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Abstract

This paper presents a new method for detecting salient

objects in images using convolutional neural networks

(CNNs). The proposed network, named PAGE-Net, makes

two major novel contributions. The first is to devise an

essential pyramid attention structure for salient object de-

tection, which enables the network to concentrate more on

salient regions while exploiting multi-scale saliency infor-

mation. Such a stacked attention design offers a power-

ful way to efficiently enhance the representation ability of

the corresponding network layer with an enlarged receptive

field. The second contribution is to propose a salient edge

detection module, which lies in the emphasis on the impor-

tance of salient edge information since it offers a strong cue

to better segment salient objects and refine object bound-

aries. Such a salient edge detection module learns for pre-

cise salient boundary estimation, and thus encourages bet-

ter edge-preserving salient object segmentation. Exhaus-

tive experiments show that both of the proposed pyramid

attention and salient edges are effective for salient object

detection, and our PAGE-Net outperforms state-of-the-art

approaches on several popular benchmarks with a fast in-

ference speed (25FPS on a single GPU).

1. Introduction

Salient Object Detection (SOD) refers to the problem of

locating and segmenting the most salient objects or regions

in an image. It can be widely applied for improving a vari-

ety of vision tasks, such as object proposal generation [2],

object segmentation [42, 44], photo cropping [45, 41], and

video object tracking [13], among others. SOD has been

extensively studied in computer vision. Traditional meth-

ods often design hand-crafted low-level features and make

heuristic hypothesizes [49, 17], which often fail to yield

satisfactory results for images with complex scenarios. Re-

∗Equal contribution.
†Corresponding author: Jianbing Shen.

cently, deep learning approaches have emerged as an impor-

tant trend for SOD and often reported significant improve-

ments. Despite being studied actively, how to devise an ef-

fective yet efficient deep neural network model for SOD re-

mains an open challenge.

In this paper, we propose a novel Pyramid Attentive and

salient edGE-aware saliency model, named PAGE-Net, for

saliency object detection, which is equipped with two key

modules: (1) a pyramid attention module that efficiently en-

hances saliency representations by accounting for the multi-

scale attention and enlarging receptive field of the saliency

model; and (2) a salient edge detection module that ex-

plicitly learns salient object boundaries to better locate and

sharpen salient objects. The design of the proposed PAGE-

Net is motivated by the following two aspects.

First, feature representation is the crux of deep learn-

ing based saliency models, and it is always desirable to ex-

plore more efficient strategies for approaching scale-space

feature learning problem. As witnessed in many saliency

studies [34, 57, 14], multi-scale saliency features are cru-

cial for SOD. As such, recent deep saliency models have

mainly focused on combining the outputs from intermedi-

ate network layers. Unlike the existing work, we propose

a novel pyramid attention model that inherits the feature-

enhancing ability of attention mechanisms, and explicitly

handles the problem of multi-scale saliency feature learn-

ing. Incorporating attention mechanisms into networks has

proven useful for selecting task-relevant features [33]. As

shown in Fig. 1, we extend attention mechanisms with hier-

archical structures to enhance saliency computation. Such

a design is significant because it efficiently increases the

receptive field of the convolution layer (even for a shallow

layer). Our saliency model is encouraged to focus on impor-

tant regions using multi-scale information (Fig. 1 (b)). With

pyramid attention, the background responses in the origi-

nal features (Fig. 1 (c)) are successfully suppressed, leading

to more discriminative saliency representations (Fig. 1 (d))

and better results (Fig. 1 (g)). Such an attention module

also provides an additional dimension of interpretability by
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Figure 1: Motivating examples and ideas for the proposed PAGE-Net. (a) Image. (b) Pyramid attention maps (§3.1). (c)

Original saliency features. (d) The refined saliency features via applying the proposed pyramid attention in (b). (e) Detected

saliency edge map (§3.2). (f) Saliency results w/o. attention and salient edge detection modules. (g) Improved results via

considering pyramid attention and salient edge cue. (h) Ground truth saliency map.

explaining where our saliency model is looking at.

