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Abstract

In this paper, we focus on generating realistic images

from text descriptions. Current methods first generate an

initial image with rough shape and color, and then refine

the initial image to a high-resolution one. Most existing

text-to-image synthesis methods have two main problems.

(1) These methods depend heavily on the quality of the

initial images. If the initial image is not well initialized,

the following processes can hardly refine the image to a

satisfactory quality. (2) Each word contributes a differ-

ent level of importance when depicting different image con-

tents, however, unchanged text representation is used in ex-

isting image refinement processes. In this paper, we pro-

pose the Dynamic Memory Generative Adversarial Network

(DM-GAN) to generate high-quality images. The proposed

method introduces a dynamic memory module to refine fuzzy

image contents, when the initial images are not well gener-

ated. A memory writing gate is designed to select the im-

portant text information based on the initial image content,

which enables our method to accurately generate images

from the text description. We also utilize a response gate

to adaptively fuse the information read from the memories

and the image features. We evaluate the DM-GAN model

on the Caltech-UCSD Birds 200 dataset and the Microsoft

Common Objects in Context dataset. Experimental results

demonstrate that our DM-GAN model performs favorably

against the state-of-the-art approaches.

1. Introduction

The last few years have seen remarkable growth in the

use of Generative Adversarial Networks (GANs) [4] for

image and video generation. Recently, GANs have been

∗This work was done when Minfeng Zhu was visiting the University of

Technology Sydney.
†Part of this work was done when Yi Yang was visiting Baidu Research

during his Professional Experience Program.
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Figure 1. Examples of text-to-image synthesis by our DM-GAN.

widely used to generate photo-realistic images according to

text descriptions (see Figure 1). Fully understanding the re-

lationship between visual contents and natural languages is

an essential step towards artificial intelligence, e.g., image

search and video understanding [33]. Multi-stage methods

[28, 30, 31] first generate low-resolution initial images and

then refine the initial images to high-resolution ones.

Although these multi-stage methods achieve remarkable

progress, there remain two problems. First, the generation

result depends heavily on the quality of initial images. The

image refinement process cannot generate high-quality im-

ages, if the initial images are badly generated. Second, each

word in an input sentence has a different level of informa-

tion depicting the image content. Current models utilize

the same word representations in different image refinement

processes, which makes the refinement process ineffective.

The image information should be taken into account to de-

termine the importance of every word for refinement.

In this paper, we introduce a novel Dynamic Memory

Generative Adversarial Network (DM-GAN) to address the

aforementioned issues. For the first issue, we propose to

add a memory mechanism to cope with badly-generated ini-

tial images. Recent work [27] has shown the memory net-

work’s ability to encode knowledge sources. Inspired by
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this work, we propose to add the key-value memory struc-

ture [13] to the GAN framework. The fuzzy image features

of initial images are treated as queries to read features from

the memory module. The reads of the memory are used

to refine the initial images. To solve the second issue, we

introduce a memory writing gate to dynamically select the

words that are relevant to the generated image. This makes

our generated image well conditioned on the text descrip-

tion. Therefore, the memory component is written and read

dynamically at each image refinement process according to

the initial image and text information. In addition, instead

of directly concatenating image and memory, a response

gate is used to adaptively receive information from image

and memory.

We conducted experiments to evaluate the DM-GAN

model on the Caltech-UCSD Birds 200 (CUB) dataset and

the Microsoft Common Objects in Context (COCO) dataset.

The quality of generated images is measured using the In-

ception Score (IS), the Fréchet Inception Distance (FID)

and the R-precision. The experiments illustrate that our

DM-GAN model outperforms the previous text-to-image

synthesis methods, quantitatively and qualitatively. Our

model improves the IS from 4.36 to 4.75 and decreases

the FID from 23.98 to 16.09 on the CUB dataset. The R-

precision is improved by 4.49% and 3.09% on the above

two datasets. The qualitative evaluation proves that our

model generates more photo-realistic images.

This paper makes the following key contributions:

• We propose a novel GAN model combined with a

dynamic memory component to generate high-quality

images even if the initial image is not well generated.

• We introduce a memory writing gate that is capable of

selecting relevant word according to the initial image.

• A response gate is proposed to adaptively fuse infor-

mation from image and memory.

• The experimental results demonstrate that the DM-

GAN outperforms the state-of-the-art approaches.

