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Abstract

Highlight detection has the potential to significantly ease

video browsing, but existing methods often suffer from ex-

pensive supervision requirements, where human viewers

must manually identify highlights in training videos. We

propose a scalable unsupervised solution that exploits video

duration as an implicit supervision signal. Our key insight is

that video segments from shorter user-generated videos are

more likely to be highlights than those from longer videos,

since users tend to be more selective about the content when

capturing shorter videos. Leveraging this insight, we intro-

duce a novel ranking framework that prefers segments from

shorter videos, while properly accounting for the inherent

noise in the (unlabeled) training data. We use it to train a

highlight detector with 10M hashtagged Instagram videos.

In experiments on two challenging public video highlight

detection benchmarks, our method substantially improves

the state-of-the-art for unsupervised highlight detection.

1. Introduction

“I didn’t have time to write a short letter, so I wrote a

long one instead.” – Mark Twain

With the increasing prevalence of portable computing

devices (like smartphones, wearables) and promotion from

social media platforms, it is seamless for Internet users to

record and share massive amounts of video. According to

Cisco [1], by 2021 video traffic will be 82% of all con-

sumer Internet traffic, and every second a million minutes

of video content will cross the network. Yet, indexing, or-

ganizing, and even browsing such massive video data is still

very challenging.

As an attempt to mitigate the overload, video highlight

detection has attracted increasing attention in the research

community. The goal in highlight detection is to retrieve a

moment—in the form of a short video clip—that captures

a user’s primary attention or interest within an unedited

∗ On leave from UT Austin (grauman@cs.utexas.edu).

Short clips of surfing

A long video of surfing

Figure 1: Video frames from three shorter user-generated

video clips (top row) and one longer user-generated video

(second row). Although all recordings capture the same

event (surfing), video segments from shorter user-generated

videos are more likely to be highlights than those from

longer videos, since users tend to be more selective about

their content. The height of the red curve indicates high-

light score over time. We leverage this natural phenomenon

as a free latent supervision signal in large-scale Web video.

video. A well-selected highlight can accelerate browsing

many videos (since a user quickly previews the most im-

portant content), enhance social video sharing (since friends

become encouraged to watch further), and facilitate video

recommendation (since systems can relate unedited videos

in a more focused way). Highlight detectors are typically

domain-specific [33, 40, 39, 28, 26, 20], meaning they are

tailored to a category of video or keywords/tags like skiing,

surfing, etc. This accounts for the fact that the definition of

what constitutes a highlight often depends on the domain,

e.g., a barking dog might be of interest in a dog show video,

but not in a surfing video.

Existing methods largely follow one of two strategies.

The first strategy poses highlight detection as a supervised

learning task [9, 33, 40]. Given unedited videos together

with manual annotations for their highlights, a ranker is

trained to score highlight segments higher than those else-
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where in the video [9, 33, 40]. While the resulting detec-

tor has the advantage of good discriminative power, the

approach suffers from heavy, non-scalable supervision re-

quirements. The second strategy instead considers highlight

learning as a weakly supervised recognition task. Given

domain-specific videos, the system discovers what appears

commonly among the training samples, and learns to detect

such segments as highlights in novel videos for the same do-

main [39, 28, 26, 20]. While more scalable in supervision,

this approach suffers from a lack of discriminative power.

Put simply, repetition across samples does not entail impor-

tance. For example, while all dog show videos might con-

tain moments showing the audience waiting in their seats,

that does not make it a highlight.

We introduce a novel framework for domain-specific

highlight detection that addresses both these shortcomings.

Our key insight is that user-generated videos, such as those

uploaded to Instagram or YouTube, carry a latent supervi-

sion signal relevant for highlight detection: their duration.

We hypothesize shorter user-uploaded videos tend to have a

key focal point as the user is more selective about the con-

tent, whereas longer ones may not have every second be

as crisp or engaging. In the spirit of Twain’s quote above,

more effort is required to film only the significant moments,

or else manually edit them out later. Hence duration is an

informative, though implicit, training signal about the value

of the video content. See Fig.1. We leverage duration as a

new form of “weak” supervision to train highlight detectors

with unedited videos. Unlike existing supervised methods,

our training data requirements are scalable, relying only on

tagged video samples from the Web. Unlike existing weakly

supervised methods, our approach can be trained discrimi-

natively to isolate highlights from non-highlight time seg-

ments.

