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Abstract

Deep learning has recently demonstrated its excellent

performance for multi-view stereo (MVS). However, one

major limitation of current learned MVS approaches is the

scalability: the memory-consuming cost volume regulariza-

tion makes the learned MVS hard to be applied to high-

resolution scenes. In this paper, we introduce a scalable

multi-view stereo framework based on the recurrent neu-

ral network. Instead of regularizing the entire 3D cost vol-

ume in one go, the proposed Recurrent Multi-view Stereo

Network (R-MVSNet) sequentially regularizes the 2D cost

maps along the depth direction via the gated recurrent

unit (GRU). This reduces dramatically the memory con-

sumption and makes high-resolution reconstruction feasi-

ble. We first show the state-of-the-art performance achieved

by the proposed R-MVSNet on the recent MVS benchmarks.

Then, we further demonstrate the scalability of the pro-

posed method on several large-scale scenarios, where pre-

vious learned approaches often fail due to the memory con-

straint. Code is available at https://github.com/

YoYo000/MVSNet.

1. Introduction

Multi-view stereo (MVS) aims to recover the dense repre-

sentation of the scene given multi-view images and cali-

brated cameras. While traditional methods [24, 10, 29, 9]

have achieved excellent reconstruction performance, recent

works [14, 13, 30] show that learned approaches are able to

produce results comparable to the traditional state-of-the-

arts. In particular, MVSNet [30] proposed a deep architec-

ture for depth map estimation, which significantly boosts

the reconstruction completeness and the overall quality.

One of the key advantages of learning-based MVS is

the cost volume regularization, where most networks ap-
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ply multi-scale 3D CNNs [14, 15, 30] to regularize the 3D

cost volume. However, this step is extremely memory ex-

pensive: it operates on 3D volumes and the memory re-

quirement grows cubically with the model resolution (Fig. 1

(d)). Consequently, current learned MVS algorithms could

hardly be scaled up to high-resolution scenarios.

Recent works on 3D with deep learning also acknowl-

edge this problem. OctNet [23] and O-CNN [27] exploit the

sparsity in 3D data and introduce the octree structure to 3D

CNNs. SurfaceNet [14] and DeepMVS [13] apply the engi-

neered divide-and-conquer strategy to the MVS reconstruc-

tion. MVSNet [30] builds the cost volume upon the ref-

erence camera frustum to decouple the reconstruction into

smaller problems of per-view depth map estimation. How-

ever, when it comes to a high-resolution 3D reconstruction

(e.g., volume size > 5123 voxels), these methods will either

fail or take a long time for processing.

To this end, we present a novel scalable multi-view

stereo framework, dubbed as R-MVSNet, based on the re-

current neural network. The proposed network is built upon

the MVSNet architecture [30], but regularizes the cost vol-

ume in a sequential manner using the convolutional gated

recurrent unit (GRU) rather than 3D CNNs. With the se-

quential processing, the online memory requirement of the

algorithm is reduced from cubic to quadratic to the model

resolution (Fig. 1 (c)). As a result, the R-MVSNet is appli-

cable to high resolution 3D reconstruction with unlimited

depth-wise resolution.

We first evaluate the R-MVSNet on DTU [1], Tanks and

Temples [17] and ETH3D [25] datasets, where our method

produces results comparable or even outperforms the state-

of-the-art MVSNet [30]. Next, we demonstrate the scal-

ability of the proposed method on several large-scale sce-

narios with detailed analysis on the memory consumption.

R-MVSNet is much more efficient than other methods in

GPU memory and is the first learning-based approach ap-

plicable to such wide depth range scenes, e.g., the advance

set of Tanks and Temples dataset [17].
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(a) Winner-take-all (d) 3D CNNs Regularization

dmaxdmin dmaxdmin dmaxdmin

Required Memory: H × W H × W H × W H × W × D

(b) Spatial Regularization (c) Recurrent Regularization (Proposed)

Figure 1: Illustrations of different regularization schemes. For the interest red voxel, we use voxels in blue to denote its

receptive field during the cost volume regularization. The runtime memory requirement is also listed on top of the volume,

where H, W and D denote the image height, width and depth sample number respectively. The 3D CNNs gather the cost

information across the whole space, however, requires a runtime memory cubical to the model resolution

2. Related Work

Learning-based MVS Reconstruction Recent learning-

based approaches have shown great potentials for MVS re-

construction. Multi-patch similarity [11] is proposed to re-

place the traditional cost metric with the learned one. Sur-

faceNet [14] and DeepMVS [13] pre-warp the multi-view

images to 3D space, and regularize the cost volume us-

ing CNNs. LSM [15] proposes differentiable projection

operations to enable the end-to-end MVS training. Our

approach is mostly related to MVSNet [30], which en-

codes camera geometries in the network as differentiable

homography and infers the depth map for the reference im-

age. While some methods have achieved excellent per-

formance in MVS benchmarks, aforementioned learning-

based pipelines are restricted to small-scale MVS recon-

structions due to the memory constraint.

