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Abstract. Although the accuracy of super-resolution (SR) methods based
on convolutional neural networks (CNN) soars high, the complexity and
computation also explode with the increased depth and width of the net-
work. Thus, we propose the convolutional anchored regression network
(CARN) for fast and accurate single image super-resolution (SISR). In-
spired by locally linear regression methods (A+ and ARN), the new
architecture consists of regression blocks that map input features from
one feature space to another. Different from A+ and ARN, CARN is
no longer relying on or limited by hand-crafted features. Instead, it is
an end-to-end design where all the operations are converted to convo-
lutions so that the key concepts, i.e., features, anchors, and regressors,
are learned jointly. The experiments show that CARN achieves the best
speed and accuracy trade-off among the SR methods. The code is avail-
able at https://github.com/ofsoundof/CARN.

Keywords: Convolutional anchored regression network · Convolutional
neural network · Super-resolution.

1 Introduction

Super-resolution (SR) refers to the recovery of high-resolution (HR) images con-
taining high-frequency detail information from low-resolution (LR) images [10,9,27].
Due to the rapid thriving of machine learning techniques, the main direction
of SR research has shifted from traditional reconstruction-based methods to
example-based methods [20,35,6,21]. Nowadays, deep learning has shown its
promising prospect with successful applications in multiple computer vision tasks
such as image classification and segmentation, object detection and localiza-
tion [11,15,24,30]. Specifically, the convolutional neural network (CNN) mimics
the process of how human beings perceive visual information. And by stacking
a number of convolutional layers, the network tries to extract high-dimensional
representation of raw natural images which in turn helps the network to under-
stand the raw images.

https://github.com/ofsoundof/CARN
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Fig. 1. Avg. PSNR vs. runtime trade-off on Set5 (×4) tested on Intel Core i7-6700K
4GHz CPU. DIV2K dataset [2] is used to train the network. Our proposed CARN has
the best speed and accuracy trade-off capability. Details in Section 4.

During the past years, single image super-resolution (SISR) algorithms de-
veloped steadily in parallel with the advances in deep learning and continuously
improved the state-of-the-art performances [2,33]. Super-resolution convolutional
neural network (SRCNN) [6] with its three functional layers is the first CNN to
achieve state-of-the-art performance on SISR. However, due to the limitation
of traditional stochastic gradient descent (SGD) algorithm, the training of SR-
CNN took such a long time that the network with more layers seemed to be
untrainable. Very deep SR (VDSR) addressed the problem of training deeper
SR networks by different techniques including residual learning and adjustable
gradient clipping [21]. The VDSR network contains 20 CNN layers and converges
quite fast in comparison with SRCNN. SRResNet [26] gained insights from resid-
ual network [15] and was built on residual blocks between which skip connections
were also added to constrain the intermediate results of residual blocks.

The performance of the SR methods is measured mainly in terms of speed
and accuracy. As the CNN goes deeper and more complex, the accuracy of SR
algorithm improves at the expense of speed [28]. The earlier works operated on
HR grid, i.e., bicubic interpolation of the LR image, which provided no extra
information but impeded the execution of the network. Thus, FSRCNN [8] was
proposed to operate directly on the LR images, which boosted the inference
speed. In addition, the large receptive field (9× 9) of SRCNN [6] that occupied
the major computation was replaced by a 5 × 5 filter followed by 4 thin CNN
layers. ESPCN [32] was also introduced which works on the LR images with a
final efficient sub-pixel convolutional layer. The idea is to derive a final feature
map with output dimension C(colorchannel)× r(upscalingfactor)× r from the
last convolutional layer and use a pixel-shuffler to generate the output HR image.

The new developments in both speed and accuracy directions show their
contradictory nature. In Fig. 1 is depicted the runtime versus PSNR accuracy for
several representative state-of-the-art methods. Higher accuracy usually means
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deeper networks and higher computation. Improving on both directions requires
designing more efficient architectures. Thus, instead of regarding CNN as a black
box, more insights should be obtained by analyzing classical algorithms.