Given a category (domain) name, we first query Insta-

gram to mine public videos which contain the given cate-

gory name as hashtags. We use a total of 10M Instagram

videos. Since the hashtag Instagram videos are very noisy,

and since even longer videos will contain some highlights,

we propose a novel ranking model that is robust to label

noise in the training data. In particular, our model intro-

duces a latent variable to indicate whether each training pair

is valid or noisy. We model the latent variable with a neural

network, and train it jointly with the ranking function for

highlight detection. On two public challenging benchmark

datasets (TVSum [31] and YouTube Highlights [33]), we

demonstrate our approach improves the state of the art for

domain-specific unsupervised highlight detection.1

Overall, we make the following contributions:

1Throughout, we use the term unsupervised to indicate the method does

not have access to any manually created summaries for training. We use

the term domain-specific to mean that there is a domain/category of interest

specified by keyword(s) like “skiing”, following [28, 39, 26, 20].

• We propose a novel approach to unsupervised video

highlight detection that leverages user-generated video

duration as an implicit training signal.

• We propose a novel video clip deep ranking framework

that is robust to noisily labeled training data.

• We train on a large-scale dataset that is one to two

orders of magnitude larger than existing ones, and

show that the scale (coupled with the scalablility of

our model) is crucial to success.

• On two challenging public benchmarks, our method

substantially improves the state of the art for unsuper-

vised highlight detection, e.g., improving the next best

existing method by 22%.

2. Related Work

Video Highlight Detection Many prior approaches fo-

cus on highlight detection for sports video [30, 37, 34,

35]. Recently, supervised video highlight detection has

been proposed for Internet videos [33] and first-person

videos [40]. These methods all require human annotated

〈highlight, source video〉 pairs for each specific domain.

The Video2GIF approach [9] learns from GIF-video pairs,

which are also manually created. All supervised highlight

detection methods require human edited/labeled ranking

pairs. In contrast, our method does not use manually labeled

highlights. Our work offers a new way to take advantage of

freely available videos from the Internet.

Unsupervised video highlight detection methods do not

require video annotations to train. They can be further di-

vided into methods that are domain-agnostic or domain-

specific. Whereas a domain-agnostic approach like mo-

tion strength [24] operates uniformly on any video, domain-

specific methods train on a collection of videos of the same

topic. They leverage concepts like visual co-occurrence [5],

category-aware reconstruction loss [44, 39], or collabora-

tive sparse selection within a category [27]. Another ap-

proach is first train video category classifiers, then detect

highlights based on the classifier scores [28] or spatial-

temporal gradients from the classifier [26]. Like the

domain-specific methods, our approach also tailors high-

lights to the topic domain; we gather the relevant training

videos per topic automatically using keyword search on the

Web. Unlike any existing methods, we leverage video dura-

tion as a weak supervision signal.

Video Summarization Whereas highlight detection (our

goal) aims to score individual video segments for their wor-

thiness as highlights, video summarization aims to provide

a complete synopsis of the whole video, often in the form

of a structured output, e.g., a storyline graph [15, 36], a se-

quence of selected keyframes [17] or clips [7, 43]. Video
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summarization is often formalized as a structured subset se-

lection problem considering not just importance but also

diversity [6, 21] and coherency [21]. Supervised sum-

marization methods focus on learning a visual interesting-

ness/importance score [17, 7], submodular mixtures of ob-

jectives [8, 38], or temporal dependencies [42, 43]. Unsu-

pervised summarization methods often focus on low-level

visual cues to locate important segments. Recent unsu-

pervised and semi-supervised methods use recurrent auto-

encoders to enforce that the summary sequence should be

able to generate a sequence similar to the original video [39,

23, 43]. Many rely on Web image priors [13, 31, 14, 15] or

semantic Web video priors [3]. While we also leverage Web

data, our idea about duration is novel.

