

number of groups in Figure 8(a) and Figure 8(b) are 32 and 8,

respectively.

able to capture information in attributes. Figure 7 shows the

relation between attributes and groups in the two layers for

the aPY data set. Mutual information (MI) measures how

the groups in zs are related to the attributes. The higher the

value, the more a group is related to an attribute. For a bet-

ter visualization, we have blocks black when MI is smaller

than a threshold. We can observe that some groups relate to

disjoint subsets of attributes, while others share attributes.

This implies that groups in both two layers are able to cap-

ture information of specific attributes.

Second, we examine if the hierarchical structure of

groups is appropriately learned in the two layers. Figure

8 illustrates MI between any two groups in each layer for

the semantic latent feature in the aPY data set. Group-wise

disentanglement in each layer encourages the information

of two different groups in zs independent, while that in the

same group dependent. Independent groups correspond to

black blocks that have low values of MI, while dependent

groups correspond to white blocks that have high values of

MI. The blocks along the main diagonal in Figure 8(a) and

8(b) verified that the hierarchical disentanglement is appro-

priately learned.

5. Conclusion

In zero-shot recognition, most existing methods have a

limited capability of recognizing unseen classes. This in-

capability is due to that both image features trained with

seen classes and man-made attributes are variant to unseen

classes. In this paper, we propose a model that factorizes

an image feature into three latent features, which are called

semantic, non-semantic, and non-discriminative. A group-

wise disentanglement and hierarchical structure of disen-

tanglement over groups are encouraged for both semantic

and non-semantic features. In extensive experiments, supe-

rior performances confirmed the effectiveness of the latent

features for traditional and generalized zero-shot learning.
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