We start with A+ [35] which achieves top performance in both speed and
accuracy among traditional example-based methods. A+ casts SR into a locally
linear regression problem by partitioning the feature space and associates each
partition with an anchor. Since A+ assigns each feature to a unique anchor, it
is not differentiable w.r.t. anchors, which prevents end-to-end learning. To solve
this limitation, anchored regression network (ARN) [3] proposes the soft assign-
ment of features to anchors whose importance is adjusted by the similarity be-
tween the features and anchors. However, since ARN is introduced as a powerful
non-linear layer which, for SR, requires as input hand-crafted and patch-based
features and needs some preprocessing and post-precessing operations, it is not
a fully-fledged end-to-end trainable CNN.

In this paper, we propose the convolutional anchored regression network
(CARN) (see Fig. 3) which has the capability to efficiently trade-off between
speed and accuracy, as our experiments will show. Inspired by A+ [35,34] and
ARN [3], CARN is formulated as a regression problem. The features are extracted
from input raw images by convolutional layers. The regressors map features from
low dimension to high dimension. Every regressor is uniquely associated with an
anchor point so that by taking into account the similarity between the anchors
and the extracted features, we can assemble the different regression results to
form output features or the final image. In order to overcome the limitations
of patch-based SR, all of the regressions and similarity comparisons between
anchors and features are implemented by convolutional layers and encapsulated
by a regression block. Furthermore, by stacking the regression block, the perfor-
mance of the network increases steadily.

We validate our CARN architecture (see Fig. 3) for SR on 4 standard bench-
marks in comparison with several state-of-the-art SISR methods. As shown in
Fig. 1 and in the experimental section 4, CARN is capable to trade-off the best
between speed and accuracy, filling in the efficiency gap.

Thus, the main two contributions of this paper are:

– First, we propose the convolutional anchored regression network (CARN),
a fully fledged CNN that enables end-to-end learning. All of the features,
regressors, and anchors are learned jointly.

– Second, the proposed CARN achieves the best trade-off operating points be-
tween speed and accuracy. CARN is much faster than the accurate SR meth-
ods for comparable accuracy and more accurate than the fast SR methods
for comparable speed.

The rest of the paper is organized as follows. Section 2 reviews the related
works. Section 3 introduces CARN from the perspective of locally linear regres-
sion and explains how to convert the operations to convolution. Section 4 shows
the experimental results. Section 5 concludes the paper.
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2 Related works

Neighborhood embedding is one of the early example-based SISR method which
assumes LR and HR image patches live in a manifold and approximates HR
image patches with linear combination of their neighbors using weights learned
from the corresponding LR embeddings [5]. Instead of operating directly on im-
age patches, sparse coding learns a compact representation of the patch space, re-
sulting a codebook of dictionary atoms [20,39,38]. By constraining patch regres-
sion problem with ℓ2 regularization, anchored neighborhood regression (ANR)
gives a closed-form representation of an anchor atom with respect to its neigh-
borhood atoms [34]. Then the inference process for each input patch becomes
a nearest neighbor search followed by a projection operation. A+ [35] extends
the representation basis from dictionary atoms to features in the training im-
ages. However, the limitation of these works is that they work on hand-crafted
features.

Since SRCNN [6,7], the research community has transferred and delved into
the utilization of deep features. Gu et al. [13] presented a convolutional sparse
coding (CSC) based SR (CSC-SR) to address the consistency issue usually ig-
nored by the conventional sparse coding methods. Kim et al. [21] proposed
VDSR and validated the huge advantage of deep CNN features to tackle the
ill-posed problem. They also proposed a deeply-recursive convolutional network
(DRCN) [22] using recursive supervision and skip connections. To design new
architecture, researchers absorbed knowledge from the advances in deep learn-
ing techniques. Ledig et al.used generative adversarial networks (GAN) [12] and
residual networks [15] to build their photo-realistic SRGAN and highly accurate
SRResNet. Lai et al. [25] incorporated pyramids in their design to enlarge LR
images progressively so that the sub-band residuals of HR images were recovered.
Some others [36,40] resorted to DenseNet [16] connections or the combinations
of residual net and DenseNet.