Learning with Noisy Labels: Our work is also related to

learning from noisy data, a topic of broad interest in ma-

chine learning [25, 19]. The proportion SVM [41] handles

noisy data for training SVMs where a fraction of the la-

bels per group are expected to be incorrect, with applica-

tions to activity recognition [16]. Various methods explore

how to train neural networks with noisy data [32, 29, 18].

Recent work on attention-based Multiple Instance Learning

(MIL) helps focus on reliable instances using a differen-

tiable MIL pooling operation for bags of embeddings [12].

Inspired by this, we propose a novel attention-based loss

to reliably identify valid samples from noisy training data,

but unlike [12], 1) we have “bags” defined in the space of

ranking constraints, 2) our attention is defined in the loss

space, not in the feature space, 3) our model predicts scores

at the instance level, not the “bag” level, and 4) our atten-

tion mechanism is extended with multiple heads to take into

account a prior for the expected label noise level.

3. Approach

We explore domain-specific highlight detection trained

with unlabeled videos. We first describe how we auto-

matically collect large-scale hashtag video data for a do-

main (Sec. 3.1). Then we present our novel framework for

learning highlights aided by duration as a training signal

(Sec. 3.2). The results will show the impact of our method

to find highlights in standard public benchmarks (Sec. 4).

3.1. Largescale Instagram Training Video

First we describe our data collection process. We choose

Instagram as our source to collect videos because it contains

a large amount of public videos associated with hashtags. In

addition, because Instagram users tend to upload frequently

via mobile for social sharing, there is a natural variety of

duration and quality—some short and eye-catching videos,

others less focused. The duration of a video from Instagram

can vary from less than a second to 1 minute.

Figure 2: Durations for the 10M Instagram training videos.

Our goal is to build domain-specific highlight detec-

tors. Given a category name, we query Instagram to mine

for videos that contain the given category name among

their hashtags. For most categories, this returns at least

200, 000 videos. Since we validate our approach to detect

highlights in the public TVSum and YouTube Highlights

benchmarks [31, 33] (see Sec. 4), the full list of hashtags

queried are dog, gymnastics, parkour, skating, skiing, surf-

ing, changing vehicle tire, getting vehicle unstuck, groom-

ing an animal, making sandwich, parade, flash mob gather-

ing, beekeeping, attempting bike tricks, and dog show. Thus

the data spans a range of domains frequently captured for

sharing on social media or browsing for how-to’s online.

Altogether we acquire more than 10M training videos.

Figure 2 shows the distribution of their durations, which

vary from less than a second to 1 minute. We see there is

a nice variety of lengths, with two modes centered around

short (∼ 10 s) and “long” (∼ 60 s) clips.

Postprocessing hashtags, injecting word similarity mod-

els, or chaining to related keywords could further refine the

quality of the domain-specific data [22]. However, our ex-

periments suggest that even our direct hashtag mining is

sufficient to gather data relevant to the public video datasets

we ultimately test on. Below we will present a method to

cope with the inherent noise in both the Instagram tags as

well as the long/short video hypothesis.

3.2. Learning Highlights from Video Duration

Next we introduce our ranking model that utilizes large-

scale hashtagged video data and their durations for training

video highlight detectors.

Recall that a video highlight is a short video segment

within a longer video that would capture a user’s attention

and interest. Our goal is to learn a function f(x) that in-

fers the highlight score of a temporal video segment given

its feature x (to be specified below). Then, given a novel

video, its highlights can be prioritized (ranked) based on

each segment’s predicted highlight score.
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A supervised regression solution would attempt to learn

f(x) from a video dataset with manually annotated high-

light scores. However, calibrating highlight scores col-

lected from multiple human annotators is itself challenging.

Instead, highlight detection can be formalized as a rank-

ing problem by learning from human-labeled/edited video-

highlight pairs [9, 33, 40]: segments in the manually anno-

tated highlight ought to score more highly than those else-

where in the original long video. However, such paired data

is difficult and expensive to collect, especially for long and

unconstrained videos at a large scale.

