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Abstract

Medical image analysis has two important research ar-

eas: disease grading and fine-grained lesion segmentation.

Although the former problem often relies on the latter, the

two are usually studied separately. Disease severity grad-

ing can be treated as a classification problem, which only

requires image-level annotations, while the lesion segmen-

tation requires stronger pixel-level annotations. However,

pixel-wise data annotation for medical images is highly

time-consuming and requires domain experts. In this pa-

per, we propose a collaborative learning method to jointly

improve the performance of disease grading and lesion seg-

mentation by semi-supervised learning with an attention

mechanism. Given a small set of pixel-level annotated data,

a multi-lesion mask generation model first performs the tra-

ditional semantic segmentation task. Then, based on ini-

tially predicted lesion maps for large quantities of image-

level annotated data, a lesion attentive disease grading

model is designed to improve the severity classification ac-

curacy. Meanwhile, the lesion attention model can refine

the lesion maps using class-specific information to fine-tune

the segmentation model in a semi-supervised manner. An

adversarial architecture is also integrated for training. With

extensive experiments on a representative medical problem

called diabetic retinopathy (DR), we validate the effective-

ness of our method and achieve consistent improvements

over state-of-the-art methods on three public datasets.

1. Introduction

In the medical imaging community, automatic disease

diagnosis has been widely explored and applied to var-

ious practical computer-aided medical systems. Disease

grading [28, 6, 50, 40] and pixel-wise lesion segmentation

[12, 10, 29] are two main fundamental problems in this area.

The goal of disease grading is to predict the classification

label for the severity of a disease, while segmentation aims

to address more fine-grained, pixel-wise lesion detection.
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Figure 1. Illustration of the proposed collaborative learning

method of semi-supervised multi-lesion segmentation and disease

severity classification. Here we conduct studies on the fundus im-

ages for diabetic retinopathy.

These two tasks are usually studied independently. How-

ever, accurate lesion detection can make huge contributions

to classifying the disease grades, while class-specific infor-

mation can also benefit segmentation performance.

Labeling medical images is expensive since it requires

the very time-consuming dedication of domain experts, es-

pecially for pixel-level annotations. Compared with general

object segmentation tasks [23, 16, 45, 51, 8], which have

large amounts of annotated training data available, employ-

ing a fully-supervised architectures [26, 9, 20] to train med-

ical models is impractical. However, purely-unsupervised

learning approaches [39, 12, 55] are also not acceptable due

to their limited accuracy. As such, we aim to develop a

semi-supervised method [34, 35], which can use the lim-

ited number of pixel-level annotated images available along

with the large quantities of broader, image-level annotations

to simultaneously enhance the performance of both the seg-

mentation and classification models.

In this paper, we propose a collaborative learning method

for disease grading and lesion segmentation and select a

common disease called diabetic retinopathy (DR) for eval-

uation. DR is an eye disease that results from diabetes

mellitus, and can lead to blindness. The severity of DR

can be graded into five stages: normal, mild, moderate, se-

vere non-proliferative and proliferative, according to inter-

national protocol [19, 3]. The severity grading has strong

correlations with different lesion symptoms, such as mi-
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croaneurysms, haemorrhages, hard exudates and soft exu-

dates appearing on the fundus images. Therefore, multi-

lesion segmentation is highly beneficial for analyzing DR

gradings. However, since acquiring large quantaties of

pixel-level lesion annotation is difficult, a semi-supervised

segmentation method is proposed together with image-level

severity classification for joint optimization. Fig. 1 illus-

trates the idea of our proposed method. For images with

pixel-level lesion annotations, we pre-train a segmentation

model in a fully-supervised manner. Then, a large num-

ber of images with only disease grade labels can be passed

through the pre-trained segmentation model to generate

weak lesion maps. We take the predicted masks with the

original images as inputs for learning the lesion attentive

classification model. This model both improves the disease

grading performance and outputs lesion attention maps as

refined pseudo masks that can be used to fine-tune the seg-

mentation model. The main contributions of our method are

highlighted as follows:

(1) A multi-lesion mask generator is proposed for the

pixel-wise segmentation. Due to extremely limited train-

ing data, we carefully design an Xception-module based U-

shape network and a joint objective function that incorpo-

rates a supervised segmentation loss and an unsupervised

adversarial loss for training.