Scalable MVS Reconstruction The memory require-

ment of learned cost volume regularizations [14, 15, 13, 5,

30] grows cubically with the model resolution, which will

be intractable when large image sizes or wide depth ranges

occur. Similar problem also exists in traditional MVS re-

constructions (e.g., semi-global matching [12]) if the whole

volume is taken as the input to the regularization. To mit-

igate the scalability issue, learning-based OctNet [23] and

O-CNN [27] exploit the sparsity in 3D data and introduce

the octree structure to 3D CNNs, but are still restricted to

reconstructions with resolution < 5123 voxels. Heuristic

divide-and-conquer strategies are applied in both classical

[18] and learned MVS approaches [14, 13], however, usu-

ally lead to the loss of global context information and the

slow processing speed.

On the other hand, scalable traditional MVS algorithms

all regularize the cost volume implicitly. They either ap-

ply local depth propagation [19, 9, 10, 24] to iteratively re-

fine depth maps/point clouds, or sequentially regularize the

cost volume using simple plane sweeping [7] and 2D spatial

cost aggregation with depth-wise winner-take-all [28, 31].

In this work, we follow the idea of sequential processing,

and propose to regularize the cost volume using the con-

volutional GRU [6]. GRU is a RNN architecture [8] ini-

tially proposed for learning sequential speech and text data,

and is recently applied to 3D volume processing, e.g., video

sequence analysis [3, 34]. For our task, the convolutional

GRU gathers spatial as well as temporal context information

in the depth direction, which is able to achieve comparable

regularization results to 3D CNNs.

3. Network Architecture

This section describes the detailed network architecture of

R-MVSNet. Our method can be viewed as an extension to

the recent MVSNet [30] with cost volume regularization us-

ing convolutional GRU. We first review the MVSNet archi-

tecture in Sec. 3.1, and then introduce the recurrent regular-

ization in Sec. 3.2 and the corresponding loss formulation

in Sec. 3.3.

3.1. Review of MVSNet

Given a reference image I1 and a set of its neighboring

source images {Ii}Ni=2, MVSNet [30] proposes an end-to-

end deep neural network to infer the reference depth map

D. In its network, deep image features {Fi}Ni=1 are first

extracted from input images through a 2D network. These

2D image features will then be warped into the reference

camera frustum by differentiable homographies to build the

feature volumes {Vi}Ni=1 in 3D space. To handle arbitrary

N -view image input, a variance based cost metric is pro-

posed to map N feature volumes to one cost volume C.

Similar to other stereo and MVS algorithms, MVSNet reg-

ularizes the cost volume using the multi-scale 3D CNNs,

and regresses the reference depth map D through the soft

argmin [16] operation. A refinement network is applied at
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Figure 2: The R-MVSNet architecture. Deep image features are extracted from input images and then warped to the fronto-

parallel planes of the reference camera frustum. The cost maps are computed at different depths and are sequentially regular-

ized by the convolutional GRU. The network is trained as a classification problem with the cross-entropy loss

the end of MVSNet to further enhance the depth map qual-

ity. As deep image features {Fi}Ni=1 are downsized during

the feature extraction, the output depth map size is 1/4 to

the original image size in each dimension.

MVSNet has shown state-of-the-art performance on

DTU dataset [1] and the intermediate set of Tanks and

Temples dataset [17], which contain scenes with outside-

looking-in camera trajectories and small depth ranges.

However, MVSNet can only handle a maximum reconstruc-

tion scale at H ×W ×D = 1600× 1184× 256 with the 16

GB large memory Tesla P100 GPU, and will fail at larger

scenes e.g., the advanced set of Tanks and Temples. To

resolve the scalability issue especially for the wide depth

range reconstructions, we will introduce the novel recurrent

cost volume regularization in the next section.