To circumvent the heavy supervision entailed by collect-

ing video-highlight pairs, we propose a framework to learn

highlight detection directly from a large collection of unla-

beled video. As discussed above, we hypothesize that users

tend to be more selective about the content in the shorter

videos they upload, whereas their longer videos may be a

mix of good and less interesting content. We therefore use

the duration of videos as supervision signal. In particular,

we propose to learn a scoring function that ranks video seg-

ments from shorter videos higher than video segments from

longer videos. Since longer videos could also contain high-

light moments, we devise the ranking model to effectively

handle noisy ranking data.

Training data and loss: Let D denote a set of videos shar-

ing a tag (e.g., dog show). We first partition D into three

non-overlapping subsets D = {DS , DL, DR}, where DS

contains shorter videos, DL contains longer videos, and DR

contains the rest. For example, shorter videos may be less

than 15 seconds, and longer ones more than 45 seconds

(cf. Sec 4). Each video, whether long or short, is broken

into uniform length temporal segments.2

Let si refer to a unique video segment from the dataset,

and let v(si) denote the video where video segment si
comes from. The visual feature extracted from segment

si is xi. Since our goal is to rank video segments from

shorter videos higher than those from longer videos, we

construct training pairs (si, sj) such that v(si) ∈ Ds and

v(sj) ∈ DL. We denote the collection of training pairs as

P . Since our dataset is large, we sample among all possible

pairs, ensuring each video segment is included at least once

in the training set. The learning objective consists of the

following ranking loss:

L(D) =
∑

(si,sj)∈P

max (0, 1− f(xi) + f(xj)) , (1)

which says we incur a loss every time the longer video’s

segment scores higher. The function f is a deep convo-

lutional network, detailed below. Note that whereas su-

pervised highlight ranking methods [9, 33, 40] use rank

constraints on segments from the same video—comparing

2We simply break them up uniformly into 2-second segments, though

automated temporal segmentation could also be employed [28, 31].

those inside and outside the true highlight region—our con-

straints span segments from distinct short and long videos.

Learning from noisy pairs: The formulation thus far as-

sumes that no noise exists and that Ds and DL only con-

tain segments from highlights and non-highlights, respec-

tively. However, this is not the case when learning from

unedited videos: some video segments from long videos

can also be highlights, and some short segments need not be

highlights. Furthermore, some videos are irrelevant to the

hashtags. Therefore, only a subset of our pairs in P have

valid ranking constraints (si, sj), i.e., pairs where si corre-

sponds to a highlight and sj corresponds to a non-highlight.

Ideally, a ranking model would only learn from valid rank-

ing constraints and ignore the rest. To achieve this without

requiring any annotation effort, we introduce binary latent

variables wij , ∀(si, sj) ∈ P to indicate whether a ranking

constraint is valid. We rewrite the learning objective as fol-

lows:

L(D) =
∑

(si,sj)∈P

wij max (0, 1− f(xi) + f(xj))

s.t.
∑

(si,sj)∈P

wij = p|P|, wij ∈ [0, 1],

and wij = h(xi, xj)

(2)

where h is a neural network, |P| is total number of ranking

constraints, and p is the anticipated proportion of ranking

constraints that are valid. In the spirit of learning with a pro-

portional loss [41], this cap on the total weights assigned to

the rank constraints represents a prior for the noise level ex-

pected in the labels. For example, training with p = 0.8 tells

the system that about 80% of the pairs are a priori expected

to be valid. The summation of the binary latent variable wij

prevents the trivial solution of assigning 0 to all the latent

variables.

Rather than optimize binary latent selection variables

with alternating minimization, we instead use real-valued

selection variables, and the function h(xi, xi) directly pre-

dicts those latent variables wij . The advantages are three-

fold. First, we can simultaneously optimize the ranking

function f and the selected training pairs. Second, the la-

tent variable wij is conditioned on the input features so it

can learn whether a ranking constraint is valid as a func-

tion of the specific visual input. Third, by relaxing wij to

a continuous variable in the range from 0 to 1, we capture

uncertainty about pair validity during training.