3 Convolutional anchored regression network (CARN)

In this section, we start with the basic assumption of locally linear regression,
derive the insights from it, and point out how we convert the architecture to
convolutional layers in our proposed convolutional anchored regression network
(CARN).

3.1 Basic formulation

Assume that a set of k training examples are represented by {(x1,y1), ..., (xk,yk)},
where the features xi ∈ R

d can be hand-crafted in locally linear regression setup
or extracted by some layer in CNN, and the label yi ∈ R

d′

is real-valued and
multidimensional. Then the aim is to learn a mapping g : R

d → R
d′

which
approximates the relationship between xi and yi.
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The basic assumption of locally linear regression is that the relationship be-
tween xi and yi can be approximate by a linear mapping within disjoint subsets
of the feature space. That is, there exists a partition of the space U1, · · · , Um ⊂
R

d satisfying disjoint and unity constrains
⋃m

i=1 Ui = R
d and Ui ∩ Uj = ∅ if

i 6= j, and m associated linear regressors (W1, b1), · · · , (Wm, bm) such that for
xi ∈ Uj :

yi ≈ Wjxi + bj , (1)

whereWj ∈ R
d′
×d. Since linearity is only constrained on a local subset, the map-

ping g is globally nonlinear. Then the problem becomes how to find a proper
partition of the feature space and learn regressors that make the best approxi-
mation.

Timofte et al. [34,35] proposed to associate each subset Ui with an anchor
point. The space is partitioned according to the similarity between the anchor
points and the features, namely,

Ui = {x ∈ R
d|∀j 6= i, s(x,ai) > s(x,aj)}, (2)

where ai ∈ A is the anchor point, s is the similarity measure and can be Eu-
clidean distance or inner product [35].

Since the features are assigned to uniques anchors with the maximum sim-
ilarity measure, this partition is not differentiable with respect to the anchors.
This impedes the incorporation of SGD optimization. Thus, Agustsson et al. [3]
proposed to assign features to all anchors whose importance was represented by
the similarity measure, namely,

α(x) = σ
(

(s(x,a1), · · · , s(x,am))
T
)

, (3)

where σ(·) is softmax function

σ(z)i =
exp(zi)

∑m

j=1 exp(zj)
, i = 1, · · · ,m. (4)

Then the contribution of every regressor is considered by taking a weighted
average of their regression result with respect to the α coefficients, namely,

f̃(x) =

m
∑

i=1

α(x)i(Wix+ bi) (5)

3.2 Converting to convolutional layers

We build the convolutional regression block based on the above analysis. This
regression block can be used as an output layer to form the final SR image or as
a building block to form a deep regression network. A reference to Fig. 3 and 2
leads to a better understanding of the building process.
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Fig. 2. CARN Regression Block. The upper branch learns the mapping from one di-
mension to another and the weights in the conv layer are referred to as regresors. The
lower branch generate coefficients to weigh the regression results of the upper branch.
The weights of the conv layer in the lower branch are referred to as anchors.

In Subsection 3.1, we assume that vectors are mapped from R
d to R

d′

. In
this subsection, the vectors x and y correspond to multi-dimensional features
extracted from feature maps of convolutional layers. Regression based SR (A+
and ARN) extracts x with a certain stride from the feature map and the algo-
rithm operates on the extracted patches. For ARN, every regressor computes
regression results for all of the patches. If the extraction stride in ARN is 1, then
role of the ARN regressor is actually the same with the kernel in conv layers with
stride 1. Thus, in order to relate to convolution operations, we can suppose x

be a vector corresponding to an extracted feature with dimension d = c×w× h

from the feature map of a convolutional layer, where w and h are the width and
height of the extracted features and c is the number of channels of input feature
map. The dimension of the feature map is denoted as W×H. The regressor Wi

can be rewritten as a row vector, namely,

Wi =







ω
T
i1
...

ω
T
id′






=

[

ωi1 · · · ωid′

]T
, (6)

where ω
T
ij , j = 1, · · · , d′ is the row vector of Wi with dimension d = c× w × h.