3.2. Recurrent Regularization

Sequential Processing An alternative to globally regu-

larize the cost volume C in one go is to sequentially pro-

cess the volume through the depth direction. The simplest

sequential approach is the winner-take-all plane sweeping

stereo [7], which crudely replaces the pixel-wise depth

value with the better one and thus suffers from noise (Fig. 1

(a)). To improve, cost aggregation methods [28, 31] filter

the matching cost C(d) at different depths (Fig. 1 (b)) so as

to gather spatial context information for each cost estima-

tion. In this work, we follow the idea of sequential process-

ing, and propose a more powerful recurrent regularization

scheme based on convolutional GRU. The proposed method

is able to gather spatial as well as the uni-directional con-

text information in the depth direction (Fig. 1 (c)), which

achieves regularization results comparable to the full-space

3D CNNs but is much more efficient in runtime memory.

Convolutional GRU Cost volume C could be viewed as

D cost maps {C(i)}Di=1 concatenated in the depth direc-

tion. If we denote the output of regularized cost maps

as {Cr(i)}Di=1, for the ideal sequential processing at the

tth step, Cr(t) should be dependent on cost maps of the

current step C(t) as well as all previous steps {C(i)}t−1
i=1 .

Specifically, in our network we apply a convolutional vari-

ant of GRU to aggregate such temporal context information

in depth direction, which corresponds to the time direction

in language processing. In the following, we denote ‘⊙’ as

the element-wise multiplication, ‘[]’ the concatenation and

‘∗’ the convolution operation. Cost dependencies are for-

mulated as:

Cr(t) = (1−U(t))⊙Cr(t− 1) +U(t)⊙Cu(t) (1)

where U(t) is the update gate map to decide whether to up-

date the output for current step, Cr(t−1) is the regularized

cost map of late step, and Cu(t) could be viewed as the

updated cost map in current step, which is defined as:

Cu(t) = σc(Wc ∗ [C(t),R(t)⊙Cr(t− 1)] + bc) (2)

R(t) here is the reset gate map to decide how much the pre-

vious Cr(t − 1) should affect the current update. σc(·) is
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(a) Reference Image (b) Initial Depth Map (c) Final Depth Map (d) GT Depth Map

(f) Probability Map (g) Depth Gradient (h) Depth Gradient after Refinement(e) Final Point Cloud

Figure 3: Reconstruction pipeline. (a) Image 24 of DTU [1] scan 15. (b) Initial depth map from the network. (c) Final

depth map (Sec. 4.3). (d) Ground truth depth map. (e) Point cloud output. (f) Probability estimation for depth map filtering

(Sec. 4.3). (g) The gradient visualization of the initial depth map. (h) The gradient visualization after the refinement (Sec. 4.2)

the nonlinear mapping, which is the element-wise sigmoid

function. The update gate and reset gate maps are also re-

lated to the current input and previous output:

R(t) = σg(Wr ∗ [C(t),Cr(t− 1)] + br) (3)

U(t) = σg(Wu ∗ [C(t),Cr(t− 1)] + bu) (4)

W and b are learned parameters. The nonlinear σg(·) is the

hyperbolic tangent to make soft decisions for the updates.

The convolutional GRU architecture not only spatially

regularizes the cost maps through 2D convolutions, but also

aggregates the temporal context information in depth di-

rection. We will show in the experiment section that our

GRU regularization can significantly outperform the simple

winner-take-all or only the spatial cost aggregation.

Stacked GRU The basic GRU model is comprised of a

single layer. To further enhance the regularization ability,

more GRU units could be stacked to make a deeper network.

In our experiments, we adopt a 3-layer stacked GRU struc-

ture (Fig. 2). Specifically, we first apply a 2D convolutional

layer to map the 32-channel cost map C(t) to 16-channel

as the input to the first GRU layer. The output of each GRU

layer will be used as the input to the next GRU layer, and

the output channel numbers of the 3 layers are set to 16, 4, 1

respectively. The regularized cost maps {Cr(i)}Di=1 will fi-

nally go through a softmax layer to generate the probability

volume P for calculating the training loss.