Finally, we parameterize the latent variables wij , which

provide learned weights for the training samples, and refine

our objective to train over batches while enforcing the noise

level prior p. We split the training data into groups, each

of which contains exactly n pairs. We then require that the

latent variable wij for instances within a group sum up to 1.

In particular, let P1, . . . ,Pm be a random split of the set of
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Figure 3: Network architecture details of our approach. The

batch size is b. We group every n instances of training pairs

and feed them to a softmax function. Each batch has t such

groups (b = nt).

pairs P into m groups where each group contains exactly n

pairs, then the final loss becomes:

L(D) =
m∑

g=1

∑

(si,sj)∈Pg

w̃ij max (0, 1− f(xi) + f(xj))

s.t.
∑

(si,sj)∈Pg

w̃ij =
∑

(si,sj)∈Pg

σg(h(xi, xj)) = 1,

w̃ij ∈ [0, 1],
(3)

where σg denotes the softmax function defined over the set

of pairs in group Pg . Note that now the group size n, to-

gether with the softmax, serves to uphold the label noise

prior p, with p = 1
n

, while allowing a differentiable loss

for the selection function h. Intuitively, smaller values of n

will speed up training at the cost of mistakenly promoting

some invalid pairs, whereas larger values of n will be more

selective for valid pairs at the cost of slower training. In

experiments, we fix n to 8 for all results and datasets.

As f learns from training data, the function h helps f to

attend to training pairs that are consistent. Starting with the

prior that there are more valid than invalid pairs, it learns to

assign low (high) weights to training pairs that violate (sat-

isfy) ranking constraints, respectively. Please see Supp. for

an ablation study with respect to n and results showing how

h gradually concentrates more weight on valid pairs.

Network structure: We model both f(x) and h(xi, xj)
with neural networks. We use a 3 hidden layer fully-

connected model for f(x). The function h(xi, xj) consists

of a 3 fully-connected layers, followed by a n-way softmax

function, as shown in Eq.(3). See Fig. 3 for network archi-

tecture details.

Video segment feature representation: To generate fea-

tures xi for a segment si we use a 3D convolution net-

work [10] with a ResNet-34 [11] backbone pretrained on

Kinetics [4]. We use the feature after the pooling of the final

convolution layer. Each video segment is thus represented

by a feature of 512 dimensions.

Implementation details: We implement our model with

PyTorch, and optimize with stochastic gradient with mo-

mentum for 30 epochs. We use a batch size of 2048 and

set the base learning rate to 0.005. We use a weight de-

cay of 0.00005 and a momentum of 0.9. With a single

Quadro GP100 gpu, the total feature extraction time for a

one-minute-long video is 0.50 s. After extracting video fea-

tures, the total training time to train a model is one hour for

a dataset of 20,000 video clips of total duration 1600 hours.

At test time, it takes 0.0003 s to detect highlights in a new

one-minute-long video after feature extraction.

4. Results

We validate our approach for highlight detection and

compare to an array of previous methods, focusing espe-

cially on those that are unsupervised and domain-specific.

4.1. Experimental setup

Datasets and metrics: After training our model on the In-

stagram video, we evaluate it on two challenging public

video highlight detection datasets: YouTube Highlights [33]

and TVSum [31]. YouTube Highlights [33] contains six

domain-specific categories: surfing, skating, skiing, gym-

nastics, parkour, and dog. Each domain consists of around

100 videos and the total accumulated time is 1430 minutes.

TVSum [31] is collected from YouTube using 10 queries

and consists of 50 videos in total from domains including

changing vehicle tire, grooming an animal, making sand-

wich, parade, flash mob gathering, and others. Since the

ground truth annotations in TVSum [31] provide frame-

level importance scores, we first average the frame-level

importance scores to obtain the shot-level scores, and then

select the top 50% shots (segments) for each video as the

human-created summary, following [27, 26]. Finally, the

highlights selected by our method are compared with 20

human-created summaries. We report mean average pre-

cision (mAP) for both datasets.