Assuming that the the features are collected by shifting the window pixel by
pixel, then by transforming the vector ωT

ij to a 3D tensor, it can be implemented
via a convolution operation with c input channels and kernel size w × h. In
most cases, square kernels are used, namely, w = h. Since Wi has d′ rows and
each of them is converted to a convolution, Wi can be implemented as a single
convolution with d′ outputs. In our design, d′ could equal r×r denoting upscaling
factor when the regression block is used as an output layer or c denoting inner
channel that maintains learned representation when used as a building block.
Considering that there are m regressors and each of them corresponds to a
convolution which operates on the same input feature map, the ensemble of
regressors W̄ =

[

Wi · · · Wm

]

can be implemented by a convolutional layer
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with kernel size w × h and output channel m · d′, namely,

R ∈ R
W×H×m·d′

= W ⊛X+B, (7)

where ⊛ denotes convolution, X ∈ R
W×H×c the feature map where x is ex-

tracted, W ∈ R
c×w×h×m·d′

the weights of the convolution, and B ∈ R
m·d′

the
biases. As stated above, we use W ×H to denote the dimension of the feature
map. Note that the kernel W is a 4D tensor with dimension c× w × h×m · d′.
The 4th dimension has size m · d′ which denotes one single value.

Similarly, if inner product is taken as the similarity measure, then it can also
be implemented as a convolution. The anchor points ai have the same dimension
with features x and can act as the kernel of the convolution. By aggregating the
operations in (3), the soft assignment of features becomes a convolutional layer
with a kernel size w × h and m output channels, namely,

C ∈ R
W×H×m = σ(A⊛X), (8)

where A ∈ R
c×w×h×m is the weights gathered from the m anchors a1, · · · ,am, σ

is softmax activation function. In order to aggregate the convolution (regression)
result and achieve the functionality of (5), the regression result R and similarity
measure C are reshaped to 4D tensors, multiplied element-wise, and summed
along the anchor dimension, resulting a 3D tensor, namely,

Z ∈ R
W×H×d′

= S3(R(C)⊗R(R)), (9)

where the operator R reshapes C and R to W×H×m×d′ and W×H×m× 1
tensors, ⊗ is element-wise multiplication where broadcasting is used along the
fourth dimension, the operator S3 sums along the third (anchor) dimension.
When used as an output layer, the following pixel-shuffler or Tensorflow depth-
to-space operator transforms Z to an SR image Z̃ with dimension rW × rH.

Fig. 3. CARN architecture: 3 convolutional layers extract features from LR input im-
age and a stack of regression blocks maps to HR space. The number of filters (f) of
convolutional layers is shown in the square brackets. All filters have kernel size 3 × 3
and stride 1. More details in Section 3.



8 Yawei Li et al.

3.3 Proposed CARN architecture

The architecture of CARN is shown in Fig. 3. The first three convolutional layers
extract features from the LR images followed by a stack of regression blocks.
The last regression block acts as a upsampling block while the other regression
blocks’ input and output has the same number of feature maps. In order to ease
the training of the regression blocks, skip connections are added between them.
An exception is made for the last regression block that acts as an output layer.
If the number of inner channels c and r× r equals, then a skip connection is also
added for the last regression block. Otherwise, there is no skip connection for it.

The regression block shown in Fig. 2 is built according to (7), (8), and (9). The
upper and lower branches achieve the functionality of regression and measuring
similarity, respectively. Then the element-wise multiplication and reduced sum
along the anchor dimension assemble the results from different regressors. We
refer to the weights in the uppper and lower branch as regressors and anchors,
respectively. The numbers of regressors and anchors are the same and denoted as
m. The number of inner channels is denoted as d′ which is equal to the number
of channels of the output feature map of the regression block. In A+, the anchors
are the atoms of a learned dictionary that is a compact representation of the
image feature space while in CARN the anchors, regressors, and features are
learned jointly

4 Experiments

In this section, we compare the proposed method with state-of-the-art SR al-
gorithms. We firstly introduce experimental settings and then compare the SR
performance and speed of different algorithms.