3.3. Training Loss

Most deep stereo/MVS networks regress the disparity/depth

outputs using the soft argmin operation [16], which can be

interpreted as the expectation value along the depth direc-

tion [30]. The expectation formulation is valid if depth val-

ues are uniformly sampled within the depth range. However,

in recurrent MVSNet, we apply the inverse depth to sample

the depth values in order to efficiently handle reconstruc-

tions with wide depth ranges. Rather than treat the problem

as a regression task, we train the network as a multi-class

classification problem with cross entropy loss:

Loss =
∑

p

(

D
∑

i=1

−P(i,p) · logQ(i,p)
)

(5)

where p is the spatial image coordinate and P(i,p) is a

voxel in the probability volume P. Q is the ground truth

binary occupancy volume, which is generated by the one-

hot encoding of the ground truth depth map. Q(i,p) is the

corresponding voxel to P(i,p).

One concern about the classification formulation is the

discretized depth map output [32, 20, 13]. To achieve sub-

pixel accuracy, a variational depth map refinement algo-

rithm is proposed in Sec. 4.2 to further refine the depth map

output. In addition, while we need to compute the whole

probability volume during training, for testing, the depth

map can be sequentially retrieved from the regularized cost

maps using the winner-take-all selection.
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4. Reconstruction Pipeline

The proposed network in the previous section generates

the depth map per-view. This section describes the non-

learning parts of our 3D reconstruction pipeline.

4.1. Preprocessing

To estimate the reference depth map using R-MVSNet, we

need to prepare: 1) the source images {Ii}Ni=2 of the given

reference image I1, 2) the depth range [dmin, dmax] of the

reference view and 3) the depth sample number D for sam-

pling depth values using the inverse depth setting.

For selecting the source images, we follow MVSNet [30]

to score each image pair using a piece-wise Gaussian func-

tion w.r.t. the baseline angle of the sparse point cloud [33].

The neighboring source images are selected according to

the pair scores in descending order. The depth range is also

determined by the sparse point cloud with the implementa-

tion of COLMAP [24]. Depth samples are chosen within

[dmin, dmax] using the inverse depth setting and we deter-

mine the total depth sample number D by adjusting the tem-

poral depth resolution to the spatial image resolution (de-

tails are described in the supplementary material).

4.2. Variational Depth Map Refinement

As mentioned in Sec. 3.3, a depth map will be retrieved

from the regularized cost maps through the winner-take-all

selection. Compare to the soft argmin [16] operation, the

argmax operation of winner-take-all cannot produce depth

estimations with sub-pixel accuracy. To alleviate the stair

effect (see Fig. 3 (g) and (h)), we propose to refine the

depth map in a small depth range by enforcing the multi-

view photo-consistency.

Given the reference image I1, the reference depth map

D1 and one source image Ii, we project Ii to I1 through D1

to form the reprojected image Ii→1. The image reprojection

error between I1 and Ii→1 at pixel p is defined as:

Ei(p) = Ei
photo(p) + Ei

smooth(p)

= C(I1(p), Ii→1(p)) +
∑

p′∈N (p)

S(p,p′) (6)

where Ei
photo is the photo-metric error between two pixels,

Ei
smooth is the regularization term to ensure the depth map

smoothness. We choose the zero-mean normalized cross-

correlation (ZNCC) to measure the photo-consistency C(·),
and use the bilateral squared depth difference S(·) between

p and its neighbors p′ ∈ N (p) for smoothness.

During the refinement, we iteratively minimize the to-

tal image reprojection error between the reference image

and all source images E =
∑

i

∑

p
Ei→1(p) w.r.t. depth

map D1. It is noteworthy that the initial depth map from

R-MVSNet has already achieved satisfying result. The pro-

posed variational refinement only fine-tunes the depth val-

ues within a small range to achieve sub-pixel depth accu-

racy, which is similar to the quadratic interpolation in stereo

methods [32, 20] and the DenseCRF in DeepMVS [13].

4.3. Filtering and Fusion

Similar to other depth map based MVS approaches[10, 24,

30], we filter and fuse depth maps in R-MVSNet into a sin-

gle 3D point cloud. The photo-metric and the geometric

consistencies are considered in depth map filtering. As de-

scribed in previous sections, the regularized cost maps will

go through a softmax layer to generate the probability vol-

ume. In our experiments, we take the corresponding proba-

bility of the selected depth value as its confidence measure-

ment (Fig. 3 (f)), and we will filter out pixels with probabil-

ity lower than a threshold of 0.3. The geometric constraint

measures the depth consistency among multiple views, and

we follow the geometric criteria in MVSNet [30] that pixels

should be at least three view visible. For depth map fusion,

we apply the visibility-based depth map fusion [21] as well

as the mean average fusion [30] to further enhance the depth

map quality and produce the 3D point cloud. Illustrations

of our reconstruction pipeline are shown in Fig. 3.