2. Related Work

2.1. Generative Adversarial Networks.

With the recent successes of Variational Autoencoders

(VAEs) [9] and GANs [4], a large number of methods have

been proposed to handle generation [14, 17, 28, 1] and do-

main adaptation task [25, 32]. Recently, generating images

based on the text descriptions gains interest in the research

community nowadays.

Single-stage. The text-to-image synthesis problem is de-

composed by Reed et al. [20] into two sub-problems: first,

the joint embedding is learned to capture the relations be-

tween natural language and real-world images; second, a

deep convolutional generative adversarial network [19] is

trained to synthesize a compelling image. Dong et al. [3]

adopted the pair-wise ranking loss [10] to project both im-

ages and natural languages into a joint embedding space.

Since previous generative models failed to add the location

information, Reed et al. proposed GAWWN [21] to encode

localization constraints. To diversify the generated images,

the discriminator of TAC-GAN [2] not only distinguishes

real images from synthetic images, but also classifies syn-

thetic images into true classes. Similar to TAC-GAN, PPGN

[16] includes a conditional network to synthesize images

conditioned on a caption.

Multi-stage. StackGAN [30] and StackGAN++ [31]

generate photo-realistic high-resolution images with two

stages. Yuan et al. [29] employed symmetrical distillation

networks to minimize the multi-level difference between

real and synthetic images. DA-GAN [12] translates each

word into a sub-region of an image. Our method consid-

ers the interaction between each word and the whole gen-

erated image. Conditioning on the global sentence vector

may result in low-quality images, AttnGAN [28] refines the

images to high-resolution ones by leveraging the attention

mechanism. Each word in an input sentence has a different

level of information depicting the image content. However,

AttnGAN takes all the words equally, it employs an atten-

tion module to use the same word representation. Our pro-

posed memory module is able to uncover such difference

for image generation, as it dynamically selects the impor-

tant word information based on the initial image content.

2.2. Memory Networks.

Recently, memory network [5, 27] provides a new archi-

tecture to reason answers from memories more effectively

using explicit storage and a notion of attention. Memory

network first writes information into an external memory

and then reads contents from memory slots according to

a relevance probability. Weston et al. [27] introduced the

memory network to produce the output by searching sup-

porting memories one by one. End-to-end memory net-

work [23] is a continues form of memory network, where

each memory slot is weighted according to the inner prod-

uct between the memory and the query. To understand the

unstructured documents, the Key-Value Memory Network

(KV-MemNN) [13] performs reasoning by utilizing differ-

ent encodings for key memory and value memory. The key

memory is used to infer the weight of the corresponding

value memory when predicting the final answer. Inspired

by the recent success of the memory network, we introduce

DM-GAN, a novel network architecture to generate high-

quality images via nontrivial transforms between key and

value memories.
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Figure 2. The DM-GAN architecture for text-to-image synthesis. Our DM-GAN model first generates an initial image, and then refines the

initial image to generate a high-quality one.

3. DM-GAN

As shown in Figure 2, the architecture of our DM-GAN

model is composed of two stages: initial image generation

and dynamic memory based image refinement.

At the initial image generation stage, firstly, the input

text description is transformed into some internal represen-

tation (a sentence feature s and several word features W )

by a text encoder. Then, a deep conventional generator pre-

dicts an initial image x0 with a rough shape and few details

according to the sentence feature and a random noise vector

z: x0, R0 = G0(z, s), where R0 is the image feature. The

noise vector is sampled from a normal distribution.

At the dynamic memory based image refinement stage,

more fine-grained visual contents are added to the fuzzy ini-

tial images to generate a photo-realistic image xi: xi, Ri =
Gi(Ri−1,W ), where Ri−1 is the image feature from the

last stage. The refinement stage can be repeated multiple

times to retrieve more pertinent information and generate a

high-resolution image with more fine-grained details.

The dynamic memory based image refinement stage con-

sists of four components: Memory Writing, Key Addressing,

Value Reading, and Response (Section 3.1). The Memory

Writing operation stores the text information into a key-

value structured memory for further retrieval. Then, Key

Addressing and Value Reading operations are employed to

read features from the memory module to refine the visual

features of the low-quality images. At last, the Response op-

eration is adopted to control the fusion of the image features

and the reads of the memory. We propose a memory writ-

ing gate to highlight important word information according

to the image content in the memory writing step (Section

3.2). We also utilize a response gate to adaptively fuse the

information read from the memory and the image features

in the response step (Section 3.3).