(2) For image-level annotated data, we devise a lesion

attention model that can automatically predict lesion maps

adopting only weak supervision of class-specific informa-

tion. The predicted maps can be used to fine-tune the previ-

ous segmentation model together with fully-annotated data

in a semi-supervised learning manner.

(3) The lesion segmentation and disease grading tasks

are optimized in an end-to-end model. The massive amount

of class-annotated data can benefit the segmentation perfor-

mance. Meanwhile, enhanced pixel-wise lesion segmenta-

tion can improve grading accuracy. Extensive ablation stud-

ies and comparison experiments conducted on the DR data

have shown the effectiveness and superiority of our method.

2. Related Work

Disease Grading and Lesion Detection. Recent state-

of-the-art disease grading and lesion detection methods in

medical imaging tend to adopt general deep learning mod-

els. CNN architectures [33, 15, 19] have been proposed to

diagnose DR by classifying its severity. Feature selection

from the determined features [17] has been introduced for

classifying breast cancer malignancy. Moreover, to recog-

nize detailed lesions, bounding-box level detection [41, 49]

and pixel-level segmentation [13, 36] have also been stud-

ied. However, only a few works [50, 46, 5] have associated

the lesion detection and disease severity classification.

Semi-Supervised Semantic Segmentation. For the se-

mantic segmentation task, due to the shortage of pixel-

level annotated data, semi-supervised segmentation meth-

ods [23, 47, 31] have been explored. An adversarial learn-

ing mechanism was used in [22], where the network’s dis-

criminator outputs predicted probability maps as the confi-

dence maps for semi-supervised learning. Hong et al. [21]

proposed a decoupled deep neural network to separate the

classification and segmentation networks, and used bridg-

ing layers to deliver class-specific information.

Attention Mechanisms. Visual attention addresses the

problem of extracting task-specific salient regions from im-

ages, while ignoring irrelevant parts. Attention mechanisms

have been studied for many vision tasks such as image clas-

sification [38, 27, 53, 52], fine-grained recognition [54, 48]

and image captioning [4, 7]. These mechanisms can be cat-

egorized into soft and hard attention models, where the for-

mer is fully-differentiable to learning attention maps and the

latter is not differentiable and involves a stochastic process

sampling hidden states with probabilities.

3. Proposed Methods

3.1. Problem Formulation

Given pixel-level annotated images XP and image-level

annotated images XI , the final aim of our method is to col-

laboratively optimize a lesion segmentation model G(·) and

a disease grading model C(·), which would work together

to improve the precision of one another. To train the seg-

mentation model, we aim to minimize the difference be-

tween the predicted lesion maps and the ground-truth masks

by the following function:

min
G

L∑

l=1

LSeg(G(XP ), G(XI), sPl , s̃
I
l ), (1)

where sPl denotes the ground-truth of pixel-level annotated

images and s̃Il is the pseudo masks of image-level annotated

images learned by the lesion attentive grading model. L is

the total number of lesion varieties related to a particular

disease. The optimization function for the disease grading

model is defined as:

min
C,att

LCls(C(XI) · att(G(XI)),yI), (2)

where att(·) indicates the lesion attention model and yI is

the disease severity classification label for image-level an-

notated data. Note that s̃Il in Eq. 1 is equal to att(G(XI)).
The detailed definitions of LSeg and LCls are explained in