Second, it is also desirable to find an effective means

of enhancing the sharpness of salient object detection re-

sults. CNNs are designed to produce hierarchical feature

maps through repeated pooling and subsampling opera-

tions, where higher layers gain larger receptive fields and

stronger representation ability but loose much detailed spa-

tial information. This can be useful for high-level tasks,

but unfortunately degrades the accuracy of low-level tasks

such as salient object segmentation where precise pixel-

wise activations are required, especially on salient object

boundaries. In the field of salient object detection, although

densely connected or bottom-up/top-down network archi-

tectures [54, 14, 26] (see the scheme in Fig. 2 (a)) have

been extensively studied to gradually recover salient object

details in a top-down fashion, the issue of sharpness still re-

mains a challenge. Inspired by recent advances in semantic

segmentation [4, 6], we propose to equip saliency models

with a salient-edge detection module, specially designed to

detect the salient object boundaries. Thus, the network can

leverage more explicit salient edges (Fig. 1 (e)) to better lo-

cate salient objects and sharpen the results (Fig. 1 (g)).

In summary, our main contributions are three-fold: (i)

we present a pyramid attention model for discriminative

saliency representations with multi-scale feature learning

and an extended receptive field (§3.1); (ii) we propose a

salient edge detection module that exploits salient edge

information explicitly for salient object detection (§3.2);

and (iii) we perform extensive experiments on six popular

benchmarks, i.e., ECCSD [49], DUT-OMRON [50], HKU-

IS [21], PASCAL-S [25], SOD [30] and DUTS-TE [35], in

which the proposed deep saliency model yields consistent

improvements over a number of strong baselines. Finally,

the proposed model runs very fast on modern GPUs, achiev-

ing a real-time inference speed of 25FPS.

2. Related Work

2.1. Salient Object Detection

The pioneering work for salient object detection can

be dated back to Liu et al., [28] and Achanta et al., [1].

Since then, numerous subsequent works have been reported,

mainly using contrast based assumption [9, 49, 17] and

background prior [46, 58]. These early methods [43, 10]

often heavily rely on hand-crafted features and heuristic hy-

pothesizes.

Recently, due to the great successes of CNNs in com-

puter vision, deep learning has emerged as a promising al-

ternative for SOD. CNN-based saliency models allow flex-

ible saliency representations with a powerful end-to-end

learning ability, thus achieving significantly better perfor-

mance than classic methods. A variety of deep learning

approaches have been proposed in literature. For exam-

ple, some methods integrate deep learning models with

hand-crafted features [20], heuristic saliency priors [36],

level set [15], contextual information [57], or explicit vi-

sual fixation [40]. Other methods leverage global and local

saliency information [21, 34, 54, 29], combine pixel- and

segment-level features [22], inspire connections between

network layers [14], or explore more complex deep archi-

tectures [18, 26, 55, 37, 32].

One distinct difference of our method from the existing

studies lies in the salient-edge-preservation property. Cur-

rent saliency network architectures tend to stack multi-layer

features. Although the final prediction layer accesses multi-

scale and multi-level information and produces more pre-

cise saliency segmentation, the issue of sharpening remains

unsolved due to the smoothness of convolution kernel and

downsampling of spatial pooling. Some post-processing

heuristics [36, 14, 22] have been adopted, but few ex-

plores how to embed salient edge information into a deep

saliency model via end-to-end training. A few recent meth-

ods [53, 23] also explored the boundary cues, but they are

very different from ours. For example, Zhang [53] et al.

simply used an extra loss to emphasize the detection error

for the pixels within the salient object boundaries. In [23],

they considered semantic contour information from a pre-

trained contour detector [51]. By contrast, we extend each

side-out layer with a salient edge detection module and

learn the combination of edge and object information end-

to-end.
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Figure 2: Architecture designs of the proposed PAGE-Net. (a) Typical bottom-up/top-down network architecture used in

previous saliency methods. (b) PAGE-Net is equipped with two essential modules: pyramid attention module and salient

edge detection module. (c) Architecture of the pyramid attention module (§3.1), where the attention is learned for enhancing

saliency representation in multi-scales. (d) The pyramid attention module assigns corresponding convolution layer a global

view with increased receptive field. (e) The edge detection module (§3.2) offers explicit edge information, which is used for

locating salient objects and sharping salient object boundary.

2.2. Trainable Attention Mechanism in Network

Attention mechanisms of deep neural networks have

been actively studied recently, which was first proposed by

Bahdanau et al. [3] for neural machine translation. Later,

it was proven useful in many natural language processing

and vision tasks, e.g., caption generation [48], question an-

swering [52], and scene recognition [5, 33], among others.

