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Abstract

The recent advances in instance-level detection tasks

lay a strong foundation for automated visual scenes under-

standing. However, the ability to fully comprehend a social

scene still eludes us. In this work, we focus on detecting

human-object interactions (HOIs) in images, an essential

step towards deeper scene understanding. HOI detection

aims to localize human and objects, as well as to identify

the complex interactions between them. Innate in practical

problems with large label space, HOI categories exhibit a

long-tail distribution, i.e., there exist some rare categories

with very few training samples. Given the key observation

that HOIs contain intrinsic semantic regularities despite

they are visually diverse, we tackle the challenge of long-

tail HOI categories by modeling the underlying regularities

among verbs and objects in HOIs as well as general rela-

tionships. In particular, we construct a knowledge graph

based on the ground-truth annotations of training dataset

and external source. In contrast to direct knowledge in-

corporation, we address the necessity of dynamic image-

specific knowledge retrieval by multi-modal learning, which

leads to an enhanced semantic embedding space for HOI

comprehension. The proposed method shows improved per-

formance on V-COCO and HICO-DET benchmarks, espe-

cially when predicting the rare HOI categories.

1. Introduction

Recent years have witnessed rapid progress towards vi-

sual scene understanding, from object detection [25] to ac-

tion recognition [23]. However, understanding a scene re-

quires not only detecting individual object instances but

also recognizing the visual relationships between object

pairs [18, 22, 28]. One particularly important facet of vi-

sual relationships is human-centric interaction detection,

known as human-object interaction (HOI) detection [5, 10,

13, 15, 33]. Given an input image, it aims to localize

all humans and objects, and to identify all the triplets

〈human, verb, object〉 (see Figure 1). HOI detection under-
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Figure 1: Conceptual illustration of our proposed multi-

modal joint embedding learning. In HOI detection task, the

label space is often large and intrinsically having long-tail

distribution issue where some categories have few samples

(e.g. 〈human, drink with, bowl〉). The proposed model learns a

semantic structure aware embedding space compared to original

word embeddings, such that it can leverage semantic similarity to

retrieve the verb(s) best describing the detected 〈human, object〉
pair. The underlying semantic regularities of verbs and objects are

modeled with graph.

pins a variety of AI tasks such as visual Q&A [30], robotic

task manipulation [3], surveillance event detection [2] and

human-centered computing [27]. However, HOI detection

is still far from settled due to a large label space of verbs

and their interactions with a wide range of object types.

Innate in many problems of practical interest, the label

space of HOIs that are compositions of humans, verbs and

objects exhibits a long-tail distribution, meaning that some

categories possess very few training examples. For exam-

ple, the number of training examples “person riding a bike”

is much more than “person riding an elephant”. This is

a fundamental problem for the standard deep learning ap-

proach, which relies on amount of data for each category to

obtain an effective discriminative pattern. Though HOIs are
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visually diverse, the compositional elements (human, verb,

object) contain intrinsic semantic regularities [14]. Specifi-

cally, verbs and objects in the HOIs share certain character-

istics across various types of scenes. For example, the sim-

ilar shape of “bike” and “elephant”, as well as the similar

spatial configuration of “on top of” have implications for

the verb “ride” and its semantic-close verb “sit on”. Mo-

tivated by this observation, we propose to learn to detect

HOIs by modeling the underlying regularities among the

verbs and object categories in visual relationships using a

graph based approach.

Existing works [19, 47] have attempted to tackle the

long-tail distribution issue in HOI recognition with multi-

modal sources. However, these works do not explicitly con-

sider the joint impact from the referent source and visual

information. In contrast, our work emphasizes on the joint

update of the verb embeddings from vision and linguistic

knowledge by introducing a multi-modal embedding mod-

ule to dynamically learn the semantic dependencies of the

concepts. The idea of joint update is illustrated in Fig-

ure 1. In the original word embedding space, “drink with”

is mapped to be close to “brush with” possibly because of

the shared “with” from word vector embeddings [32]. With

the joint update from knowledge graph and training image

set, the model is more likely to comprehend the meaning of

“drink” as its neighbors include “sip”.