Sec. 3.2 and 3.3, respectively. Therefore, to collaboratively

learn the two tasks, the most important factor to consider is

how to design and optimize G(·), C(·) and att(·).
An overview of the proposed network architecture,

which consists of two parts, is illustrated in Fig. 2. For the

first part, we take the few XP as inputs to train a multi-

lesion mask generator in a fully-supervised manner. Once it

is pre-trained, the remaining large-scale XI are also passed
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Figure 2. Pipeline of the proposed method. The input data consists of a very small set of pixel-level annotated lesion images XP and a large

set of images XI with only image-level labels showing the disease severity. A multi-lesion masks generator is proposed for learning the

lesion segmentation task in a semi-supervised manner, where XP has real ground-truth masks and X
I uses the pseudo masks learned from

the lesion attentive disease grading model. An adversarial architecture is also proposed to benefit the training. Moreover, the segmented

lesion masks are adopted to generate attentive features for improving the final disease grading performance. The two tasks are jointly

optimized in an end-to-end network.

through the generator. A discriminator, optimized by an ad-

versarial training loss, is designed to distinguish these two

types of data. For the second part, the XI and its initially

predicted lesion maps are adopted to learn a lesion attention

model, which only employs disease grading labels. The le-

sion attentive grading model improves the classification ac-

curacy. Moreover, the generated lesion attention maps can

be used as pseudo masks to refine the lesion mask generator

for large unannotated data in a semi-supervised manner.

3.2. Adversarial MultiLesion Masks Generator

Training a semantic segmentation model usually requires

large quantities of pixel-level annotated data. However, for

medical imaging where annotation cost is extremely high,

we have to find a way of effectively training a model using

the limited annotated data available. In our method, we pro-

pose a multi-lesion mask generator, derived from a U-shape

network and embedded with an Xception module [11] for

this task. The U-shape network [36] was first introduced

for the segmentation of neuron structures in electron micro-

scopic stacks. It deploys an encoder-decoder structure built

with a fully convolutional network. The skip connections

concatenate the feature maps of contracting and expansive

parts of the same spatial size. This design can best preserve

the edge and texture details in the decoding process of the

input images and speed up the convergence.

We first extend the U-shape network with a built-in

Xception module and modify it to be a multi-lesion mask

generator. The Xception module essentially inherits its idea

from the Inception module [42], with the difference being

that a separable convolution performs the spatial convolu-

tion over each channel and the 1 × 1 convolution projects

new channels independently. We incorporate the Xcep-

tion module for lesion segmentation since the spatial cor-

relations over each channel of feature maps and the cross-

channel correlations have less inner relationship and are not

expected to jointly learn the mappings. A schematic dia-

gram of the segmentation model is shown in the yellow part

of Fig. 2. Together, the encoder and decoder consist of a to-

tal of nine feature mapping tuples. Apart from the first tuple

of the encoder, which employs normal convolution opera-

tions, the remaining tuples are designed with the Xception

module. Each tuple is composed of two separable convo-

lutions followed by batch normalization, ReLU activation,

max-pooling and a shortcut of 1×1 convolution. The spatial

convolution kernel size is 3× 3 and the padding is set to be

the same. In the decoder part, up-sampling and a skip con-

nection are employed before each tuple. At the end, we add

L convolution layers with Sigmoid activation to generate L

different lesion masks. Other hyper-parameter settings are

based on [36].

To optimize the lesion mask generator, we use both the

pixel-level annotated data and the image-level annotated

data. With pixel-level annotated lesion masks, a binary

cross-entropy loss LCE is used to minimize distances be-

tween the predictions and the ground-truths. Based on the
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lesion attention model introduced in Sec. 3.3, we also ob-

tain pseudo mask ground-truths for the image-level anno-

tated data to optimize LCE . Moreover, to generate better

lesion masks by exploiting data without pixel-level annota-

tions, we add a multi-lesion discriminator D, which con-

tributes to the training through a generative adversarial net-

work (GAN [18]) architecture. Traditional GANs consist of

a generative net and discriminative net playing a competi-

tive min-max game. A latent random vector z from a uni-

form or Gaussian distribution is usually used as the input for

the generator to synthesize samples. The discriminator then

aims to distinguish the real data x from the generated sam-

ples. The essential goal is to converge pz(z) to a target real

data distribution pdata(x). In this paper, rather than gener-

ating samples from random noise, we take the lesion maps

predicted by the generator from the pixel-level annotated

data as the real data branch and those from the image-level

annotated data as the fake sample branch. The total loss for

optimizing the lesion segmentation task can be defined as:

LSeg = LAdv + λLCE (3)

= E[log(D(XP , G(XP ))] + E[log(1−D(XI , G(XI))]

+ λE[−s · logG(X(P,I)
− (1− s) · log(1−G(X(P,I)))],

where s is a brief expression of sPl and s̃Il for the ground-

truths of pixel-level and image-level annotated data, respec-

tively. λ is the balance weight of two objective functions.

The predicted multi-lesion masks are concatenated with

the input images and then taken as inputs for the discrimi-

nator D which has five convolution mapping tuples. Each

tuple consists of two convolutional layers with kernel size

of 3 and one max-pooling layer with a stride of 2 to pro-

gressively encode contextual information for an increasing

receptive field. For each tuple, we also adopt ReLU activa-

tion and batch normalization. A global average pooling is

employed at the end of D, followed by a dense connection

and Sigmoid activation that outputs if the predicted lesion

maps are supervised by real or pseudo mask ground-truths.

3.3. Lesion Attentive Disease Grading

To grade the severity of a disease, human experts usually

make a diagnosis by observing detailed lesion signs char-

acteristic of the disease. Adopting a classic deep classifica-

tion model can achieve basic performance for this, but with

limited accuracy. Visual attention models address recogni-

tion tasks in a human-like manner, automatically extract-

ing task-specific regions and neglecting irrelevant informa-

tion to improve their performance. However, most conven-

tional attention models are proposed for general object im-

ages, and only need to predict coarse attention maps. The

attention mechanism is usually designed using high-level

features. For medical images, where the lesion regions are

very small and are expected to be attended in a pixel-wise

manner, in our model we also adopt low-level feature maps
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Figure 3. The details of the lesion attentive disease grading. The

blue part is the classification model for disease grading and the

orange part is the attention model for learning refined lesion maps.

with high resolutions to guide the learning of the attention

model. Moreover, for those images with only image-level

disease grade annotations, our lesion attentive model can

generate pixel-level attention maps, which are then used as

the pseudo masks for semi-supervised learning in the lesion

segmentation model.

The lesion attentive disease grading model, as shown

in Fig. 3, is composed of a main branch for feature ex-

traction and classification of the input disease images, and

L branches for learning the attention models of the L le-

sions. We do not use the lesion masks initially predicted by

the segmentation model to directly attend the classification

model because the number of pixel-level annotated medical

images is usually very small and thus the initially predicted

masks are too weak to use. Moreover, the image-level grad-

ing labels can be exploited to deliver discriminative local-

ization information to refine the lesion attention maps.

The disease grading model C(·) and lesion attention

model att(·) in our method are tightly integrated. We first

take a disease classification model with a basic convolu-

tional neural network to learn grading using only input im-

ages. Once it is pre-trained, f low and fhigh, which de-

note the low-level and high-level feature representations,

respectively, can be extracted as pixel-wise and category-

wise guidance for learning the attention model. Moreover,

we also encode the initially predicted lesion maps, denoted

by mL
l=1, as inputs to the attention model. The overall ex-

pression is defined by the following equation:

αL
l=1 = att(f low, fhigh,mL

l=1), (4)

where the outputs αL
l=1 are the attention maps that give high

responses to different lesion regions that characterize the

disease. The proposed attention mechanism consists of two

steps. The first step is to exploit pixel-wise lesion features
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by fusing the encoded low-level embeddings from both the

input images and the initially predicted lesion masks. For

the l-th lesion, we can obtain an intermediate state for an

attentive feature by the equation:

f low att
l = ReLU(Wlow

l concat(ml, f
low) + blow

l ), (5)

where concat(·) indicates the channel-wise concatenation.