3.1. Dynamic Memory

We start with the given input word representations W ,

image x and image features Ri:

W = {w1, w2, ..., wT }, wi ∈ R
Nw , (1)

Ri = {r1, r2, ..., rN}, ri ∈ R
Nr , (2)

where T is the number of words, Nw is the dimension of

word features, N is the number of image pixels and image

pixel features are Nr dimensional vectors. We are intended

to learn a model to refine the image using a more effec-

tive way to fuse text and image information via nontrivial

transforms between key and value memory. The refinement

stage includes the following four steps.

Memory Writing: Encoding prior knowledge is an im-

portant part of the dynamic memory, which enables recov-

ering high-quality images from text. A naive way to write

the memory is considering only partial text information.

mi = M(wi),mi ∈ R
Nm (3)

where M(·) denotes the 1×1 convolution operation which

embeds word features into the memory feature space with

Nm dimensions.

Key Addressing: In this step, we retrieve relevant mem-

ories using key memory. We compute a weight of each

memory slot as a similarity probability between a memory
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slot mi and an image feature rj :

αi,j =
exp(φK(mi)

T rj)
T∑

l=1

exp(φK(ml)T rj)

, (4)

where αi,j is the similarity probability between the i-th

memory and the j-th image feature and φK() is the key

memory access process which maps memory features into

dimension Nr. φK() is implemented as a 1×1 convolution.

Value Reading: The output memory representation is

defined as the weighted summation of value memories ac-

cording to the similarity probability:

oj =

T∑

i=1

αi,jφV (mi), (5)

where φV () is the value memory access process which maps

memory features into dimension Nr. φV () is implemented

as a 1×1 convolution.

Response: After receiving the output memory, we com-

bine the current image and the output representation to pro-

vide a new image feature. A naive approach will be simply

concatenating the image features and the output representa-

tion. The new image features are obtained by:

rnewi = [oi, ri], (6)

where [·, ·] denotes concatenation operation. Then, we are

able to utilize an upsampling block and several residual

blocks [6] to upscale the new image features into a high-

resolution image. The upsampling block consists of a near-

est neighbor upsampling layer and a 3×3 convolution. Fi-

nally, the refined image x is obtained from the new image

features using a 3×3 convolution.

3.2. Gated Memory Writing

Instead of considering only partial text information using

Eq.3, the memory writing gate allows the DM-GAN model

to select the relevant word to refine the initial images. The

memory writing gate gwi combines image features Ri from

the last stage with word features W to calculate the impor-

tance of a word:

gwi (R,wi) = σ(A ∗ wi +B ∗
1

N

N∑

i=1

ri), (7)

where σ is the sigmoid function, A is a 1×Nw matrix, and

B is a 1×Nr matrix. Then, the memory slot mi ∈ RNm is

written by combining the image and word features.

mi = Mw(wi) ∗ g
w
i +Mr(

1

N

N∑

i=1

ri) ∗ (1− gwi ), (8)

where Mw(·) and Mr(·) denote the 1x1 convolution opera-

tion. Mw(·) and Mr(·) embed image and word features into

the same feature space with Nm dimensions.

3.3. Gated Response

We utilize the adaptive gating mechanism to dynamically

control the information flow and update image features:

gri = σ(W [oi, ri] + b),

rnewi = oi ∗ g
r
i + ri ∗ (1− gri ),

(9)

where gri is the response gate for information fusion, σ is

the sigmoid function, W and b are the parameter matrix and

bias term.

3.4. Objective Function

The objective function of the generator network is de-

fined as:

L =
∑

i

LGi
+ λ1LCA + λ2LDAMSM , (10)

in which λ1 and λ2 are the corresponding weights of con-

ditioning augmentation loss and DAMSM loss. G0 denotes

the generator of the initial generation stage. Gi denotes the

generator of the i-th iteration of the image refinement stage.

Adversarial Loss: The adversarial loss for Gi is defined

as follows:

LGi
=−

1

2
[Ex∼pGi

logDi(x) + Ex∼pGi
logDi(x, s)], (11)

where the first term is the unconditional loss which makes

the generated image real as much as possible and the second

term is the conditional loss which makes the image match

the input sentence. Alternatively, the adversarial loss for

each discriminator Di is defined as:

LDi
=−

1

2
[Ex∼pdata

logDi(x)+Ex∼pGi
log(1−Di(x))

︸ ︷︷ ︸

unconditional loss

+Ex∼pdata
logDi(x, s)+Ex∼pGi

log(1−Di(x, s))]
︸ ︷︷ ︸

conditional loss

,

(12)

where the unconditional loss is designed to distinguish the

generated image from real images and the conditional loss

determines whether the image and the input sentence match.