In such studies, attention is learned in an automatic, top-

down, and goal-driven way, allowing the network to focus

on the most task-relevant parts of images or sentences. Only

a few very recent methods for SOD [56, 27, 7] employ at-

tention networks. But our approach very differs from theirs,

as they often only consider a single-layer attention design.

In our approach, for each convolution layer, a pyramid of at-

tentions is equipped for essentially learning to assign higher

importance to salient regions while simultaneously address-

ing the issue of multi-scale learning. More importantly,

such a pyramid attention design enables our model with a

global view and improved learning ability via an enlarged

receptive filed.

3. Our Method

Fig. 2 (b) gives a simplified illustration of PAGE-Net,

which consists of three components: a backbone network

for feature extraction, a pyramid attention module, and a

salient edge detection module. We begin by describing our

pyramid attention module ( in Fig. 2 (b)) in §3.1. A

detailed description of our salient edge detection module

( in Fig. 2 (b)) is proved in §3.2. Finally, in §3.3, we

present more implementation details.

3.1. Pyramid Attention Module

For each saliency network layer, a pyramid attention

module is first incorporated to generate a more discrimina-

tive feature representation. In contrast to previous saliency

models that treat all positions of saliency features equally,

our model focuses on the features in important regions and

considers multi-scale information. This is achieved using

a stacked attention architecture: multiple attention layers

built upon multi-scale features are stacked to form a unified

pyramid attention model.

More technically, let X denote a 3D feature tensor from

a convolution layer of a saliency network ( in Fig. 2 (c)).

This typically consists of C channels of width M and

height M : X ∈ R
M×M×C . Our goal is to learn a set

of equally-spatial-sized attention masks that softly weight

output saliency features X based on multi-scale informa-

tion. Essentially, we obtain multi-scale features by grad-

ually down-sampling X into multiple-resolutions {Xn :

X
n∈R

M

2n
×

M

2n
×C, n=1, 2, 3, . . . , N} with N steps. For Xn

within a certain scale n, we use a soft attention mecha-

nism [48] that predicts an importance map l ∈ [0, 1]
M

2n
×

M

2n .

Specifically, a softmax operation is applied over M
2n
×M

2n
spa-

tial locations. The location softmax can be thought of as the

probability with which our model believes the correspond-

ing region in the input feature is important. It is defined as:

l
n
i = p(L = i|Xn) =

exp(Wn
i X

n
i )

∑

M

2n
× M

2n

j=1
exp(Wn

j X
n
i )

, (1)

where i ∈ 1, . . . , M
2n

×M
2n

, Wn
i are the weights of the hidden

layer that maps to the i-th element of the location softmax,

L is a random variable which can take 1-of-M
2n

×M
2n

values.

l is the attention map, where
∑ M

2n
×

M

2n

i li = 1. Through

the operations above, our model learns a normalized im-

portance weight (attention map) for each region at a certain

scale ( in Fig. 2 (c)). This is essential for saliency rep-

resentation since salient areas should have higher weights.

Once the attention probabilities {ln}Nn=1
over all
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Figure 3: Illustration of our pyramid attention module. (a) Shows the work-flow of our attention module. (d) Gives the

attention hierarchy that captures multi-scale information and emphasizes important regions. Comparing the features in (c)

and (e), we find that the background responses have been successfully suppressed by the attention module. (f) and (g) show

the results before/after applying attention. It can be observed that the PAGE-Net generates more accurate results through the

attention module. See §3.1 for more details.

{Xn}Nn=1
are obtained, upsampling operations are adopted

to resize them to their original resolutions: {l′
n

∈
[0, 1]M×M}Nn=1

. Fig. 3 offers a more detailed illustra-

tion of our attention module. Clearly, these attention maps

(Fig. 3 (d)) correspond to different resolutions and can re-

veal important regions. More importantly, the pyramid at-

tention module is equipped with stacked pooling opera-

tions, dramatically improving the receptive field of the cor-

responding feature extraction layer.