For the second step, we use a global context vector to cor-

relate with the low-level attentive features and further gen-

erate the lesion maps as:

αl = Sigmoid(Whigh
l [f low att

l ⊙ fhigh] + b
high
l ), (6)

where ⊙ denotes an element-wise multiplication. The

global context vector fhigh has the same channel dimension

as f low att
l , which is computed through a 1× 1 convolution

over the top layer feature from the basic pre-trained clas-

sification model. This high-level guidance contains abun-

dant category information to weight low-level features and

refine precise lesion details. Note that Wlow
l , W

high
l and

bias terms are learnable parameters for the l-th lesion.

Based on the L lesion attention maps, we conduct an

element-wise multiplication with the low-level image fea-

tures f low separately and use these attentive features to fine-

tune the pre-trained disease classification model. All the le-

sion attentive features share the same weights as the grading

model and the output feature vectors are concatenated for

learning a final representation. The objective function LCls

for disease grading adopts the focal loss [24] due to the im-

balanced data problem. Meanwhile, the refined multi-lesion

attention maps are used as pseudo masks to co-train the seg-

mentation model in a semi-supervised manner.

3.4. Implementation Details

The training scheme for our model consists of two

stages. In the first step, we pre-train the multi-lesion seg-

mentation model using the pixel-level annotated data by

LCE , and the basic disease severity classification model

using the image-level annotated data by LCls. Both are

trained in a fully-supervised manner. The ADAM optimizer

is adopted with the learning rate of 0.0002 and momentum

of 0.5. The mini-batch size is set to 32 for pre-training

the segmentation model over 60 epochs, while the grading

model is pre-trained over 30 epochs with batch size of 128.

Once the pre-training is complete, the initially predicted

lesion masks, along with the low-level and high-level fea-

ture representations of the input images, can be obtained

to simultaneously train the lesion attention model for semi-

supervised segmentation and further improve the grading

performance. In this stage, we add the LAdv for semi-

supervised learning and the lesion attention module for dis-

ease grading. The whole model is fine-tuned in an end-to-

end manner. λ in Eq. 3 is set to 10, which yields the best

performance. The batch size is set to 16 for fine-tuning over

50 epochs. All experiments are run on an Nvidia DGX-1.

4. Experimental Results

4.1. Datasets and Evaluation Metrics

IDRID Dataset [32] is the only DR dataset provid-

ing pixel-level multi-lesion annotations, to the best of our

knowledge. It contains 81 color fundus images with symp-

toms of DR and is split into 54 images for training and 27

images for testing. The lesions, including microaneurysms,

haemorrhages, hard exudates and soft exudates are anno-

tated by medical experts with binary masks. IDRID also

has an image-level annotated set containing 413 training

images and 103 testing images, which only have severity

grading labels. We use the lesion segmentation set to train

the multi-lesion mask generator in a fully-supervised man-

ner. Then, the grading set is used to learn the lesion atten-

tive model for classification and semi-supervised segmenta-

tion. EyePACS Dataset [2] consists of 35,126 training im-

ages and 53,576 testing images. The grading protocol is the

same as the IDRID dataset, with five DR categories. How-

ever, the images collected from this dataset are captured by

different types of cameras, under various light conditions

and weak annotation quality. Since the dataset only has

image-level grading labels, we mainly adopt it to train the

lesion attentive disease grading model. Messidor Dataset

[14] contains 1200 eye fundus images but its grading scale

is different from that of the previous two datasets, having

only 4 levels. Grades 0 and 1 are marked as non-referable,

while Grades 2 and 3 are considered referable. All grades

other than Grade 0 indicate an abnormal case of DR. Fol-

lowing the evaluation protocol used in [46], we only adopt

this dataset for testing the models trained on EyePACS.