Baselines: We compare with nine state-of-the-art methods

as reported in the literature. Here we organize them based

on whether they require shot-level annotation (supervised)

or not (unsupervised). Recall that our method is unsuper-

vised and domain-specific, since we use no annotations and

compose the pool of training video with tag-based queries.

• Unsupervised baselines: We compare with the fol-
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lowing unsupervised methods: RRAE [39], MBF [5],

KVS [28], CVS [27], SG [23], DeSumNet(DSN) [26],

and VESD [3]. We also implement a baseline where

we train classifiers (CLA) with our hashtagged Insta-

gram videos. The classifiers use the same network

structures (except the last layer is replaced with a K-

way classification) and video features as our method.

We then use the classifier score for highlight detec-

tion. CLA can be seen as a deep network variant of

KVS [28]. We also implemented k-means and spec-

tral clustering baselines, but found them inferior to the

more advanced clustering method [5] reported below.

• Supervised baselines: We compare with the latent-

SVM approach [33], which trains with human-

edited video-highlight pairs, and the Video2GIF ap-

proach [9], a domain-agnostic method that trains with

human-edited video-GIF pairs. Though these methods

require annotations—and ours does not—they are of

interest since they also use ranking formulations.

We present results for two variants of our method: Ours-

A: Our method trained with Instagram data in a domain-

agnostic way, where we pool training videos from all

queried tags. We use a single model for all experiments;

Ours-S: Our method trained with domain-specific Insta-

gram data, where we train a separate highlight detector for

each queried tag. For both variants, our method’s training

data pool is generated entirely automatically and uses no

highlight annotations. A training video is in DS if its du-

ration is between 8 and 15 s, and it is in DL if its duration

is between 45 and 60 s. We discard all other videos. Perfor-

mance is stable as long as we keep a large gap for the two

cut off thresholds. Our networks typically converge after 20

epochs, and test performance is stable (±0.5%) when we

train multiple times with random initializations. See Supp.

4.2. Highlight Detection Results

Results on YouTube Highlights dataset: Table 1 presents

the results on YouTube Highlights [33]. All the baseline re-

sults are as reported in the authors’ original papers. Our do-

main specific method (Ours-S) performs the best—notably,

it is even better than the supervised ranking-based meth-

ods. Compared to the unsupervised RRAE approach [39],

our average gain in mAP is 18.1%. Our method benefits

from discriminative training to isolate highlights from non-

highlight video segments. Our method also outperforms

the CLA approach that is trained on the same dataset as

ours, indicating that our advantage is not due to the train-

ing data alone. CLA can identify the most discriminative

video segments, which may not always be highlights. On

average our method outperforms the LSVM approach [33],

which is trained with domain-specific manually annotated

data. While the supervised methods are good at leverag-

ing high quality training data, they are also limited by the

RRAE GIFs LSVM CLA Ours-A Ours-S

(unsup) [39] (sup) [9] (sup) [33] (unsup) (unsup) (unsup)

dog 0.49 0.308 0.60 0.502 0.519 0.579

gymnast. 0.35 0.335 0.41 0.217 0.435 0.417

parkour 0.50 0.540 0.61 0.309 0.650 0.670

skating 0.25 0.554 0.62 0.505 0.484 0.578

skiing 0.22 0.328 0.36 0.379 0.410 0.486

surfing 0.49 0.541 0.61 0.584 0.531 0.651

Average 0.383 0.464 0.536 0.416 0.505 0.564

Table 1: Highlight detection results (mAP) on YouTube

Highlights [33]. Our method outperforms all the baselines,

including the supervised ranking-based methods [33, 9].

practical difficulty of securing such data at scale. In con-

trast, our method leverages large-scale tagged Web video at

scale, without manual highlight examples.

Our method trained with domain specific data (Ours-S)

performs better than when it is trained in a domain-agnostic

way (Ours-A). This is expected since highlights often de-

pend on the domain of interest. Still, our domain-agnostic

variant outperforms the domain-agnostic Video2GIF [9],

again revealing the benefit of large-scale weakly supervised

video for highlight learning.

Fig. 4 and the Supp. video show example highlights. De-

spite not having explicit supervision, our method is able to

detect highlight-worthy moments for a range of video types.