After calculating these importance probabilities, the

original feature representation X is improved by accounting

for the expectation of the feature slices in different regions:

Yj =
1

N

∑N

n=1

l
′n
j Xj , j ∈ 1, . . . ,M ×M, (2)

where Y is the updated feature and Yj is the j-th slice of

the feature cube. Here, the model computes the expected

value of the inputs by taking the expectation over the im-

age features in different regions. Our attention module not

only serves to enhance saliency representations in a focused

location, but also accounts for multi-scale information. As

discussed in [33], the features refined by the attention map

usually have a large number of values close to zero. Thus,

a stack of many refined features makes back-propagation

difficult. To solve this, we apply identity mapping [12] in

Eq. 2:

Yj =
1

N

∑N

n=1

(1 + l
′n
j )Xj , j ∈ 1, . . . ,M ×M. (3)

Even with a very small attention (l′j ≈ 0), information from

the original feature X will still be preserved by residual con-

nection. As demonstrated in Fig. 3 (c) and (e), the atten-

tion module is able to enhance the feature map for more ef-

fective saliency representation. Such pyramid attention ar-

chitecture provides a feasible method of assigning a global

view of each corresponding convolution layer (with a sig-

nificantly enlarged receptive field; see Fig. 2 (d)). A more

detailed architecture of the attention module is presented in

§3.3.

Discussion. Features from different positions do not con-

tribute equally to saliency computation. Hence, we intro-

duce the attention mechanism to focus on those positions

most essential to the nature of salient objects. With our de-

sign, the attention module can quickly collect multi-scale

information by iteratively downsampling the feature maps.

Such a pyramid structure enables the receptive field of the

feature layer to be easily and rapidly enlarged. Compared

to previous attentive models, our pyramid attention is more

favorable due to its effective use of multi-scale features and

powerful representations with enlarged receptive fields, all

of which are essential for pixel-wise saliency estimation.

3.2. Salient Edge Detector

With the refined saliency features Y, a saliency map can

be generated by directly feeding Y into a small stack of con-

volution layers with sigmoid, as done in previous methods.

However, we observed that the detection cannot produce a

clear boundary between the salient objects and the back-

ground (see Fig. 4 (b)). This is mainly due to the smooth-

ness of the convolution kernel and the downsampling of the

pooling layers. To deal with this, we design an extra salient

edge detection module (see Fig. 2 (d)) to force the network

to emphasize the saliency boundary alignment and learn to

refine saliency maps with the use of salient edge informa-

tion.

Let {(Ik,Gk,Pk)}
K
k=1

denote the training data, where

Ik, Gk, and Pk are the color image, the corresponding

ground truth saliency map and the salient object boundary

map, respectively. Notice that the edge map Pk (Fig. 4 (d))
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Figure 4: Illustration of salient edge detection module

of PAGE-Net. The detected salient object edges in (c)

offer important information on the location of salient ob-

jects. With this salient edge information, PAGE-Net is able

to generate more accurate and better boundary-adherent re-

sults (e), compared with (b). See § 3.2 for more details.

can easily be obtained from the ground truth saliency map

Gk (Fig. 4 (f)). We first build a salient edge detection mod-

ule F(YIk) ( in Fig. 2 and Fig. 4 (c)), which can gen-

erate an estimated salient edge map ( in Fig. 2) for an

input image Ik. Here F denotes the salient edge detection

module consisting of a stack of convolution layers and YIk

corresponds to the enhanced feature of Ik. F can be learned

by minimizing the following L2 norm loss function:

1

K

∑K

k=1

LEdg(Pk,F(YIk )),

LEdg(Pk,F(YIk )) = ||Pk −F(YIk )||
2

2.

(4)

A saliency readout network R(YIk ,F(YIk)) is then

built to generate the saliency estimate ( in Fig. 2) by ac-

counting for both saliency features YIk and salient edge in-

formation F(YIk). Thus the whole module can be learned

by minimizing the following combination loss:

1

K

∑K

k=1

(

LSal
(

Gk,R(YIk
,F(YIk

))
)

+LEdg
(

Pk,F(YIk
)
)

)

, (5)

where the saliency loss LSal is a weighted cross-entropy

loss that accounts for data imbalance between salient and

non-salient pixels:

LSal
(

G,R(YI ,F(YI))
)

= −
∑

i
β(1−Gi)log(1− Si)

+ (1− β)Gilog(Si),
(6)

where i ∈ ΩI , and ΩI is the lattice domain of image I. S

indicates the saliency estimate for R and Si ∈ S. β refers

to the ratio of salient pixels in the ground truth G. With the

loss function in Eq. 5 and the salient edge detection mod-

ule F , the readout network R learns to optimize the salient

object estimates by leveraging explicit edge information.