5. Experiments

5.1. Implementation

Training We train R-MVSNet on the DTU dataset [1],

which contains over 100 scans taken under 7 different light-

ing conditions and fixed camera trajectories. While the

dataset only provides the ground truth point clouds, we

follow MVSNet [30] to generate the rendered depth maps

for training. The training image size is set to W × H =
640 × 512 and the input view number is N = 3. The

depth hypotheses are sampled from 425mm to 905mm with

D = 192. In addition, to prevent depth maps from being

biased on the GRU regularization order, each training sam-

ple is passed to the network with forward GRU regulariza-

tion from dmin to dmax as well as the backward regulariza-

tion from dmax to dmin. The dataset is split into the same

training, validation and evaluation sets as previous works

[14, 30]. We choose TensorFlow [2] for the network imple-

mentation, and the model is trained for 100k iterations with

batch size of 1 on a GTX 1080Ti graphics card. RMSProp is

chosen as the optimizer and the learning rate is set to 0.001

with an exponential decay of 0.9 for every 10k iterations.

Testing For testing, we use N = 5 images as input, and

the inverse depth samples are adaptively selected as de-

scribed in Sec. 4.1. For Tanks and Temples dataset, the

camera parameters are computed from OpenMVG [22] as

suggested by MVSNet [30]. Depth map refinement, filter-

ing and fusion are implemented using OpenGL on the same

GTX 1080Ti GPU.
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5.2. Benchmarks

We first demonstrate the state-of-the-art performance of the

proposed R-MVSNet, which produces results comparable

to or outperforms the previous MVSNet [30].

DTU Dataset [1] We evaluate the proposed method on

the DTU evaluation set. To compare R-MVSNet with

MVSNet [30], we set [dmin, dmax] = [425, 905] and D =
256 for all scans. Quantitative results are shown in Table 1.

The accuracy and the completeness are calculated using the

matlab script provided by the DTU dataset. To summa-

rize the overall reconstruction quality, we calculate the av-

erage of the mean accuracy and the mean completeness as

the overall score. Our R-MVSNet produces the best recon-

struction completeness and overall score among all meth-

ods. Qualitative results can be found in Fig. 4.

Tanks and Temples Benchmark [17] Unlike the indoor

DTU dataset, Tanks and Temples is a large dataset captured

in more complex environments. Specifically, the dataset is

divided into the intermediate and the advanced sets. The in-

termediate set contains scenes with outside-look-in camera

trajectories, while the advanced set contains large scenes

with complex geometric layouts, where almost all previous

learned algorithms fail due to the memory constraint.

The proposed method ranks 3rd on the intermediate set,

which outperforms the original MVSNet [30]. Moreover,

R-MVSNet successfully reconstructs all scenes and also

ranks 3rd on the advanced set. The reconstructed point

clouds are shown in Fig. 5. It is noteworthy that the bench-

marking result of Tanks and Temples is highly dependent on

the point cloud density. Our depth map is of size H
4 × W

4 ,

which is relatively low-resolution and will result in low re-

construction completeness. So for the evaluation, we lin-

early upsample the depth map from the network by two

(H2 × W
2 ) before the depth map refinement. The f scores

of intermediate and advanced sets increase from 43.48 to

48.40 and from 24.91 to 29.55 respectively.

ETH3D Benchmark [25] We also evaluate our method

on the recent ETH3D benchmark. The dataset is divided

into the low-res and the high-res scenes, and provides the

ground truth depth maps for MVS training. We first fine-

tune the model on the ETH3D low-res training set, however,

observe no performance gain compared to the model only

pre-trained on DTU. We suspect the problem may be some

images in low-res training set are blurred and overexposed

as they are captured using hand-held devices. Also, the

scenes of ETH3D dataset are complicated in object occlu-

sions, which are not explicitly handled in the proposed net-

work. We evaluate on this benchmark without fine-tuning

the network. Our method achieves similar performance to

MVSNet [30] and ranks 6th on the low-res benchmark.