Conditioning Augmentation Loss: The Conditioning

Augmentation (CA) technique [30] is proposed to augment

training data and avoid overfitting by resampling the input

sentence vector from an independent Gaussian distribution.

Thus, the CA loss is defined as the Kullback-Leibler diver-

gence between the standard Gaussian distribution and the

Gaussian distribution of training data.

LCA = DKL(N (µ(s),Σ(s))||N (0, I)), (13)

where µ(s) and Σ(s) are mean and diagonal covariance ma-

trix of the sentence feature. µ(s) and Σ(s) are computed by

fully connected layers.
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DAMSM Loss: We utilize the DAMSM loss [28] to

measure the matching degree between images and text de-

scriptions. The DAMSM loss makes generated images bet-

ter conditioned on text descriptions.

3.5. Implementation Details

For text embedding, we employ a pre-trained bidirec-

tional LSTM text encoder by Xu et al. [28] and fix their pa-

rameters during training. Each word feature corresponds to

the hidden states of two directions. The sentence feature is

generated by concatenating the last hidden states of two di-

rections. The initial image generation stage first synthesizes

images with 64x64 resolution. Then, the dynamic mem-

ory based image refinement stage refines images to 128x128

and 256x256 resolution. We only repeat the refinement pro-

cess with dynamic memory module two times due to GPU

memory limitation. Introducing dynamic memory to low-

resolution images (i.e. 16x16, 32x32) can not further im-

prove the performance. Because low-resolution images are

not well generated and their features are more like random

vectors. For all discriminator networks, we apply spectral

normalization [15] after every convolution to avoid unusual

gradients to improve text-to-image synthesis performance.

By default, we set Nw = 256, Nr = 64 and Nm = 128
to be the dimension of text, image and memory feature vec-

tors respectively. We set the hyperparameter λ1 = 1 and

λ2 = 5 for the CUB dataset and λ1 = 1 and λ2 = 50 for

the COCO dataset. All networks are trained using ADAM

optimizer [8] with batch size 10, β1 = 0.5 and β2 = 0.999.

The learning rate is set to be 0.0002. We train the DM-GAN

model with 600 epochs on the CUB dataset and 120 epochs

on the COCO dataset.

4. Experiments

In this section, we evaluate the DM-GAN model quan-

titatively and qualitatively. We implemented the DM-GAN

model using the open-source Python library PyTorch [18].

Datasets. To demonstrate the capability of our proposed

method for text-to-image synthesis, we conducted experi-

ments on the CUB [26] and the COCO [11] datasets. The

CUB dataset contains 200 bird categories with 11,788 im-

ages, where 150 categories with 8,855 images are employed

for training while the remaining 50 categories with 2,933

images for testing. There are ten captions for each image

in CUB dataset. The COCO dataset includes a training set

with 80k images and a test set with 40k images. Each image

in the COCO dataset has five text descriptions.

Evaluation Metric. We quantify the performance of the

DM-GAN in terms of Inception Score (IS), Fréchet Incep-

tion Distance (FID), and R-precision. Each model gener-

ated 30,000 images conditioning on the text descriptions

from the unseen test set for evaluation.

The IS [22] uses a pre-trained Inception v3 network

[24] to compute the KL-divergence between the conditional

class distribution and the marginal class distribution. A

large IS means that the generated model outputs a high di-

versity of images for all classes and each image clearly be-

longs to a specific class.

The FID [7] computes the Fréchet distance between syn-

thetic and real-world images based on the extracted features

from a pre-trained Inception v3 network. A lower FID im-

plies a closer distance between generated image distribution

and real-world image distribution.

Following Xu et al. [28], we use the R-precision to eval-

uate whether a generated image is well conditioned on the

given text description. The R-precision is measured by re-

trieving relevant text given an image query. We compute

the cosine distance between a global image vector and 100

candidate sentence vectors. The candidate text descriptions

include R ground truth and 100-R randomly selected mis-

matching descriptions. For each query, if r results in the

top R ranked retrieval descriptions are relevant, then the R-

precision is r/R. In practice, we compute the R-precision

with R=1. We divide the generated images into ten folds for

retrieval and then take the mean and standard deviation of

the resulting scores.

4.1. TexttoImage Quality

We compare our DM-GAN model with the state-of-the-

art models on the CUB and COCO test datasets. The per-

formance results are reported in Table 1 and 2.