Due to the hierarchical nature of the neural network, we

introduce dense connection [16] to our model to make use

of the information from different layers and increase rep-

resentational ability. The saliency feature Y
ℓ in the ℓ-th

layer is enhanced by considering all multi-layer saliency

estimates {Sℓ−1, . . . ,S1}, as well as edge information

{Eℓ−1, . . . ,E1} from all preceding ℓ− 1 layers:

Y
ℓ ← [Yℓ

,Hℓ(Eℓ−1
, . . . ,E

1
,S

ℓ−1
, . . . ,S

1)], (7)

where H indicates a small network that upsamples and con-

catenates the additional inputs from all preceding layers.

Detailed architectures of F ,R,H can be found in § 3.3.

Discussion. To preserve more boundary information, we

add a salient edge detection module F that specifically fo-

cuses on segmenting salient object boundaries under the su-

pervision of the ground truth edge map P. Notice that F
is general enough to incorporate other edge-aware filters

like [6]. A readout network R for detecting salient objects is

then learned using both the saliency feature Y and explicit

salient edge information from F . Dense connection is fur-

ther introduced to draw representational power by reusing

information from other layers.

3.3. Detailed Network Architecture

Backbone Network. The backbone network is built from

the VGG-16 [31] model, which is well known for its ele-

gance and simplicity and is widely used in saliency models.

The first five convolutional blocks of VGG-16 are adopted.

As shown in Fig. 5, we omit the last pooling layer (pool5)

to preserve more spatial information.

Pyramid Attention Module. Let {X5,X4,X3,X2,X1}
denote the features from the last convolution layers of

five conv blocks: conv1-2, conv2-2, conv3-3, conv4-3, and

conv5-3. For each X
ℓ, we first downsample X

ℓ into multi-

ple scales. For scale n, the attention module is defined over

three consecutive operations: BN→Conv(1×1, 1)→ReLU,

where the smallest attention map is set to 14 × 14. Up-

sampling operation is applied to resize the attention maps

{ln}n over all scales to their original size. Then we obtain

an enhanced saliency representation Y
ℓ through Eq. 3.

Edge Detection Module. The edge detection module F
is defined as: BN→Conv(3×3, 64)→ReLU→Conv(1×
1, 1)→ sigmoid. The saliency readout function R is built

as: BN → Conv(3× 3, 128) → ReLU → BN → Conv(3×
3, 64)→ReLU→Conv(1×1, 1)→ sigmoid. For ℓ-th layer,

a set of upsampling operations (Hℓ) is adopted in order to

enlarge all salient object estimations and salient edge infor-

mation from all preceding layers with current feature res-

olutions. We then update the saliency representation Y
ℓ

through Eq. 7. Next, the edge detection module F and

saliency readout function R are adopted to generate the cor-

responding saliency map S
ℓ.

Take conv3-3 layer as an example. Given an input image

I ∈ R
224×224×3, the saliency maps S

2,S1 and edge maps

E
2,E1 from conv4-3 and conv5-3 layers are first upsampled

into the current spatial resolution 56×56. Then are then fed

into H3 and feature Y
3 is updated accordingly. After ap-

plying the edge detection module F3 and saliency readout

function R3, we obtain a saliency map S
3 ∈ [0, 1]56×56.

In this way, we get five saliency maps {S5,S4,S3,S2,S1}
from conv1-2, conv2-2, conv3-3, conv4-3, and conv5-3, re-

spectively, where S5 ∈ [0, 1]224×224 is the final, most accu-
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Figure 5: Illustration of side outputs of PAGE-Net. For better visualization, we omit the salient edge results. It can be

observed that the saliency from different convolution blocks of VGG-16 can be gradually optimized in a top-down manner.

See § 3.3 for details.

(a) ECCSD (b) DUT-OMRON (c) HKU-IS (d) PASCAL-S

Figure 6: Quantitative results with PR-curve on four widely used benchmarks: ECCSD [49], DUT-OMRON [50], HKU-

IS [21] and PASCAL-S [25]. PAGE-Net gains promising performance. Best viewed in color. See § 4.1 for details.

rate saliency estimate.