Mean Acc. Mean Comp. Overall (mm)

Camp [4] 0.835 0.554 0.695

Furu [9] 0.613 0.941 0.777

Tola [26] 0.342 1.19 0.766

Gipuma [10] 0.283 0.873 0.578

Colmap [10] 0.400 0.664 0.532

SurfaceNet [14] 0.450 1.04 0.745

MVSNet (D=256) [30] 0.396 0.527 0.462

R-MVSNet (D=256) 0.385 0.459 0.422

R-MVSNet (D=512) 0.383 0.452 0.417

Table 1: Quantitative results on the DTU evaluation scans

[1]. R-MVSNet outperforms all methods in terms of recon-

struction completeness and overall quality

Ground TruthR-MVSNet

Sc
an

 1
0

Sc
an

 2
3

Figure 4: Our results and the ground truth point clouds of

scans 10 and 23, DTU [1] dataset

5.3. Scalability

Next, we demonstrate the scalability of R-MVSNet from:

1) wide-range and 2) high-resolution depth reconstructions.

Wide-range Depth Reconstructions The memory re-

quirement of R-MVSNet is independent to the depth sample

number D, which enables the network to infer depth maps

with large depth range that is unable to be recovered by pre-

vious learning-based MVS methods. Some large scale re-

constructions of Tanks and Temples dataset are shown in

Fig. 5. Table 2 compares MVSNet [30] and R-MVSNet

in terms of benchmarking rankings, reconstruction scales

and memory requirements. We define the algorithm’s mem-

ory utility (Mem-Util) as the size of volume processed per

memory unit (H4 × W
4 × D / runtime memory size). R-

MVSNet is ×8 more efficient than MVSNet in Mem-Util.

High-resolution Depth Reconstructions R-MVSNet

can also produce high-resolution depth reconstructions by

sampling denser in depth direction. For the DTU evaluation

in Sec. 5.2, if we fix the depth range and change the depth

sample number from D = 256 to D = 512, the overall

distance score will be reduced from 0.422mm to 0.419mm
(see last row of Table 1).
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Dataset
MVSNet[30] R-MVSNet (Ours) Mem-Util

Rank H W Ave. D Mem. Mem-Util Rank H W Ave. D Mem. Mem-Util Ratio

DTU [1] 2 1600 1184 256 15.4 GB 1.97 M 1 1600 1200 512 6.7 GB 9.17 M 4.7

T. Int. [17] 4 1920 1072 256 15.3 GB 2.15 M 3 1920 1080 898 6.7 GB 17.4 M 8.1

T. Adv. [17] - - - - - - 3 1920 1080 698 6.7 GB 13.5 M -

ETH3D [25] 5 928 480 320 8.7 GB 1.02 M 6 928 480 351 2.1 GB 4.65 M 4.6

Table 2: Comparisons between MVSNet [30] and the proposed R-MVSNet on benchmarking rankings, reconstruction scales

and GPU memory requirements on the three MVS datasets [1, 17, 25]. The memory utility (Mem-Util) measures the data

size processed per memory unit, and the high ratio between the two algorithms reflects the scalability of R-MVSNet

(a) Courtroom (b) Panther

(f) Train(e) Horse(d) Palace

(c) Ballroom

Figure 5: Point cloud reconstructions of Tanks and Temples dataset [17]

5.4. Ablation studies

5.4.1 Networks

This section studies how different components in the net-

work affect the depth map reconstruction. We perform

the study on DTU validation set with W × H × D =
640×512×256, and use the average absolute difference be-

tween the inferred and the ground truth depth maps for the

quantitative comparison. We denote the learned 2D image

features as 2D CNNs. The comparison results of following

settings are shown Fig. 6 and Fig. 7:

2D CNNs + 3D CNNs Replace the GRU regularization

with the same 3D CNNs regularization in MVSNet [30].

As shown in Fig. 6 and Fig. 7, 3D CNNs produces the best

depth map reconstructions.

2D CNNs + GRU The setting of the proposed R-

MVSNet, which produces the 2nd best depth map results

among all settings. The qualitative comparison between 3D

CNNs and GRU is shown in Fig. 7 (d) and (e).

2D CNNs + Spatial Replace the GRU regularization with

the simple spatial regularization. We approach the spatial

regularization by a simple 3-layer, 32-channel 2D network

on the cost map. The depth map error of spatial regulariza-

tion is larger than the GRU regularization.

2D CNNs + Winner-Take-All Replace the GRU regular-

ization with simple the winner-take-all selection. We apply

a single layer, 1-channel 2D CNN to directly map the cost

map to the regularized cost map. The depth map error is

further larger than the spatial regularization.