In this work, we aim to answer two essential questions

in leveraging knowledge to enhance the HOI detection task

with long-tail label distribution: (1) how to model the se-

mantic regularities of knowledge for HOIs? and (2) how to

dynamically retrieve the image-specific associated knowl-

edge? Our proposed model solves them by: first, min-

ing structure of verbs and object categories from internal

training annotations and external annotations of general vi-

sual relationships dataset [28]; second, introducing a multi-

modal verb embedding space with joint update from visual

representations and linguistic knowledge. The contributions

are summarized as follows:

• In order to address the long-tail distribution issue in

HOI detection, we construct a knowledge graph to

model the dependencies of the verbs and object cat-

egories in HOIs and other visual relationships.

• We offer a new perspective into HOI detection with

multi-modal embeddings such that the model can learn

the associated verb expression refering to its semantic

structure for each visual query.

• We achieve improved performance on two bench-

marks, especially for rare HOI categories, and conduct

extensive ablation study to identify the relative contri-

butions of the individual components. Our code will

be publicly available1.

1https://bitbucket.org/freezingmolly/hoi graph

2. Related Work

HOI Understanding. Different from general visual rela-

tionships, which focuses on two arbitrary objects in the im-

ages, HOIs are human-centric with fine-grained verb-object

labels. HOI understanding starts from the concept of “af-

fordance” [11]. The fine-grained understanding has been

scaled up with the advances from deep learning and sev-

eral large-scale HOI datasets [1, 5, 6, 15, 47]. Works have

been done for learning to detect HOIs with constraints from

interacting object locations [13, 15], pairwise spatial con-

figuration [5] to scene context of instances [10, 33]. An-

other stream of work addresses the long-tail HOI problem

with compositional learning [38] and extra image supervi-

sion [47]. Our work is in the similar vein to address the

long-tail problem in HOI detection, but leverages semantic

regularities from linguistic knowledge. The proposed multi-

modal verb embedding explicitly considers the reciprocity

between referent knowledge and visual information.

Learning with Long-Tail Labels. The instrinsic long-

tail property of label space poses challenges in realistic

tasks [4]. In the context of triplet detection with long-tail la-

bels, considering a triplet as an unique class is a hindrance

for scalability. Therefore, compositional learning [19, 38,

44] has been employed to learn each compositional label

in the triplet that is less rare individually. Modeling with

the internal data has attempted to link the classes in head

to tail [41, 45]. Works [9, 19, 28, 35, 39, 42, 43, 46, 47]

have also attempted to exploit external sources of the same

or different modalities complementing the examined data to

boost learning from very few examples. Our work follows

compositional learning and leverages semantic regularities

from linguistic knowledge, but in the context of HOI detec-

tion that verbs and interacting objects are linked with se-

mantic structures.

Graph Neural Networks. Some approaches have been

proposed that apply deep neural networks to graph struc-

tured data. One group of approaches applies feed-forward

neural networks to every node of the graph recurrently, for

example Graph Neural Network (GNN) [37] and an im-

proved version Gated Graph Neural Network (GGNN) [24].

The second group is to generalize convolution layers to

the graphs. In the direction of spectral approach that re-

quires spectral representations of graph structure, Graph

Convolutional Network (GCN) [20] is proposed for semi-

supervised learning to process language. In contrast, non-

spectral approaches operate convolutions directly on the

graphs [8, 16]. Graph neural networks have been ex-

ploited to model scene instance dependencies [7, 22, 33]

and knowledge structures [19, 31, 40]. Our model is similar

to the direction on modeling knowledge structures, but ex-

ploits GCN to jointly match the verb semantic embeddings

rather than verb-object categories to visual representation,

to enhance comprehension of the verbs compositionally.
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Figure 2: Illustration of the proposed verb embedding learning, which consists of human-object visual representation module (Section 3.3),

knowledge graph modeling module (Section 3.2), and joint embedding module (Section 3.4). FC and ⊖ indicate fully-connected layer and

element-wise subtraction, respectively. Respective predictions based on human and object feature vectors are not included for clarity.

3. Method

The task of HOI detection is to detect humans and

objects in an image, as well as identify verbs of each

〈human, object〉 pair. During the training phase, training

data consists of ground-truth HOI annotations, labeled as

〈human, verb, object〉 triplets, where the human and objects

are localized as bounding boxes. Given a learned model

and a given probe image, the inference process predicts all

possible verbs based on the detected humans and objects.