4.1 Datasets

DIV2K dataset [2] is a newly released dataset in very high resolution (2K). It
contains 800 training images, 100 validation images, and 100 test images. We use
the 800 training images to train our network. The training images are cropped
to sub-images with size 64 for ×2 and ×4, and 66 for ×3. There is no overlap
between the sub-images. Data augmentation (flip) is used for the training. We
test the networks on the commonly used datasets: Set5 [4], Set14 [38], B100 [29],
and Urban100 [17]. We follow the classical experimental setting adopted by most
of previous methods [34,35,17,21]. The LR image is generated by the Matlab
bicubic downscale operation, and we only compute the PSNR and SSIM scores
on the luma Y channel of the super-resolved image for most of the experiments.
For the challenge, the network operates on a RGB image and output a RGB
image. In that case, the PSNR and SSIM are also computed on the RGB channel.

4.2 Implementation details

The number of inner channels are set as 16 for upscaling factor ×2 and ×4, and
18 for ×3 unless otherwise stated. Three feature layers are used. Since c equals
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to r× r for ×4, skip connection is added for the last regression block. We always
use 16 anchors/regressors for our experiments unless otherwise stated.

We use residual learning that only recovers the difference between the HR
image and bicubic interpolation. We train our network using mean square error
(MSE) with weight decay 0.0001. We used the weight initialization method pro-
posed by He et al. [15]. The batch size is 64. Adam optimizer [23] is used to train
the network. The learning rate is initialized to 0.001 and decreased by a factor
of 10 for every 2 × 105 iterations. We train the network for 5 × 105 iterations.
So there are 2 decreases of the learning rate.

We implement our network with Tensorflow [1] and use the same framework
to modify other methods (like ESPCN [32] and SRResNet [26]). We also reimple-
ment SRCNN, ESPCN, VDSR, SRResNet, FSRCNN with Tensorflow according
to the original paper. When comparing these methods, bicubic interpolation is
not included. The codes of these methods only differ in the architecture design.
All the other codes including the training and testing procedure are the same so
that the comparison is fair. We report the GPU and CPU runtime based on our
implementation and copy the PSNR and SSIM values from the corresponding
original paper. The speed is reported for a single Intel Core i7-6700K 4.00GHz
CPU for most of the experiments and also reported for Titan Xp GPU (Table 1).
Our networks were trained on a server with Titan Xp GPUs.

The PIRM 2018 Challenge We participated in the PIRM 2018 SR challenge of
Perceptual Image Enhancement on Smartphones [19]. The challenge only focuses
on ×4 upscaling. The input images of the challenge are bicubically interpolated
RGB images while our default setting is LR luminance image. Thus, the above
described network configuration of CARN is changed somehow to adapt to the
challenge. First of all, the number of feature layers is reduced to 2 and the
stride is set to 2. So after the two layers, the features are in low resolution.
In addition, eight anchors/regressors are used for the network trained for the
challenge while the number of inner channels is kept as 16. Upsampling is done
by the last regression block and the Tensorflow depth-to-space operation. Since
it’s required to recover the whole RGB image, the number of output feature
maps of the last regression block is 4×4×3. The modifications such as reducing
the number of features layers and anchors/regressors are made in order to make
the network faster. We used 3, 5, and 7 regression blocks in the challenge and
the corresponding trained models were submitted.

4.3 Parameters vs. performance

In Table 2, we make a summary of PSNR vs. runtime comparison of CARN with
different setting for upscaling factor ×3 on Set5 and Set14. Increasing the value
of any of the three hyper parameters, i.e., number of regression blocks, number of
inner channels, and number of anchors/regressors, separately, PSNR improve-
ments are achievable at the expense of computational complexity / runtime.
By comparing C4(3,72,16) with C3(3,36,16), we find that the runtime triples
while the PSNR performance is comparable. While C4(3,72,16), C3(3,36,16) and
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Table 1. ×4 comparison of number of parameters, memory consumption, GPU run-
time, CPU runtime, and PSNR between different network architectures. Memory con-
sumption is measured by Tensorflow when generating the HR version of baby image
in Set5 on a GPU. The other metrics (GPU & CPU runtime, PSNR) are averaged on
Set5 dataset.