As shown in Table 1, our DM-GAN model achieves 4.75

IS on the CUB dataset, which outperforms other meth-

ods by a large margin. Compared with AttnGAN, DM-

GAN improves the IS from 4.36 to 4.75 on the CUB

dataset (8.94% improvement) and from 25.89 to 30.49 on

the COCO dataset (17.77% improvement). The experimen-

tal results indicate that our DM-GAN model generates im-

ages with higher quality than other approaches.

Table 2 compares the performance between AttnGAN

and DM-GAN with respect to the FID on the CUB and

COCO datasets. We measure the FID of AttnGAN from

the officially pre-trained model. Our DM-GAN decreases

the FID from 23.98 to 16.09 on the CUB dataset and from

35.49 to 32.64 on the COCO dataset, which demonstrates

that DM-GAN learns a better data distribution.

As shown in Table 2, the DM-GAN improves the R-

precision by 4.49% on the CUB dataset and 3.09% on the

COCO dataset. Higher R-precision indicates that the gen-

erated images by the DM-GAN are better conditioned on

the given text description, which further demonstrates the

effectiveness of the employed dynamic memory.

In summary, the experimental results indicate that our

DM-GAN is superior to the state-of-the-art models.
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Dataset GAN-INT-CLS [20] GAWWN [21] StackGAN [30] PPGN [16] AttnGAN [28] DM-GAN

CUB 2.88±0.04 3.62±0.07 3.70±0.04 (-) 4.36±0.03 4.75±0.07

COCO 7.88±0.07 (-) 8.45±0.03 9.58±0.21 25.89±0.47 30.49±0.57

Table 1. The inception scores (higher is better) of GAN-INT-CLS [20], GAWWN [21], StackGAN [30], PPGN [16], AttnGAN [28] and

our DM-GAN on the CUB and COCO datasets. The best results are in bold.

Dataset Metric AttnGAN DM-GAN

CUB FID↓ 23.98 16.09

R-precision↑ 67.82±4.43 72.31±0.91

COCO FID↓ 35.49 32.64

R-precision↑ 85.47±3.69 88.56±0.28

Table 2. Performance of FID and R-precision for AttnGAN [28]

and our DM-GAN on the CUB and COCO datasets. The FID of

AttnGAN is calculated from officially released weights. Lower is

better for FID and higher is better for R-precision.

4.2. Visual Quality

For qualitative evaluation, Figure 3 shows text-to-image

synthesis examples generated by our DM-GAN and the

state-of-the-art models. In general, our DM-GAN approach

generates images with more vivid details as well as more

clear backgrounds in most cases, comparing to the At-

tnGAN [28], GAN-INT-CLS [20] and StackGAN [30], be-

cause it employs a dynamic memory model using varied

weighted word information to improve image quality.

Our DM-GAN method has the capacity to better under-

stand the logic of the text description and present a more

clear structure of the images. Observing the samples gener-

ated on the CUB dataset in Figure 3(a), with a single char-

acter, although DM-GAN and AttnGAN both perform well

in accurately capture and present the character’s feature,

our DM-GAN model better highlights the main subject of

the image, the bird, differentiating from its background. It

demonstrates that, with the dynamic memory module, our

DM-GAN model is able to bridge the gap between visual

contents and natural languages. In terms of multi-subjects-

image generation, for example, the COCO dataset in Fig-

ure 3(b), it is more challenging to generate photo-realistic

images when the text description is more complicated and

contains more than one subject. DM-GAN precisely cap-

tures the major scene based on the most important subject

and arrange the rest descriptive contents logically, which

improves the global structure of the image. For instance,

DM-GAN is the only successful method clearly identifies

the bathroom with required components in the column 3 in

Figure 3(b). The visual results show that our DM-GAN is

more effective to capture important subjects using a mem-

ory writing gate to dynamically select important words.

Figure 4 indicates that our DM-GAN model is able to

refine badly initialized images and generate more photo-

Architecture IS↑ FID↓ R-Precision↑

baseline 4.51±0.04 23.32 68.60±0.73

+M 4.57±0.05 21.41 70.66±0.69

+M+WG 4.65±0.05 20.83 71.40±0.64

+M+WG+RG 4.75±0.07 16.09 72.31±0.91

Table 3. The performance of different architectures of our DM-

GAN on the CUB datasets. M, WG and RG denote dynamic mem-

ory, memory writing gate and response gate respectively.

realistic high-resolution images. So the image quality is

obviously well-improved, with clear backgrounds and con-

vincing details. In most cases, the initial stage generates a

blurry image with rough shape and color, so that the back-

ground is fine-tuned to be more realistic with fine-grained

textures, while the refined image will be better conditioned

on the input text and provide more photo-realistic high-

resolution images. In the fourth column of Figure 4, no

white streaks can be found on the bird’s body from the ini-

tial image with 64×64 resolution. The refinement process

helps to encode ”white streaks” information from text de-

scription and add back missing features based on the text

description and image content. In order word, our DM-

GAN model is able to refine the image to match the input

text description.