3.1. Problem Formulation

Formally, given a set of human and object regions

bh, bo ∈ B proposed for an image I , a set of triplet score

Sv
h,o is assigned to each 〈bh, bo〉 pair representing the prob-

ability of verbs and the pair detection. Unlike learning

of verb-object categories as a whole with complexity of

O(|V| · |C|), where |V| and |C| are respectively the numbers

of verbs and object categories, we decompose Sv
h,o to en-

able combinations of all verbs and objects for a complexity

of O(|V|+ |C|):

Sv
h,o = sh · so · (s

v
h · svo · s

v
h,o) (1)

where sh (so) is the human (object) detection class score of

bh (bo), svh (svo) is the verb prediction score from human (ob-

ject) stream, and svh,o is the verb prediction score from the

human-object pairwise representation. Please see Figure 3

for the detailed inference procedure.

We propose a novel method to calculate svh,o that incor-

porates knowledge graph to address the long-tail problem

in class distributions. Different from existing HOI detec-

tion approaches [5, 10, 13, 33], we formulate HOI detec-

tion as a verb retrieval task with a given visual query pair

〈bh, bo〉. Formally, we maximize the likelihood of the con-

ditional distribution of the referent verb(s) v∗ ∈ V as:

v
∗ = argmax

v∈V
p(v|Xh, Xo,G) (2)

where G is the relational knowledge graph which incorpo-

rates linguistic information available from training dataset

and external source (Section 3.2). Xh and Xo are respec-

tively the visual representation for bh and bo (Section 3.3).

To tackle the formulated verb retrieval task, we project

the visual and linguistic information to a joint verb embed-

ding space such that the embeddings for matched 〈bh, bo〉

and v∗ pairs are closer while the unmatched pairs are far

away. Figure 2 illustrates our proposed verb embedding

learning. The inclusion of knowledge graph allows the joint

verb embeddings to exploit the reciprocal nature of referent

expression and visual information. Thus, considering the

joint verb embedding space as a hidden variable φ (detailed

in Section 3.4), the likelihood in Eq. 2 can be written as:

∑

φ

p(v, φ|Xh, Xo,G) =
∑

φ

p(v|φ,Xh, Xo,G)
︸ ︷︷ ︸

Inference

p(φ|Xh, Xo,G)
︸ ︷︷ ︸

Joint Embedding

(3)
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Figure 3: The inference procedure of the proposed model. Given an input image, the proposed model detects HOI triplets and outputs the

triplet scores. Element-wise multiplication (⊙) is applied to human stream’s verb prediction svh, object stream’s verb prediction svo and the

pairwise verb prediction score svh,o.

3.2. Graph Modeling for HOIs

In order to boost learning of long-tail classes, we exploit

a graph-based approach to model the semantic dependen-

cies from linguistic knowledge complementing the training

visual representations.

3.2.1 Preliminary: Graph Convolutional Network

Given the word embeddings of verbs and object categories,

the goal of graph modeling is to update the node representa-

tions based on ground-truth relations. Formally, we define

the knowledge graph as G = (N , E ,H), where N are the

nodes, E are undirected edges linking pairs of nodes, and H

represents the feature vectors of nodes.

To model the semantic dependencies of verbs and object

categories, we construct a knowledge graph based on Graph

Convolution Network (GCN) [20], which is originally pro-

posed for semi-supervised entity classification. The core

idea of GCN is to transform the node features based on the

neighboring nodes defined by the adjacency matrix. Math-

ematically, given a graph adjacency matrix A and node fea-

tures H ∈ H, the convolutional operations for the k-th layer

in GCN is represented as:

H
k+1 = D

− 1
2 ÃD

− 1
2H

k
W

k
, where

{

Ã = A+ I

Dii =
∑

j
Ãij

(4)

where A is normalized by the diagonal node degree matrix

D with self-connections. Hk ∈ R
|N|×dk is the input feature

vector and Hk+1 ∈ R
|N|×dk+1 is the output feature vector.

dk and dk+1 is dimension of the the input and output fea-

ture vector. W k ∈ R
dk×dk+1 is the weight matrix specific

to the k-th layer, operating on each node feature Hk. The

convolutional layers are usually stacked multiple times. A

non-linear operation, such as the ReLU(·) = max(0, ·) can

be applied to the output of each convolutional layer.

3.2.2 Graph Convolutional Network for HOIs

When learning the semantically-meaningful node features

H , we employ the links of nodes to learn W in each

layer. Specifically, the graph structure is used to capture

the semantic dependencies amongst verb and object cate-

gories in HOIs, and general visual relationships. Formally,

nodes N model all possible verbs and object categories in

the annotations, represented by word embeddings of verbs

Hv ∈ H and objects Ho ∈ H from GloVe model [32].