Data Pre-Processing and Augmentation. Since the

fundus images from different datasets have various illumi-

nations and resolutions, we proposed a data pre-processing

method (clarified in the supplementary file) based on [43]

to unify the image quality and sharpen the texture details.

Moreover, to augment the data, horizontal flips, vertical

flips and rotations are conducted, which can also mitigate

the imbalance of samples across different classes.

Evaluation Metrics. To quantitively evaluate the per-

formance of the lesion segmentation task, we compute the

area under curve (AUC) value for both the receiving operat-

ing characteristic (ROC) curve and precision and recall (PR)

curve. Moreover, to evaluate the precision of the DR grad-

ing model, in addition to the normal classification accuracy,

a quadratic weighted kappa metric [2] is introduced.

4.2. Ablation Studies

4.2.1 Qualitative Multi-lesion Segmentation Results

Before evaluating the quantitative lesion segmentation pre-

cision and DR grading accuracy, we first qualitatively

demonstrate the effectiveness of the lesion attention model

for semi-supervised segmentation on the IDRID dataset,
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Figure 4. Qualitative multi-lesion segmentation results. We coarsely mark some regions to compare the initial model pre-trained on the

limited data with pixel-level lesion annotations and the semi-supervised model trained using large-scale image-level annotated data. The

green boxes denote the ground-truth. The blue boxes show the performance of our semi-supervised method, while the yellow and red boxes

highlight the miss detections and false alarms, respectively. (Best viewed zoomed in.)

which has the segmentation ground-truth. Fig. 4 compares

the segmentation results of four different lesions for the pre-

trained model adopting only the limited pixel-level anno-

tated data and the final model semi-supervised trained with

large-scale image-level annotated data. For the pre-trained

model, the failure case is usually the miss detection of the

lesion patterns (false negative). False alarms (false positive)

also occur in some small regions. With the help of image-

level annotated data for semi-supervised segmentation, the

results are obviously improved over all lesions. The effec-

tiveness of the lesion segmentation for improving DR grad-

ing is evaluated by the ablation study in Sec. 4.2.2.

4.2.2 Effect of Lesion Attentive Disease Grading

To evaluate the effectiveness of lesion segmentation for DR

grading and the improvement for semi-supervised learning

by the attention model, we compare three baselines with our

final proposed model. Ori: We first study if the lesion seg-

mentation model can enhance the DR grading accuracy. In

this baseline, we do not use the lesion attentive features but

directly train the grading model on the pre-processed fun-

dus images. Lesion (Pretrained): A baseline model pre-

trained only on the limited pixel-level lesion annotated data

is tested as well. The initially generated multi-lesion masks

are weighted on image feature maps to train the grading

model without the lesion attention model. Lesion (Semi):

We also explore the improvement of semi-supervised learn-

ing by the lesion-attention model, using large-scale image-

level grading annotated data. In this baseline, we only adopt

the cross-entropy loss for learning the lesion segmentation

model. Lesion (Semi + Adv): The adversarial training ar-

chitecture is integrated into the lesion segmentation objec-
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tive function as our final method.

Table 1. Evaluation of the effectiveness of the lesion attentive dis-

ease grading on the IDRID and EyePACS dataset.

Datasets IDRID EyePACS

Methods Acc. Kappa Acc. Kappa

Ori 0.8458 0.7926 0.8541 0.8351

Lesion(Pretrained) 0.8725 0.8306 0.8598 0.8445

Lesion(Semi) 0.9016 0.8892 0.8792 0.8617

Lesion(Semi+Adv) 0.9134 0.9047 0.8912 0.8720

Table 1 shows the classification accuracy and kappa

score of different methods. On the IDRID dataset, com-

pared with the basic classification model that doesn’t use

the lesion mask information, the initial segmentation model

pre-trained on the pixel-level annotated data can increase

the accuracy of grading by 2.67% and the kappa score by

3.8%. With the semi-supervised learning using the image-

level annotated data, an even more significant improvement

can be achieved. In particular, the huge gain in the kappa

score of 5.86% proves the proposed lesion attention model

can effectively refine the lesion maps and thus improve

the grading results. Moreover, the adversarial training ar-

chitecture can also benefit the final result with a further

gain of 1.18% for classification accuracy and 1.55% for

kappa score. Since the EyePACS dataset only has image-

level annotations, we adopt the fully-supervised model pre-

trained on the IDRID dataset. A similar comparison can be

made for the performance results obtained on the EyePACS

dataset and those as those produced on the IDRID dataset,

where each component of our model has a positive contri-

bution to the grading task, compared to the other methods.