Method FSRCNN ESPCN SRCNN VDSR SRResNet2 SRResNet4

Param. (k) 12.46 24.64 57.18 664.70 510.33 657.79
Mem. (GB) 0.50 3.27 9.87 14.91 11.04 11.23

GPU time (s) 0.0030 0.0023 0.0083 0.0570 0.0211 0.0222
CPU time (s) 0.0112 0.0089 0.2498 2.1822 0.5691 0.6377
PSNR (dB) 30.71 30.90 30.48 31.35 31.65 31.82

Method SRResNet16 CARN1 CARN3 CARN7 CARN11

Param. (k) 1542.53 86.24 165.46 323.86 482.26
Mem. (GB) 11.55 11.30 11.37 11.60 11.76

GPU time (s) 0.0280 0.0033 0.0043 0.0062 0.0081
CPU time (s) 0.8335 0.0258 0.0469 0.0835 0.1456
PSNR (dB) 32.05 31.12 31.43 31.70 31.80

Table 2. Average PSNR (dB) vs. runtime (s) of CARN under configurations (C) with
different numbers of regression blocks (n), inner channels (c), and regressors (m) for
upscaling factor 3.

C(n, c,m) Set PSNR/Runtime C(n, c,m) Set PSNR/Runtime C(n, c,m) Set PSNR/Runtime

C1(3,9,16)
5 33.68/0.05

C5(3,18,8)
5 33.71/0.06

C9(1,9,16)
5 33.55/0.04

14 29.77/0.11 14 29.80/0.12 14 29.68/0.08

C2(3,18,16)
5 33.81/0.08

C6(3,18,32)
5 33.86/0.13

C10(5,18,16)
5 33.95/0.13

14 29.85/0.17 14 29.88/0.26 14 29.94/0.26

C3(3,36,16)
5 33.90/0.17

C7(3,18,64)
5 33.89/0.23

C11(7,18,16)
5 34.02/0.18

14 29.90/0.34 14 29.90/0.45 14 29.97/0.36

C4(3,72,16)
5 33.90/0.46

C8(3,36,32)
5 33.95/0.30

C12(9,18,16)
5 34.05/0.22

14 29.92/0.92 14 29.90/0.60 14 30.00/0.45

C8(3,36,32) have comparable number of parameters, C8(3,36,32) achieves the
best trade-off between PSNR and runtime. This fact enlightens us to make a bal-
anced selection for CARN between the number of inner channels and regressors
constrained by limited resources. Note that C9(1,9,16) has only one regression
block and its runtime is already very close to ESPCN while being 0.42dB better
in PSNR terms.

4.4 Compared methods

We compare the proposed method CARN at different operating points (depth)
with several other methods including SRCNN [7], FSRCNN [8], A+ [35], ARN [3],
ESPCN [32], VDSR [21], RAISR [31], IDN [18], and SRResNet [26] in terms of
PSNR, SSIM [37], and runtime. We resort to the benchmark set by Huang et

al. [17] which provides the results of several methods.
SRResNet is among the most accurate state-of-the-art methods with rea-

sonably low runtime while ESPCN is among the fastest SR methods with a
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Table 3. Average PSNR/SSIM/runtime for upscaling factor (S) 2, 3 and 4 on datasets
Set5, Set14, B100 and Urban100 for different methods.

Dataset S
Bicubic FSRCNN[8] A+[35] ARN[3] ESPCN3[32] CARN1

PSNR/SSIM PSNR/SSIM/time PSNR/SSIM/time PSNR/SSIM/time PSNR/SSIM/time PSNR/SSIM/time

Set5
2 33.66/0.93 37.00/0.96/0.03 36.54/0.95/0.33
3 30.39/0.87 33.16/0.91/0.02 32.58/0.91/0.19 33.01/ – 33.13/–/0.02
4 28.42/0.81 30.71/0.87/0.01 30.28/0.86/0.16 30.90/–/0.01 31.13/0.88/0.02

Set14
2 30.23/0.87 32.63/0.91/0.07 32.28/0.91/0.70
3 27.54/0.77 29.43/0.82/0.03 29.13/0.82/0.41 29.37/ – 29.49/–/0.03
4 26.00/0.70 27.59/0.75/0.02 27.32/0.75/0.32 27.73/–/0.02 27.93/0.76/0.05