Each undirected edge from E connects a valid pair of verb

and object category according to the 〈verb, object〉 annota-

tions from training dataset, and 〈object1, predicate, object2〉

triplets from general visual relationships dataset [28]. The

tail verb classes are thus impacted from its neighbors on the

same object node. The intuition of incorporating general

visual relationships supplementary to HOIs, such as prepo-

sition and spatial configurations, is that they intrinsically

connect to verbs. For example, “a person on the bike” has

implications of “person riding the bike”.

The adjacency matrix A is initialized with binary val-

ues defining the connections (or disconnections) of nodes.

The knowledge graph here is task-oriented with manageable

size and computational cost. Specifically, the knowledge

graph for V-COCO dataset consists of 226 vertices whereas

HICO-DET dataset has 313 vertices (both with visual re-

lationships). For both datasets, the number of undirected

edges starting from each vertice is less than 193. The node-

level update can be shared in parallel at each layer.

3.3. Visual Representations

Given a detected person bh and a detected object bo, the

learned pairwise representations should preserve their se-

mantic interactions. For example, the interaction (e.g. sit)

can be characterized by the visual appearance of 〈bh, bo〉

(e.g. human pose, object shape and size), and the relative
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location configuration. Therefore, for either bh or bo, the

feature vector Xh or Xo is the concatenation of visual fea-

ture Xr of the region from feature extraction backbone, and

spatial configuration Xp = [x−x′

w′ , y−y′

h′ , log w
w′ , log

h
h′ ].

Here, x and y are the coordinates of the region with size

w × h, whereas x′, y′, w′ and h′ are of the other region in

the pair. Inspired by visual translation embedding [44], we

perform subtraction operation on Xr and Xp of bh(bo), fol-

lowed by two respective fully-connected layers, to extract

the pairwise representations X
p
ho and Xr

ho. The final pair-

wise representation Xho is obtained by concatenating the

visual and spatial features followed by one 512 sized fully-

connected layer as:

Xho = FC(Xp
ho ◦X

r
ho) (5)

3.4. MultiModal Joint Embedding Learning

The proposed joint embedding learning aims to distill

information from semantic dependencies to jointly learn an

embedding for HOI detection. Specifically, the goal is to

learn the transformations of visual feature fho(Xho) → φho

and GCN feature fg(Hv) → φg, such that the learned pair-

wise embedding of 〈bh, bo〉 can preserve the semantic struc-

ture of verbs. This approach guides the learning of verb em-

beddings by exploiting the semantic regularities associated

with visual modality and knowledge.

The objective of the joint embedding learning is to max-

imize the similarity between positive 〈φho, φg〉 pairs, and

minimize it between all non-matching pairs to a specified

margin, as well as preserve the discriminative ability. To

this end, we use a combination of similarity loss Lsim [36],

cross entropy regularization loss Lreg and cross entropy

loss Lcls from individual streams.

Similarity Loss. Lsim for each 〈φho, φg〉 pair is defined as:

Lsim(φho, φg, tsim) =

{

1− cos(φho, φg), tsim = 1

max(cos(φho, φg)−α, 0), tsim = 0

(6)

where α is the margin. If 〈bh, bo〉 and v is associated in

ground-truth, the label tsim is assigned to be 1, otherwise 0.

Cross Entropy Regularization Loss. Lreg is applied for

verb classification from the pairwise verb embedding, de-

fined as cross entropy loss on the predicted verb scores

svp ∈ R
|V|. The probabilities are obtained from a shared

fully-connected layer applied on φho, followed by a sigmoid

activation to simultaneously predict verb scores. We assign

multi-class verb labels tv based on the ground-truth.

Cross Entropy Loss. Lcls is individually applied to hu-

man stream and object stream. The respective Xh and Xo

are passed through two fully-connected layers and sigmoid

classifiers to obtain verb prediction scores svh and svo . Then,

we compute Lcls between svh (svo) and the ground-truth verb

labels tv .

Therefore, the final loss function can be obtained as:

L = λ1Lsim(φho, φg, tsim) + λ2Lreg(s
v
p, tv)

+λ3Lcls(s
v
h, s

v
o, tv)

(7)

where λ1, λ2 and λ3 are weights to control the contribution

of each loss term. tv ∈ R
|V| denote the labels for the visual

modality. Maximizing the joint embedding term in Eq. 3 is

equivalent to minimizing Eq. 7.