Table 2. Performance comparisons of two binary classification

tasks on the Messidor dataset.
Settings Referral Normal

Methods AUC Acc. AUC Acc.

Ori 0.934 0.902 0.889 0.878

Lesion(Pretrained) 0.953 0.909 0.919 0.901

Lesion(Semi) 0.971 0.930 0.937 0.918

Lesion(Semi+Adv) 0.976 0.939 0.943 0.922

To further evaluate our model, we also conduct exper-

iments on the Messidor dataset. Following the evaluation

method and protocol in [46], the AUC of ROC and the ac-

curacy for normal and referral classification are compared

in Table 2. For both experimental settings, the proposed

method with the lesion attentive model, semi-supervised

segmentation and adversarial training architecture achieves

the highest performance. Since the image quality of the

Messidor dataset is close to that of IDRID, even the pre-

trained lesion based model can obtain a substantial gain

compared with the basic holistic classification model.

4.2.3 Effect of Semi-Supervised Lesion Segmentation

In addition to the improvement of disease grading per-

formance, we also investigate the effectiveness of semi-

supervised segmentation based on the lesion pseudo masks

by the lesion attention model. We evaluate the segmen-

tation performance on the IDRID dataset with the pixel-

level ground-truths. Four different lesions, including mi-

croaneurysms, haemorrhages, hard exudates and soft exu-

dates, which are the main signs of DR, are assessed by the

ROC, PR curves and the corresponding AUC values. We

explore each proposed component of the final model with

three baselines: the pre-trained segmentation model using

the normal convolution tuple, the Xception-module based

model and the semi-supervised learning component with-

out an adversarial training architecture.

The ROC and PR curves are illustrated in Fig. 5 and

detailed AUC values are listed in Table 3. As shown in

the upper part of the table, the Xception-module based le-

sion segmentation model consistently outperforms the nor-

mal convolution-based version, over four different lesions.

The AUC of the ROC and PR curves increases on average

by 1.02% and 1.92%, respectively, proving that separable

spatial and channel-wise convolution can indeed benefit the

segmentation results. With the lesion attention model de-

sign, which exploits more image-level annotated data to

generate pseudo masks for semi-supervised segmentation,

a clear improvement is observed, with an average gain of

2.16% for the AUC of the PR curve. Besides, the adver-

sarial training architecture for semi-supervised learning can

slightly further increase the segmentation precision.

The bottom part of Table 3 shows the overall top three

places with AUC scores for the PR curves of different le-

sions in the challenge [1], as well as the performance of the

two semi-supervised segmentation methods AdvSeg [22]

and ASDNet [30], transferred from other vision tasks. Al-

though our method shows a slightly lower (0.57%) perfor-

mance than the current top model for microaneurysms de-

tection, moderate improvements are obtained for the other

three lesions. A particularly large improvement of 4.12% is

achieved for the soft exudate lesion. Moreover, our model

outperforms the AdvSeg and ASDNet by an average in-

crease of 6.89% and 5.22% on AUC of PR, respectively.