ZNCC + Winner-Take-All Replace the learned image

feature and cost metric with the engineered ZNCC (win-

dow size of 7 × 7). This setting is also referred to the clas-

sical plane sweeping [7]. As expected, plane sweeping pro-

duces the highest depth map error among all methods.

5.4.2 Post-processing

Next, we study the influences of post processing steps on the

final point cloud reconstruction. We reconstruct the DTU

evaluation without the variational refinement, photo-metric

filtering, geometric filtering or depth map fusion. Quantita-

tive results are shown in Table 3.

Without Variational Refinement This setting is similar

to the post-processing of MVSNet [30]. The f score is

changed to a larger number of 0.465, demonstrating the ef-

fectiveness of the proposed depth map refinement.

Without Photo-metric Filtering Table 3 shows that the

f score without photo-metric filtering is increased to a larger
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4.0

8.0

16.0

32.0

64.0

20k 40k 60k 80k 100k

Error 
/ mm

# Iterations

2D CNNs + 3D CNNs 2D CNNs + GRU 2D CNNs + Spatial
2D CNNs + WTA ZNCC + WTA

Ref. Pho. Geo. Fus. Acc. Comp. Overall√ √ √ √
0.385 0.459 0.422

× √ √ √
0.444 0.486 0.465√ × √ √
0.550 0.384 0.467√ √ × √
0.479 0.385 0.432√ √ √ × 0.498 0.364 0.431

× √ √ × 0.605 0.373 0.489

× × √ √
0.591 0.411 0.501

Figure 6: Ablation studies on network architectures, which

demonstrate the importance of learned features and learned

regularization. WTA is referred to Winner-Take-All and

the figure records testing depth map errors during training

Table 3: Ablation studies on different combinations of

variational Refinement, Photo-metic filtering, Geometry

filtering and depth map Fusion for post-processing. Tested

on DTU [1] evaluation set

(a) ZNCC + WTA (b) 2D CNNs + WTA (c) 2D CNNs + spatial (d) 2D CNNs + GRU (e) 2D CNNs + 3D CNNs

Figure 7: Depth map reconstructions of scan 11, DTU dataset [1] using different image features and cost volume regulariza-

tion methods. All models are trained for 100k iterations

number of 0.467, which demonstrates the importance of the

probability map for photo-metric filtering (Fig. 3 (f)).

Without Geo-metric Filtering The f score is increased

to 0.432, showing the effectiveness of depth consistency.

Without Depth Map Fusion The f score is also in-

creased to 0.431, showing the effectiveness of depth fusion.

5.5. Discussion

Running Time For DTU evaluation with D = 256, R-

MVSNet generates the depth map at a speed of 9.1s / view.

Specifically, it takes 2.9s to infer the initial depth map and

6.2s to perform the depth map refinement. It is noteworthy

that the runtime of depth map refinement only relates to re-

finement iterations and the input image size. Filtering and

fusion takes neglectable runtime.

Generalization R-MVSNet is trained with fixed input

size of N×W×H×D = 3×640×512×256, but it is appli-

cable to arbitrary input size during testing. It is noteworthy

that we use the model trained on the DTU dataset [1] for all

our experiments without fine-tuning. While R-MVSNet has

shown satisfying generalizability to the other two datasets

[17, 25], we hope to train R-MVSNet on a more diverse

MVS dataset, and expect better performances on Tanks and

Temples [17] and ETH3D [25] benchmarks in the future.

Limitation on Image Resolution While R-MVSNet is

applicable to reconstructions with unlimited depth-wise res-

olution, the reconstruction scale is still restricted to the input

image size. Currently R-MVSNet can handle a maximum

input image size of 3072 × 2048 on a 11GB GPU, which

covers all modern MVS benchmarks except for the ETH3D

high-res benchmark (6000× 4000).

6. Conclusions

We presented a scalable deep architecture for high-

resolution multi-view stereo reconstruction. Instead of us-

ing 3D CNNs, the proposed R-MVSNet sequentially regu-

larizes the cost volume through the depth direction with the

convolutional GRU, which dramatically reduces the mem-

ory requirement for learning-based MVS reconstructions.

Experiments show that with the proposed post-processing,

R-MVSNet is able to produce high quality benchmarking

results as the original MVSNet [30]. Also, R-MVSNet is

applicable to large-scale reconstructions which cannot be

handled by the previous learning-based MVS approaches.
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