Overall Loss. All the training images {Ik}
K
k=1

are re-

sized to fixed dimensions of 224× 224× 3. The salient

boundary maps Pk ∈ {0, 1}224×224 are generated from

the corresponding ground truth salient object map Gk ∈
{0, 1}224×224 and dilated to a three-pixel radius. Consider-

ing all five-side outputs, the overall training loss for a train-

ing image Ik is:
∑5

ℓ=1

(

LSal
(

G
ℓ
k,R

ℓ(Yℓ
Ik
,Fℓ(Yℓ

Ik
))
)

+ LEdg
(

P
ℓ
k,F

ℓ(Yℓ
Ik
)
)

)

.

(8)

With the hierarchical loss functions, five intermediate layers

in PAGE-Net have direct access to the gradients from the

loss function, leading to implicit deep supervision [19].

Implementation Details. PAGE-Net is implemented in

Keras. Following the training protocol in [54, 20, 36], we

use THUS10K [9], containing 10,000 images with pixel-

wise annotations, for training. During the training phase,

the learning rate is set to 0.0001 and is decreased by a fac-

tor of 10 every two epochs. In each training iteration, we

use a mini-batch of 10 images. The entire training proce-

dure takes about 7 hours using an Nvidia TITAN X GPU.

Since our model does not need any pre- or post-processing,

the inference only takes 0.04s to process an image of size

224× 224. This makes it faster than most deep learning

based competitors (see § 4.1 for a detailed comparison).

4. Experiments

We conduct extensive experiments on six popular bench-

marks: ECCSD [49], DUT-OMRON [50], HKU-IS [21],

PASCAL-S [25], SOD [30], and DUTS-TE [35], which are

all publicly available and are human-labeled with pixel-wise

ground truth for quantitative evaluations. For evaluation, we

adopt three widely used metrics [11], i.e., precision-recall

(PR) curves, F-measure and mean absolute error (MAE).

4.1. Performance Comparison

We compare the proposed PAGE-Net against 19 recent

deep learning based alternatives: MDF [21], LEGS [34],

DS [24], DCL [22], ELD [20], MC [57], RFCN [36], DHS

[26], HEDS [14], KSR [38], NLDF [29], DLS [15], AMU

[54], UCF [55], SRM [37], FSN [8], PAGR [56], RAS

[7] and C2S [23]. we use either the implementations with

the recommended parameter settings or the saliency maps

shared by the authors. For a fair comparison, we exclude

other ResNet-based models such as [39], or the ones us-

ing more training data [40]. Since fully connected condi-

tional random field (CRF) has been used in [22, 14] as post-

processing, we further offer a baseline PAGE-Net+CRF that

uses CRF.
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Methods
ECCSD [49] DUT-OMRON [50] HKU-IS [21] PASCAL-S [25] SOD [30] DUTS-TE [35]

F-score ↑ MAE ↓ F-score ↑ MAE ↓ F-score ↑ MAE ↓ F-score ↑ MAE ↓ F-score ↑ MAE ↓ F-score ↑ MAE ↓