B100
2 29.56/0.84 31.21/0.89
3 27.21/0.74 28.29/0.78 28.45/–
4 25.96/0.67 26.82/0.71 27.20/0.72/0.03

Urban100
2 26.87/0.84 29.20/0.89
3 24.46/0.74 26.03/0.80
4 23.14/0.66 24.32/0.72 25.05/0.74/0.16

Dataset S
ESPCN20 VDSR[21] SRResNet2 SRResNet16[26] CARN7

PSNR/SSIM/time PSNR/SSIM/time PSNR/SSIM/time PSNR/SSIM/time PSNR/SSIM/time

Set5
2 37.53/0.96/2.28 37.74/0.96/0.31
3 33.66/0.92/2.27 34.01/0.92/0.18
4 31.40/0.88/0.05 31.35/0.88/2.32 31.65/0.88/0.57 32.05/0.90/0.84 31.74/0.89/0.08

Set14
2 33.03/0.91/4.54 33.22/0.91/0.62
3 29.77/0.83/4.54 29.96/0.83/0.36
4 28.02/0.77/0.11 28.01/0.77/4.55 28.26/0.77/0.71 28.49/0.82/1.17 28.23/0.77/0.17

B100
2 31.90/0.90/3.05 32.03/0.90/0.42
3 28.82/0.80/3.10 28.93/0.80/0.24
4 27.26/0.72/0.08 27.29/0.73/3.10 27.35/0.73/0.76 27.58/0.76/1.12 27.39/0.73/0.11

Urban100
2 30.76/0.91/14.87 31.37/0.92/2.04
3 27.14/0.83/15.16 27.55/0.84/1.19
4 25.18/0.75/0.38 25.18/0.75/15.16 25.39/0.76/3.88 26.03/0.78/5.64 25.50/0.76/0.57

good accuracy. Therefore, we derived additional variants for the abovementioned
methods to investigate the trade-off capability of their designs. We have imple-
mented our SRResNet [26] variants with fewer residual blocks (2, 4, 8, 12) than
the original (16 residual blocks) to achieve different operating points trading
accuracy for speed and trained them using DIV2K train data as for our CARN.
We also, push the performance limits for ESPCN [32] and implemented our
own variants by increasing the number of convolutional layers from 3 (original
setting) to 7, 11, and 20, respectively.

4.5 Results

Quantitative results The PSNR and SSIM results and runtimes of several com-
pared methods including our CARN on the 4 datasets are summarized in Table 3.
For CARN, the default number of regression blocks is set to 7 (CARN7), but we
report results also for a single regression block (CARN1). Based on the results,
we make a couple of observations. CARN outperforms VDSR in both PSNR and
runtime by large margins, which validates the efficiency of the proposed method.
CARN is much faster than SRResNet even when SRResNet uses only 2 resid-
ual blocks, but CARN is less accurate than SRResNet with 16 residual blocks.
CARN is dramatically improving in accuracy over the fast SR methods such as
RAISR, FSRCNN and ESPCN. CARN is capable to trade off accuracy for speed
and to compete to these methods on speed while keeping an accuracy advantage.
Note that ESPCN while fast saturates rapidly above 11 convolutional layers and
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Ground Truth
(PSNR, SSIM,

Runtime)

FSRCNN [8]
(32.48, 0.78, 0.01)

VDSR [21]
(32.66, 0.79, 1.81)

SRResNet2
(32.80, 0.79, 0.44)

CARN (ours)
(32.81, 0.79, 0.07)

Fig. 4. SR results of face image by different methods for upscaling factor 4.

Ground Truth
(PSNR, SSIM,

Runtime)

FSRCNN [8]
(33.23, 0.88, 0.02)

VDSR [21]
(33.42, 0.89, 4.65)

SRResNet2
(33.54, 0.89, 1.17)

CARN (ours)
(33.61, 0.89, 0.17)

Fig. 5. SR results of baby image by different methods for upscaling factor 4.

with 20 convolutional layers achieves worse speed and accuracy than our CARN
with 3 regression blocks. While both ARN [3] and CARN use the same number
of regression layers and anchors, our CARN outperforms ARN by a large margin
for ×3 (1dB PSNR on Set5, 0.56dB on Set14, and 0.48dB on B100).