4.3. Comparisons with Stateoftheart Models

To make our method more convincing, we compare it

with state-of-the-art DR grading models. The combined

kernels with multiple losses network (CKML) [44] and

VGGNet with extra kernels (VNXK) [44] aims to adopt

multiple filter sizes to learn fine-grained discriminant fea-

tures. Zoom-in-Net [46] was proposed with a gated atten-

tion model and combines three sub-networks to classify the

holistic image, high-resolution crops and gated regions. The

attention fusion network (AFN) [25] has a similar idea of
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Microaneurysms Haemorrhages Hard Exudates Soft Exudates

Figure 5. ROC and PR curves for segmentation over four lesions of DR. Four methods are compared to explore the effectiveness of the

Xception-module based architecture, the lesion attentive model for semi-supervised segmentation and the adversarial training loss.

Table 3. Performance comparisons of multi-lesion segmentation on the IDRID dataset. CE1 and CE2 denotes the segmentation model

adopting the normal convolution and the Xception module, respectively.

Lesion Microaneurysms Haemorrhages Hard Exudates Soft Exudates

Methods AUC ROC AUC PR AUC ROC AUC PR AUC ROC AUC PR AUC ROC AUC PR

CE1(Conv) 0.9503 0.4625 0.9438 0.6456 0.9615 0.8263 0.9443 0.6817

CE2(Xception) 0.9653 0.4733 0.9540 0.6579 0.9675 0.8455 0.9537 0.7161

CE2+Semi 0.9776 0.4886 0.9699 0.6812 0.9886 0.8757 0.9713 0.7337

CE2+Semi+Adv 0.9828 0.4960 0.9779 0.6936 0.9935 0.8872 0.9936 0.7407

VRT - 0.4951 (2) - 0.6804 (1) - 0.7127 (11) - 0.6995 (1)

PATech - 0.474 (3) - 0.649 (2) - 0.885 (1) - -

iFLYTEK-MIG - 0.5017 (1) - 0.5588 (3) - 0.8741 (2) - 0.6588 (3)

AdvSeg [22] 0.9612 0.4706 0.9256 0.5923 0.9456 0.8032 0.9318 0.6756

ASDNet [30] 0.9692 0.4782 0.9324 0.6285 0.9502 0.8095 0.9489 0.6924

Table 4. Performance comparisons of DR grading on the EyePACS

and Messidor datasets.
EyePACS Messidor

Test set Settings Referral Normal

Methods Kappa Methods AUC Acc. AUC Acc.

Min-Pooling 0.849 VNXK [44] 0.887 0.893 0.870 0.871

o O 0.845 CKML [44] 0.891 0.897 0.862 0.858

RG 0.839 Expert [37] 0.94 - 0.922 -

Zoom-in [46] 0.854 Zoom-in [46] 0.957 0.911 0.921 0.905

AFN [25] 0.859 AFN [25] 0.968 - 0.935 -

Ours 0.872 Ours 0.976 0.939 0.943 0.922

unifying lesion detection and DR grading. However, the

attention model used is only class-driven and cannot learn

precise semantic lesion maps. Moreover, human experts

[37] are also invited to grade on the Messidor dataset.

Table 4 compares the results of different methods. On the

EyePACS dataset, Kappa values of the top three places from

the Kaggle competition [2] are shown where the top-1 place

can achieve 84.9%. The Zoom-in-Net and AFN slightly

improve the performance by introducing attention mecha-

nisms for learning class-driven lesion maps. Our method

proposes to collaborate the semantic lesion mask guidance

and the class-driven attention guidance to enhance the final

model which obtains 1.3% gain over AFN. Moreover, for

both the referable/non-referable and normal/abnormal set-

tings of Messidor, our method can obtain the highest AUC

scores of ROC and also grading accuracy, compared to other

approaches. It is worth mentioning that our method outper-

forms the human experts by 3.6% and 2.1% on the AUC of

referral and normal settings, respectively.

5. Conclusion

In this paper, we proposed a collaborative learning

method of semi-supervised lesion segmentation and disease

grading for medical imaging. Lesion masks were used to at-

tend the classification model and improve the grading accu-

racy, while a lesion attentive model exploiting class-specific

labels also benefited the segmentation results. Extensive ex-

periments showed that our method achieves improvements

on the DR problem.
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