During the inference stage (see Figure 3), for each

〈bh, bo〉 pair, the pairwise prediction score svh,o is obtained

from the regularized verb score svp · softmax(cos(φho, φg)).
Thus the triplet score Sv

h,o is obtained according to Eq. 1.

4. Experiments

In this section, we first describe the evaluated bench-

mark datasets (i.e. V-COCO [15] and HICO-DET [5]), the

evaluation metric, and the implementation details. We also

compare our proposed model with the state-of-the-art mod-

els, and conduct ablation studies to examine the proposed

knowledge modeling and multi-modal embeddings.

4.1. Datasets and Metrics

Dataset. In this work, we evaluate our model on two bench-

marks for HOI detection. First, the V-COCO dataset [15]

is a subset of MS-COCO [26], with 5,400 images in the

train-val (training plus validation) set and 4,946 images in

the test set. It is annotated with 26 unique verb classes, and

has bounding boxes for humans and interacting objects. In

particular, three verb classes (i.e. cut, hit, eat) are annotated

with two types of targets (i.e. instrument and direct object).

Second, the HICO-DET dataset [5] contains 38,118 im-

ages in the training set and 9,658 test images, annotated

with 600 types of interactions: 80 MS-COCO object cat-

egories and 117 unique verbs. The bounding boxes of hu-

mans and corresponding objects are also annotated.

Evaluation Metrics. We follow the standard evaluation

metric and report role mean average precision (role mAP).

mAP is computed based on both recall and precision, which

is appropriate for the detection task. The goal is to cor-

rectly detect all of the 〈human, verb, object〉 triplets for an

image. A triplet is considered as a true positive if (1) the

predicted triplet label is the same as the ground-truth, and

(2) both the predicted human and object bounding boxes

have intersection-over-union (IoU) greater than 0.5 w.r.t the

ground-truth annotations.

4.2. Implementation Details

For fair comparison, we use Faster R-CNN [34] with

ResNet-50 [17] as the feature extraction backbone. The pre-

trained weight for MS-COCO [26] is from [10]. Human

and object bounding boxes are detected with ResNet-50-

FPN [25] backbone as [10]. Human and object bounding
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Table 1: Comparisons with the state-of-the-art approaches on HICO-DET dataset [5]. Mean average Precision (mAP) (%) for the default

setting (object unknown) is reported where higher values indicates better performance. The best scores are marked in bold.

Method Feature Backbone Full ↑ Rare ↑ Non-Rare ↑

Random - 1.35e-3 5.72e-4 1.62e-3

Fast-RCNN [12] CaffeNet 2.85 1.55 3.23

HO-RCNN [5] CaffeNet 7.81 5.37 8.54

Shen et al. [38] VGG-19 6.46 4.24 7.12

VSRL [13, 15] ResNet-50-FPN 9.09 7.02 9.71

InteractNet [13] ResNet-50-FPN 9.94 7.16 10.77

GPNN [33] ResNet-152 13.11 9.34 14.23

iCAN [10] ResNet-50 12.80 8.53 14.07

Ours ResNet-50 14.70 13.26 15.13

boxes with detection confidence scores above 0.8 and 0.4

respectively are kept. Through grid-search on the validation

set, the hyper-parameters are set as λ1 = 0.8, λ2 = 1, and

λ3 = 1. The margin α for cosine loss is set as 0.1. A mini-

batch consists of one positive sample, the jittering positives

and negative samples. The negative samples are obtained by

pairing all the detected humans and objects that are not an-

notated in the ground-truth labels, such that the model can

learn the pairwise patterns for the negative 〈human, object〉

pairs. We use Stochastic Gradient Descent (SGD) to train

the model for 450k iterations with a learning rate of 0.001,

a weight decay of 0.0005, and a momentum of 0.9.

Each person can perform multiple verbs on the same ob-

ject simultaneously, therefore binary sigmoid classifiers are

employed for multilabel verb classification. We then min-

imize the binary cross entropy losses between the ground-

truth labels and the predicted scores. Note that in HICO-

DET, simultaneous verbs need to be manually combined

for each pair of 〈human, object〉 based on IoU of bound-

ing boxes due to separate verb annotations.