Results on TVSum dataset: Table 2 presents the results

on TVSum [31].3 We focus the comparisons on unsuper-

vised and domain-specific highlight methods. TVSum is a

very challenging dataset with diverse videos. Our method

outperforms all the baselines by a large margin. In partic-

ular, we outperform the next best method SG [23] by 10.1

points, a relative gain of 22%. SG learns to minimize the

distance between original videos and their summaries. The

results reinforce the advantage of discriminatively select-

ing segments that are highlight-worthy versus those that are

simply representative. For example, while a close up of

a bored dog might be more representative in the feature

space for dog show videos, a running dog is more likely

to be a highlight. Our method trained with domain specific

data (Ours-S) again outperforms our method trained in a

domain-agnostic way (Ours-A).

Instagram vs. YouTube for training: Curious whether an

existing large-scale collection of Web video might serve

equally well as training data for our approach, we also

trained our model on videos from YouTube8M [2]. Training

on 6,000 to 26,000 videos per domain from YouTube8M,

we found that results were inferior to those obtained with

the Instagram data (see Supp. for details). We attribute this

to two factors: 1) the YouTube-8M was explicitly curated

3Results for CVS [27], DeSumNet [26] and VESD [3] are from original

papers. All others (MBF [5], KVS [28] and SG [23]) are as reported in [3].
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MBF [5] KVS [28] CVS [27] SG [23] DSN [26] VESD [3] CLA Ours-A Ours-S

Vehicle tire 0.295 0.353 0.328 0.423 - - 0.294 0.449 0.559

Vehicle unstuck 0.357 0.441 0.413 0.472 - - 0.246 0.495 0.429

Grooming animal 0.325 0.402 0.379 0.475 - - 0.590 0.454 0.612

Making sandwich 0.412 0.417 0.398 0.489 - - 0.433 0.537 0.540

Parkour 0.318 0.382 0.354 0.456 - - 0.505 0.602 0.604

Parade 0.334 0.403 0.381 0.473 - - 0.491 0.530 0.475

Flash mob 0.365 0.397 0.365 0.464 - - 0.430 0.384 0.432

Beekeeping 0.313 0.342 0.326 0.417 - - 0.517 0.638 0.663

Bike tricks 0.365 0.419 0.402 0.483 - - 0.578 0.672 0.691

Dog show 0.357 0.394 0.378 0.466 - - 0.382 0.481 0.626

Average 0.345 0.398 0.372 0.462 0.424 0.423 0.447 0.524 0.563

Table 2: Highlight detection results (Top-5 mAP score) on TVSum [31]. All methods listed are unsupervised. Our method

outperforms all the baselines by a large margin. Entries with “-” mean per-class results not available for that method.
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Figure 4: Example highlight detection results for the YouTube Highlights dataset [33]. We show our method’s predicted

ranking from low (left) to high (right) and present one frame for each video segment. Please see Supp. video for examples.

to have fairly uniform-length “longer” (120-500 s) clips [2],

which severely mutes our key duration signal, and 2) users

sharing videos on Instagram may do so to share “moments”

with family and friends, whereas YouTube seems to attract a

wider variety of purposes (e.g., instructional videos, edited

films, etc.) which may also weaken the duration signal.

4.3. Ablation Studies

Next we present an ablation study. All the methods are

trained with domain-specific data. We compare our full

method (Ours-S) with two variants: 1) Ranking-D, which

treats all the ranking constraints as valid and trains the rank-

ing function without the latent variables. This is similar to

existing supervised highlight detection methods [9, 40]. 2)

Ranking-EM, which introduces a binary latent variable and

optimizes the ranking function and binary latent selection

variable in an alternating manner with EM, similar to [33].

Note that unlike our approach, here the binary latent vari-

able is discrete and it is not conditioned on the input.