To evaluate the diversity of our DM-GAN model, we

generate several images using the same text description, and

multiple noise vectors. Figure 5 shows text descriptions and

synthetic images with different shapes and backgrounds.

Images are similar but not identical to each other, which

means our DM-GAN generates images with high diversity.

4.3. Ablation Study

In order to verify the effectiveness of our proposed com-

ponents, we evaluate the DM-GAN architecture and its vari-

ants on the CUB dataset. The control components between

architectures include the key-value memory (M), the writ-

ing gate (WG) and the response gate (RG). We define a

baseline model which removes M, WG and RG from DM-

GAN. The memory is written according to partial text infor-

mation (Eq.3). The response operation simply concatenates

the image features and the memory output (Eq.6). The per-

formance of the DM-GAN architecture and its variants is re-

ported in Table 3. Our baseline model produces slightly bet-

ter performance than AttnGAN. By integrating these com-
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(a) The CUB dataset

(b) The COCO dataset

Figure 3. Example results for text-to-image synthesis by DM-GAN and AttnGAN. (a) Generated bird images by conditioning on text from

CUB test set. (b) Generated images by conditioning on text from COCO test set.
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This bird has a blue 

crown with white 

throat and brown sec-

ondaries.

This small bird has a 

yellow crown and a 

white belly.

A primarily black bird 

with streaks of white 

and yellow and a 

medium sized beak.

This bird has a red 

head, throat and chest, 

with a white belly.

People at the park 

flying kites and walk-

ing.

The bathroom with the 

white tile has been 

cleaned.

Multiple people are 

standing on the beach 

at the edge of the 

water.

A clock that is on the 

side of a tower.
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Figure 4. The results of different stages of our DM-GAN model, including the initial images, the images after one refinement process and

the images after two refinement processes.

This bird has wings that are grey and has a white belly.

A group of people standing on a beach next to the ocean.

Figure 5. Generated images using the same text description.

ponents, our model can achieve further improvement which

demonstrates the effectiveness of every component.

Further, we visualize the most relevant words selected

by the AttnGAN [28] and our DM-GAN. We notice that

the attention mechanism cannot accurately select relevant

words when the initial images are not well generated. We

propose the dynamic memory module to select the most rel-

evant words based on the global image feature. As Fig.

6 (a) shows, although a bird with incorrect red breast is

generated, dynamic memory module selects the word, i.e.,

”white” to correct the image. The DM-GAN selects and

combines word information with image features in two

steps (see Fig. 6 (b)). The gated memory writing step first

roughly selects words relevant to the image and writes them

into the memory. Then the key addressing step further reads

more relevant words from the memory.

5. Conclusions

In this paper, we have proposed a new architecture called

DM-GAN for text-to-image synthesis task. We employ

a dynamic memory component to refine the initial gener-

ated image, a memory writing gate to highlight important

(a) This bird is red in color with 
a black and white breast and a 
black eyering. 

6
4
×

6
4

1
2
8
×

1
2
8

Attention Dynamic memory

1. bird
2. red
3. black
4. and
5. this

1. bird
2. white
3. this
4. red
5. breast

(b) This bird is blue with white 
and has a very short beak.

1
2
8
×

1
2
8

2
5
6
×

2
5
6

1. white
2. short
3. bird
4. very
5. blue

Memory writing 

1. white
2. blue
3. beak
4. short
5. this

Key addressing

Figure 6. (a) Comparison between the top 5 relevant words se-

lected by attention module and dynamic memory module. (b) The

top 5 relevant words selected by memory writing step and key ad-

dressing step.

text information and a repose gate to fuse image and mem-

ory representation. Experiment results on two real-world

datasets show that DM-GAN outperforms the state-of-the-

art by both qualitative and quantitative measures. Our DA-

GAN refines initial images with wrong color and rough

shapes. However, the final results still rely heavily on the

layout of multi-subjects in initial images. In the future, we

will try to design a more powerful model to generate initial

images with better organizations.
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