To obtain the word embeddings for GCN node inputs,

we use the GloVe text model [32] trained on the Wikipedia

dataset, which leads to vectors of R1×300. For the classes

whose names contain multiple words, we empirically aver-

age all matched words embeddings. The graph consists of

two layers, both with dimension of 512. LeakyReLU with

negative slope of 0.2 [40] is used as the activation after each

layer of the graph.

4.3. Results

Baselines. We compare our method with the following

baselines: (1) Fast-RCNN [12]: predictions are obtained by

linearly combining the human and object detection scores.

(2) HO-RCNN [5]: a multi-stream model combines the

scores from appearance of human and object, as well as

spatial configuration of the pair. (3) VSRL [15]: uses spa-

tial constraints for the interacting objects. We report the

reimplemented result from [13]. (4) Shen et al. [38]: pre-

Table 2: Comparisons with the state-of-the-art approaches on V-

COCO dataset [15]. mAP (role) (%) is evaluated as in the standard

evaluation metric. Higher values are better. The best scores are

marked in bold.

Method Feature Backbone Sce. 1 ↑

VSRL [15, 13] ResNet-50-FPN 31.8

InteractNet [13] ResNet-50-FPN 40.0

BAR-CNN [21] Inception-ResNet 41.1

GPNN [33] ResNet-152 44.0

iCAN [10] ResNet-50 45.3

Ours ResNet-50 45.9

dictions are from separate verb and object training. (5)

InteractNet [13]: multi-loss of object detection, human-

object pairwise prediction, and additional human-centric

branch that learns a human action-specific density func-

tion. (6) BAR-CNN [21]: a modified Faster R-CNN de-

tection pipeline augmented with a box attention mecha-

nism. (7) GPNN [33]: a dynamic scene graph based ap-

proach with node outputs as verb and object predictions.

(8) iCAN [10]2: a multi-stream model of human, object ap-

pearance and pairwise spatial configuration with additional

attention based context.

Experiment Results. We present the overall quantitative

results on V-COCO (Table 2) and HICO-DET (Table 1).

We observe that our proposed model achieves competitive

results over the state-of-the-art approaches [13, 33, 10].

For V-COCO, we follow the original evaluation proto-

col [15]. Compared to the best performing model iCAN,

we achieve an absolute gain of +0.6. For HICO-DET, we

can also observe consistent improvements on all, rare, and

non-rare HOI splits against existing best performing meth-

ods [33, 10]. We achieve absolute gains of +1.59, +3.92,

2mAP(%) on three category sets for HICO-DET in arxiv version:

14.84, 10.45, 16.15.
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Figure 4: Prediction samples on V-COCO test set (first row) and HICO-DET test set (second row). Our model detects same type of verbs

with various object categories in different scenes, as well as different types of HOIs with the same kind of object. The prediction with the

highest HOI triplet score is displayed.

and +0.9 over GPNN, respectively.

Figure 4 shows sample HOI detection results on both

datasets. We highlight the top-1 prediction result in each

image. It shows that our model is capable of predicting

verbs interacting with various types of objects, as well as

different verbs on the objects of the same category.

4.4. Ablation Study

We analyze the contributions of various components of

our model. Table 3 shows the results on both benchmarks.

Extra Knowledge. We first examine the influence of

exploiting knowledge in complementing the visual in-

formation. We directly combine verb predictions with

Xh, Xo, Xho from human, object and pairwise stream, re-

spectively (full model w/o knowledge). For recognizing the

challenging rare categories, the results are in favor of the

whole version of model than w/o knowledge. In this case,

the model has to use the extra knowledge for less common

verbs and objects combinations. This result supports our

core argument - extra knowledge about the semantic depen-

dencies can be used to improve HOI predictions especially

for long-tail HOI categories. External knowledge of visual

relationships is also tested to validate its contribution on

modeling dependencies of general predicates-object struc-

tures.

Graph Modeling. We here examine the influence of mod-

eling semantic dependencies based on a graph. We directly

feed the word2vec verb features, which are originally used

for GCN node inputs, into two fully-connected layers to ob-

tain verb embeddings (denoted as w/o graph). We can ob-

serve that the performance of w/o graph is worse than the

whole model. This indicates that modeling semantic de-

pendencies of verbs-objects in relationships and leveraging

message passing capabilities of GCNs together is essential.

Embeddings for pairs of nodes with edges between them

impact each other more than the distant ones.

Table 3: Ablation study of our model on V-COCO and HICO-

DET test set. Mean average precision (mAP) (%) are reported.