Table 3 shows the results. Our full method outperforms

the alternative variants. In particular, our average gain in

mAP over Ranking-D is 13.9% and 16.3% for Youtube

and TVSum, respectively. This supports our hypothesis

that ranking constraints obtained by sampling training pairs

(si, sj) such that v(si) ∈ Ds and v(sj) ∈ DL are indeed

noisy. By modeling the noise and introducing the latent

selection variable, our proposed method improves perfor-

mance significantly. Our method also significantly outper-

forms Ranking-EM, which also models noise in the training

samples. In contrast to Ranking-EM, our method directly

predicts the latent selection variable from input. In addi-

tion, we benefit from joint optimization and relaxation of

the latent selection variable, which accounts for uncertainty.

Fig. 6 shows highlight detection accuracy as a function

of training set size. We report this ablation for YouTube

Highlights only, since the videos sharing tags with some

TVSum categories max out at 24,000. As we increase the

number of videos in each domain, accuracy also improves.
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17.381.41 h(si , sj )-5.58 2.87 17.521.46-8.26 0.57

siSi

Sj

Si

Sj

h(si , sj )

Figure 5: Predicted latent values (before softmax) for video segment pairs from YouTube Highlights. Higher latent value

indicates higher likelihood to be a valid pair. The predicted latent value is high if si (top row) is a highlight and sj (bottom

row) is a non-highlight. See Supp. for more.

Dataset Ranking-D Ranking-EM Ours-S

YouTube 0.425 0.458 0.564

TVSum 0.400 0.444 0.563

Table 3: Accuracy (mAP) in ablation study.
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Figure 6: Accuracy vs. training set size on YouTube [33].

The performance improves significantly (6.5% for Ours-S

and 3.7% for Ours-A) when the training data is increased

from 1, 000 to 10, 000 in each domain, then starts to plateau.

4.4. Understanding Learning from Duration

Finally, we investigate what each component of our

model has learned from video duration. First, we test

whether our model can distinguish segments from shorter

videos versus segments from longer videos. This is es-

sentially a validation of the main training objective, with-

out the additional layer of highlight accuracy. We train our

model and reserve 20% novel videos for testing. Each test

pair consists of a randomly sampled video segment from

a novel shorter video and one from a novel longer video.

We use f(x) to score each segment and report the percent-

age of successfully ranked pairs. Without the proposed la-

tent weight prediction, our model achieves a 58.2% suc-

cessful ranking rate. Since it is higher than chance (50%),

this verifies our hypothesis that the distributions of the two

video sources are different. However, the relatively low rate

also indicates that the training data is very noisy. After

we weight the test video pairs with h(xi, xj), we achieve

a 87.2% success rate. The accuracy improves significantly

because our latent value prediction function h(xi, xj) iden-

tifies discriminative pairs.

Second, we examine video segment pairs constructed

from the YouTube Highlights dataset alongside their pre-

dicted latent values (before softmax). See Fig. 5. Higher

latent values indicate higher likelihood to be a valid pair.

Video segments (si) from the top row are supposed to be

ranked higher than video segments (sj) from the second

row. When si corresponds to a highlight segment and sj
a non-highlight segment, the predicted latent value is high

(last columns in each block). Conversely, the predicted la-

tent value is extremely low when si corresponds to a non-

highlight segment and sj a highlight segment (first column

in each block). Note if we group all the examples in each

block into a softmax, all the training examples except the

last will have negligible weights in the loss. This demon-

strates that the learned h(xi, xj) can indeed identify valid

training pairs, and is essential to handle noise in training.

5. Conclusions

We introduce a scalable unsupervised solution that ex-

ploits video duration as an implicit supervision signal for

video highlight detection. Through experiments on two

challenging public video highlight detection benchmarks,

our method substantially improves the state-of-the-art for

unsupervised highlight detection. The proposed framework

has potential to build more intelligent systems for video pre-

view, video sharing, and recommendations. It could also

benefit applications like auto-captions for the visually im-

paired or more accurate detection of policy-violating con-

tent. Future work will explore how to combine multiple pre-

trained domain-specific highlight detectors for test videos in

novel domains. Since the proposed method is robust to la-

bel noise and only requires weakly-labeled annotations like

hashtags, it has the potential to scale to an unprecedented

number of domains, possibly utilizing predefined or learned

taxonomies for reusing parts of the model.
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