Visual results For visual assessment of the performance we pick the face, baby,
and zebra images and show in Fig. 4, 5, and 6, respectively, the super-resolved
results obtained by a couple of methods in comparison with our CARN. For each
we report also the PSNR and SSIM scores and the runtime. We note that our
CARN super-resolved images exhibit a fair amount of artifacts, but fewer than
in the compared image results, and have better PSNR and SSIM scores.

Parameter and memory In Table 1, we report the number of parameters and
the memory requirements measured by Tensorflow for different algorithms. Com-
pared with VDSR and SRResNet16, CARN reduced the number of parameters
by several times. Excepting the extremely simple FSRCNN and ESPCN, the
memory requirements of all the other algorithms are at the same level (10 GB)
although VDSR requires slightly more memory. The reason may be that the
Tensorflow tends to allocate as much as GPU memory as it can get.

Efficiency: speed vs. runtime In Fig. 1, we compare the proposed method with
several state-of-the-art efficient SISR methods in term of PSNR vs. runtime



CARN: Convolutional Anchored Regression Network 13

Ground Truth
(PSNR, SSIM,

Runtime)

FSRCNN [8]
(26.43, 0.76, 0.02)

VDSR [21]
(26.73, 0.77, 4.64)

SRResNet2
(27.05, 0.77, 1.41)

CARN (ours)
(27.05, 0.77, 0.17)

Fig. 6. SR results of zebra image by different methods for upscaling factor 4.

trade-off. SRResNet [26] with different numbers of residual blocks (2, 4, 8, 12,
16) achieves top PSNR accuracy but is much slower than other runtime efficient
methods (CARN, FSRCNN [8], ESPCN [32]). Despite being quite fast, FSRCNN
is at a low accuracy level. For ESPCN, the accuracy of the network stagnates
quickly with the increasing number of layers (20 layers of the last point on
the ESPCN curve). The proposed CARN with 7 regression blocks (CARN7)
achieves ∼31.8dB PSNR within 0.1s runtime. CARN7 is over 22 times faster than
VDSR [21] for a better accuracy. By contrast, a concurrent work, the information
distillation network (IDN) [18] is only 6 times faster than VDSR on Set5 (×4)
while our method achieves comparable accuracy on Set14 [38], B100 [29], and
higher accuracy on Urban100 [17] in terms of PSNR (See Table 3) [18]. We also
notice the very recent state-of-the-art Deep Back-Projection Networks (DBPN)
work [14]. However, DBPN is not runtime efficient; as reported in [33], on a
GPU, it takes seconds to 8× super-resolve an LR input DIV2K image.

In Table 1, we also report the GPU runtime of different algorithms, which tell
the same story. It takes tens of milliseconds on GPU for SRResNet and VDSR
to recover the images while ESPCN stagnates with increased number of layers.
In conclusion, this table shows that CARN achieves the best PSNR vs. runtime
tradeoff. The runtime gain of CARN7 is partly due to the reductions of number
of parameters (compared with SRResNet and VDSR in Table 1). Another reason
is that CARN operates on low resolution images (compared with SRCNN and
VDSR).

Among the compared methods including ESPCN and SRResNet and the de-
rived variants, CARN clearly trades off better the runtime for accuracy and fills
in the gap between fast SR methods (RAISR, FSRCNN, ESPCN) and accurate
SR methods (SRResNet, VDSR).

Although EDSR [28] outperforms in accuracy all of the efficient SISR meth-
ods, it is much slower than VDSR [21], and orders of magnitude slower than our
CARN approach.

5 Conclusion

In this paper, we introduced the convolutional anchored regression network
(CARN), a novel deep convolutional architecture for single image super-resolution.
This network was inspired by the conventional locally linear regression methods
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A+ and ARN. The regression block was derived by analyzing the operations
in A+. The regression and similarity comparison operations were converted to
convolutions, which in combination with the feature layers made the network a
fully fledged end-to-end learnable CNN. The proposed method is very efficient
and capable to achieve the best trade-off between speed and accuracy among
the compared SISR methods.
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