Method
V-COCO HICO-DET

Sce.1 ↑ Full ↑ Rare ↑ None-Rare ↑

Ours 45.9 14.70 13.26 15.13

w/o knowledge 42.4 12.55 10.21 13.25

w/o joint embed. 44.0 13.12 11.59 13.58

w/o graph 44.1 13.16 11.63 13.62

w/o external set 45.1 13.91 12.52 14.33

Joint Embedding. We also examine the influence from the

proposed multi-modal knowledge retrieval. We concate-

nate each node output vector of verbs in either V-COCO

or HICO-DET with Xho. An averaged vector is obtained

by averaging on all concatenated multimodal vectors, and

passed through three fully connected layers to get the verb

prediction in the pairwise stream. Final predictions are

combinations of predictions from human, object and pair-

wise streams (denoted as w/o joint embedding). The de-

crease in performance supports the effect from joint update

of the verb embeddings, which preserve the classification

ability and the structural semantics.

Qualitative Ablations. We provide qualitative results in

Figure 5. Specifically, we compare the prediction results

between the whole model and w/o knowledge. It helps to

understand the benefits of extra knowledge. Given the same

image, our full model (the first row) is more confident to

detect the less seen HOIs such as “flip skateboard” based on

semantic similarity to “jump skateboard”. However, only

given the visual information w/o knowledge, the model is

limited in predicting the concurrent HOIs confidently such

as “hold/swing/wield baseball bat”.

4.5. Analysis of the Learned Embeddings

To gain further insight into the learned verb embeddings,

we explore whether the embedding space has certain en-
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      Ours
(full model)

w/o 
Knowledge

lay 

wear 0.76

cut-instr
work_on_computer-instr

lay-instr

hold-baseball_bat

swing-baseball_bat 

wield-baseball_bat

hold-baseball_bat
wield-baseball_bat 

blow-cake

sit_on-bench
cut-cakecut-instr

jump-skateboard
flip-skateboard
 

jump-skateboard 

lay 

ride-instr

ride-instr
sit-instr

Figure 5: Example of detection results from Our full model (first row) and model w/o knowledge variant (second row). The first three

columns from left show detections on V-COCO test set and the remaining columns are from HICO-DET test set. Predictions with HOI

triplet score > 0.2 are displayed, and “no interaction” class is not displayed for clarity. Text is annotated with the same color as the

corresponding object bound box.

hanced clustering properties in Figure 6 with t-SNE visu-

alization [29]. We show the t-SNE plots of both the word

embeddings (input to GCN) and the updated verb embed-

dings of 117 verbs in HICO-DET dataset. By inspecting

the semantic affinities between the embeddings in Figure 6

(a) and (b), we can observe that the original GloVe embed-

dings without the proposed joint embedding space yields

a less accurate projection of data. For examples, GloVe

projects “drink with” to be close to “brush with” possibly

due to the shared “with”. However, after the joint update

with visual samples and knowledge graph, the model is

more likely to understand the meaning of “drink with” as its

neighbors include “sip” and “eat”. The semantic dependen-

cies of verbs on an object is also learned, e.g. “jump” and

“flip” the skateboard. This observation explains the contri-

bution from multi-modal verb embedding learning.

5. Conclusion

In this paper, we aimed to tackle the long-tail distri-

bution issue in the label space for human-object interac-

tion (HOI) categories, which is currently not effectively re-

solved in HOI detection task. Towards this challenge, we

dynamically retrieved the associated linguistic knowledge

by introducing a multi-modal embedding space and rela-

tional graph. This joint embedding space explicitly con-

siders the cooperative impact between pairwise visual in-

formation and associated subgraph of knowledge. We then

implemented with image-specific knowledge retrieval. We

evaluated our model on two HOI detection benchmarks, and

showed promising results. Moving forward, we can address

challenges such as understanding human behavior with im-

plications from HOI detection. Specifically, human interac-

tions may imply their intent, and possibly provide informa-

tion about the past or future thus to help describing various

(a) GloVe word embeddings

(b) updated semantic embeddings

brush_with
drink_with
cut_with
cut

drink_with
sip

jump
flip

Figure 6: Visual illustration of 117 verb embeddings in HICO-

DET dataset via t-SNE visualization [29]. Top is the GloVe

word embeddings [32] and the bottom is the semantic embeddings

learned with proposed method.

dynamic behavior series. Learning knowledge from noisy

web information to alleviate ambiguity in HOI comprehen-

sion can also be explored.
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