MDF* [21] 0.831 0.108 0.694 0.092 0.860 0.129 0.764 0.145 0.785 0.155 0.657 0.114

LEGS [34] 0.831 0.119 0.723 0.133 0.812 0.101 0.749 0.155 0.691 0.197 0.611 0.137

DS [24] 0.810 0.160 0.603 0.120 0.848 0.078 0.818 0.170 0.781 0.150 - -

DCL [22] 0.898 0.071 0.732 0.087 0.907 0.048 0.822 0.108 0.784 0.126 0.742 0.150

ELD [20] 0.865 0.080 0.700 0.092 0.844 0.071 0.767 0.121 0.760 0.154 0.697 0.092

MC [57] 0.822 0.107 0.702 0.088 0.781 0.098 0.721 0.147 - - - -

RFCN [36] 0.898 0.109 0.701 0.111 0.895 0.089 0.827 0.118 0.805 0.161 0.752 0.090

DHS* [26] 0.905 0.061 - - 0.892 0.052 0.820 0.091 0.793 0.127 0.799 0.065

HEDS [14] 0.915 0.053 0.714 0.093 0.913 0.040 0.830 0.112 0.802 0.126 0.796 0.057

KSR [38] 0.801 0.133 0.742 0.157 0.759 0.120 0.649 0.137 0.698 0.199 0.660 0.123

NLDF [29] 0.905 0.063 0.753 0.080 0.902 0.048 0.831 0.112 0.808 0.130 0.777 0.066

DLS [15] 0.825 0.090 0.714 0.093 0.806 0.072 0.719 0.136 - - - -

AMU [54] 0.889 0.059 0.733 0.097 0.918 0.052 0.834 0.103 0.773 0.145 0.750 0.085

UCF [55] 0.868 0.078 0.713 0.132 0.905 0.074 0.771 0.128 0.776 0.169 0.742 0.117

SRM [37] 0.910 0.056 0.707 0.069 0.892 0.046 0.783 0.127 0.792 0.132 0.798 0.059

FSN [8] 0.910 0.053 0.741 0.073 0.895 0.044 0.827 0.095 0.781 0.127 0.761 0.066

PAGR [56] 0.904 0.061 - - 0.897 0.048 0.815 0.094 - - - -

RAS* [7] 0.908 0.056 0.758 0.068 0.900 0.045 0.804 0.105 0.809 0.124 0.807 0.059

C2S [23] 0.902 0.054 0.731 0.080 0.887 0.046 0.834 0.082 0.786 0.124 0.783 0.062

PAGE-Net 0.924 0.042 0.770 0.066 0.918 0.037 0.835 0.078 0.796 0.110 0.815 0.051

PAGE-Net+CRF 0.926 0.035 0.770 0.063 0.920 0.030 0.835 0.074 0.796 0.108 0.817 0.047

∗DHS [26] uses THUS10K and DUT-OMRON for training. MDF [21] and RAS [7] are trained on a subset of HKU-IS.

Table 1: Quantitative results with F-measure (higher is better) and MAE (lower is better) on six well-known SOD

benchmarks: ECCSD [49], DUT-OMRON [50], HKU-IS [21], PASCAL-S [25], SOD [30] and DUTS-TE [35]. For each

column, the top two best entries are highlighted in red and blue, respectively. See § 4.1 for details.

Figure 7: Quantitative comparison of visual results on some representative challenging examples. It can be observed

that the proposed PAGE-Net is able to handle diverse challenging scenes. Best viewed in color. See § 4.1 for details.

Quantitative Evaluation. The precision-recall curves of

all methods are given in Fig. 6. Due to limited space, we

only show the results on four datasets. As seen, our PAGE-

Net outperforms its counterparts across all datasets, con-

vincingly demonstrating the effectiveness of the method.

We also compare our method to current state-of-the-art

models in terms of F-measure and MAE scores. It is ev-

ident from Table 1 that PAGE-Net achieves excellent re-

sults for all the datasets, across the metrics. In particu-

lar, PAGE-Net shows a significantly improved F-measure

compared to the second best method, RAS, for the DUT-

OMRON dataset (0.770 vs 0.758), which is one of the most

challenging benchmarks. This clearly demonstrates the su-

perior performance of PAGE-Net in complex scenes.

Qualitative Evaluation. Fig. 7 shows a visual comparison

of the results of our method against those of five other top-
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Method LEGS [34] MDF [21] DS [24] DCL [22] ELD [20]

Time(s) 1.54 7.83 0.13 0.39 0.55

Method RFCN [36] DHS [26] HEDS [14] KSR [38] NLDF [29]

Time(s) 4.65 0.04 0.57 49.64 0.09

Method DLS [15] AMU [54] UCF [55] SRM [37] PAGE-Net

Time(s) 0.08 0.07 0.04 0.07 0.04

Table 2: Runtime comparison (GPU time) with previous

deep learning based saliency models. See § 4.1 for details.

performing competitors. For better visualization, we high-

light the main difficulties of each image group. We find that

PAGE-Net performs well in a variety of challenging scenar-

ios, e.g., for large salient objects (first row), low contrast

between objects and backgrounds (second row), cluttered

backgrounds (forth row), and multiple disconnected objects

(last row). Additionally, we observe that our method cap-

tures salient boundaries quite well due to its use of salient

edge detection modules.

Runtime Comparison. We also report the runtime of sev-

eral deep saliency methods in Table 2. These evaluations

were conducted on a machine with an i7 CPU and a Titan-X

GPU. PAGE-Net is faster than most of the others methods,

achieving a real-time speed of 25 FPS.

4.2. Ablation Studies

In this section, we analyze the contribution of each com-

ponent to the model’s overall performance. We conduct ex-

periments using the ECCSD [49] and DUT-OMRON [50]

datasets. The results are summarized in Table 3.

Multi-Scale Attention. To validate the effectiveness of our

multi-scale attention structure (§ 3.1), we compare three

variants: w/o attention, w/ single scale and w/o identity

mapping. Baseline w/o attention refers to the results ob-

tained by retraining PAGE-Net without any attention mod-

ule. The baseline w/ single scale corresponds to the results

obtained with a single-scale attention module (N = 1 in

Eq. 3). For w/o identity mapping, we retrain our atten-

tion module without identity mapping (Eq. 2). As shown

in Table 3, the network with multi-scale attention achieves

better performance, compared to those without an atten-

tion module or using single-scale attention. This confirms

that the attention module benefits from multi-scale infor-

mation. These results additionally demonstrate that identify

mapping also boosts performance. The visual comparison

between the results of PAGE-Net w/ and w/o an attention

module can be found in Fig. 3 (f) and (g).

Salient Edge Information. Next, we study the effect of

salient object edge information (§ 3.2). The baseline w/o

salient edge is obtained by disabling our salient edge detec-

tion module. We observe a drop in performance (ECCSD:

0.042→0.054, DUT-OMRON: 0.066→0.074) when using

MAE. This suggests that the salient edge information does

indeed improve salient object segmentation. To provide

Aspects Methods
ECCSD [49] DUT-OMRON [50]

F-score ↑ MAE ↓ F-score ↑ MAE ↓

Full

Model

PAGE-Net

conv 1-output
0.924 0.042 0.770 0.066

conv 2-output 0.914 0.051 0.764 0.070

Side conv 3-output 0.906 0.056 0.761 0.072

Outputs conv 4-output 0.887 0.068 0.740 0.083

conv 5-output 0.854 0.090 0.706 0.099

Pyramid

Attention

Module

w/o attention 0.897 0.059 0.706 0.080

w/ single scale 0.901 0.057 0.720 0.078

w/o identity

mapping (Eq. 2)
0.916 0.051 0.755 0.071

Salient-Edge w/o salient edge 0.910 0.054 0.746 0.074

Detection w/ HED [47] 0.911 0.052 0.751 0.073

Module w/ canny detector 0.907 0.053 0.748 0.073

Table 3: Ablation study of PAGE-Net on ECCSD [49] and

DUT-OMRON [50]. We change one component at a time,

to assess individual contributions. See § 4.2 for details.

deeper insight into the importance of salient edge informa-

tion, we est the model again after replacing the salient edge

detection module with two different edge detectors: HED

[47] and the canny filter. We also observe a minor decrease

in performance in both cases. This indicates that the use of

salient edge information is crucial for obtaining better per-

formance. This is because salient edges offer an informative

cue for detecting and segmenting salient objects, rather than

simply determining color or intensity changes.

Side Outputs. Finally, we study the effect of our hierarchi-

cal architecture on inferring saliency in a top-down manner

(Fig. 2 (b) and § 3.3). We introduced four additional base-

lines corresponding to the outputs from the intermediate

layers of PAGE-Net: conv2-output, conv3-output, conv4-

output, and conv5-output. Note that the final prediction

of PAGE-Net can be viewed as the output from the conv1
layer. We find that the saliency results are gradually opti-

mized by adding more details from the lower layers.

5. Conclusion

In this paper, we presented a novel deep saliency model,

PAGE-Net, for salient object detection. PAGE-Net is

equipped with two essential components: a pyramid atten-

tion module and a salient edge detection module. The for-

mer extends the regular attention mechanisms with multi-

scale information to improve saliency representation, en-

abling more efficient training and better performance. The

latter emphasizes on the detection of salient edge infor-

mation, which can be leveraged for sharpening salient ob-

ject segments. Extensive experimental evaluations over six

well-known benchmark datasets verify that the aforemen-

tioned contributions significantly improve the saliency de-

tection performance. Finally, the proposed model enjoys

efficient inference speed and runs fast on GPU in real-time.
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