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Abstract. Visual data and text data are composed of information at
multiple granularities. A video can describe a complex scene that is com-
posed of multiple clips or shots, where each depicts a semantically coher-
ent event or action. Similarly, a paragraph may contain sentences with
different topics, which collectively conveys a coherent message or story. In
this paper, we investigate the modeling techniques for such hierarchical
sequential data where there are correspondences across multiple modali-
ties. Specifically, we introduce hierarchical sequence embedding (hse), a
generic model for embedding sequential data of different modalities into
hierarchically semantic spaces, with either explicit or implicit correspon-
dence information. We perform empirical studies on large-scale video and
paragraph retrieval datasets and demonstrated superior performance by
the proposed methods. Furthermore, we examine the effectiveness of our
learned embeddings when applied to downstream tasks. We show its
utility in zero-shot action recognition and video captioning.

Keywords: Hierarchical Sequence Embedding, Video Text Retrieval,
Video Description Generation, Action Recognition, Zero-shot Transfer

1 Introduction

Recently, there has been an intensive interest in multi-modal learning of vision
+ language. A few challenging tasks have been proposed: visual semantic em-
bedding (VSE) [16, 15, 5], image captioning [37, 42, 12, 21], and visual question
answering (VQA) [2, 47, 3]. To jointly understand these two modalities of data
and make inference over them, the main intuition is that different types of data
can share a common semantic representation space. Examples are embedding
images and the visual categories [7], embedding images and texts for VSE [16],
and embedding images, questions, and answers for VQA [11]. Once embedded
into this common (vector) space, similarity and distances among originally het-
erogeneous data can be captured by learning algorithms.

While there has been a rich study on how to discover this shared seman-
tic representation on structures such as images, noun phrases (visual object or
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A Paragraph with Multiple Sentences A Video with Multiple Clips

2. The water skier 
jumps over ramps 
in the water of a lake. 

1. A man on the dock 
hands a rope to a 
water skier. 

3. He falls but 
recovers then lets go 
of the rope and drifts 
over to the shoreline.

Local

Embedding Space

Global

Embedding Space

Fig. 1. Conceptual diagram of our approach for cross-modal modeling of video and
texts. The main idea is to embed both low-level (clips and sentences) and high-level
(video and paragraph) in their own semantic spaces coherently. As shown in the figure,
the 3 sentences (and the corresponding 3 clips) are mapped into a local embedding
space where the corresponding pairs of clips and sentences are placed close to each
other. As a whole, the videos and the paragraphs are mapped into a global semantic
space where their embeddings are close. See Fig. 3 and texts for details.

action categories) and sentences (such as captions, questions, answers), less is
known about how to achieve so on more complex structures such as videos and
paragraphs of texts 3. There are conceptual challenges: while complex structured
data can be mapped to vector spaces (for instance, using deep architectures [18,
8]), it is not clear whether the intrinsic structures in those data’s original for-
mat, after being transformed to the vectorial representations, still maintain their
correspondence and relevance across modalities.

Take the dense video description task as an example [17]. The task is to
describe a video which is made of short, coherent and meaningful clips. (Note
that those clips could overlap temporally.) Due to its narrowly focused semantic
content, each clip is then describable with a sentence. The description for the
whole video is then a paragraph of texts with sentences linearly arranged in
order. Arguably, a corresponding pair of video and its descriptive paragraph can
be embedded into a semantic space where their embeddings are close to each
other, using a vanilla learning model by ignoring the boundaries of clips and
sentences and treating as a sequence of continually flowing visual frames and
words. However, for such a modeling strategy, it is opaque that if and how the
correspondences at the “lower level” (i.e. clips versus sentences) are useful in
either deriving the embeddings or using the embeddings to perform downstream
tasks such as video or text retrieval.

Addressing these deficiencies, we propose a novel cross-modal learning ap-
proach to model both videos and texts jointly. The main idea is schematically
illustrated in Fig. 1. Our approach is mindful of the intrinsic hierarchical struc-

3 We use paragraphs and documents interchangeably throughout this work.
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tures of both videos and texts, and models them with hierarchical sequence
learning models such as GRUs [4]. However, as opposed to methods which dis-
regard low-level correspondences, we exploit them by deriving loss functions to
ensure the embeddings for the clips and sentences are also in accordance in their
own (shared) semantic space. Those low-level embeddings in turn strengthen
the desiderata that videos and paragraphs are embedded coherently. We demon-
strate the advantages of the proposed model in a range of tasks including video
and text retrieval, zero-shot action recognition and video description.

The rest of the paper is organized as follows. In section 2, we discuss related
work. We describe our proposed approach in section 3, followed by extensive
experimental results and ablation studies in section 4. We conclude in section 5.

2 Related Work

Hierarchical Sequence Embedding Models. Embedding images, videos, and tex-
tual data has been very popular with the rise of deep learning. The most related
works to ours are [19] and [25]. The former models the paragraph using a hi-
erarchical auto-encoder for text modeling [19], and the later uses a hierarchical
RNN for videos and a one-layer RNN for caption generation. In contrast, our
work models both modalities hierarchically and learn the parameters by leverag-
ing the correspondences across modalities. Works motivated by other application
scenarios usually explore hierarchical modeling in one modality [24, 43, 45].

Cross-modal Embedding Learning. There has been a rich history to learn embed-
dings for images and smaller linguistic units (such as words and noun phrases).
DeViSE [7] learns to align the latent embeddings of visual data and names of the
visual object categories. ReViSE [34] uses auto-encoders to derive embeddings
for images and words which allow them to leverage unlabeled data. In contrast
to previous methods, our approach models both videos and texts hierarchically,
bridging the embeddings at different granularities using discriminative loss com-
puted on corresponded pairs (i.e. videos vs. paragraphs).

Action Recognition in Videos. Deep learning has brought significant improve-
ment to video understanding [30, 33, 6, 38, 44, 41] on large-scale action recogni-
tion datasets [9, 31, 14] in the past decade. Most of them [30, 6, 38] employed
deep convolutional neural network to learn appearance feature and motion in-
formation respectively. Based on the spatial-temporal feature from these video
modeling methods, we learn video semantic embedding to match the holistic
video representation to text representation. To evaluate the generalization of
our learned video semantic representation, we evaluate the model directly on
the challenging action recognition benchmark. (Details in Section 4.4)
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Fig. 2. Flat sequence modeling of videos and texts, ignoring the hierarchical structures
in either and regarding the video (paragraph) as a sequence of frames (words).

3 Approach

We begin by describing the problem settings and introducing necessary nota-
tions. We then describe the standard sequential modeling technique, ignoring
the hierarchical structures in the data. Finally, we describe our approach.

3.1 Settings and Notations

We are interested in modeling videos and texts that are paired in correspondence
In the later section, we describe how to generalize this where there is no one to
one correspondence.

A video v has n clips (or subshots), where each clip ci contains ni frames.
Each frame is represented by a visual feature vector xij . This feature vector can
be derived in many ways, for instance, by feeding the frame (and its contextual
frames) to a convolution neural net and using the outputs from the penultimate
layer. Likewise, we assume there is a paragraph of texts describing the video.
The paragraph p contains n sentences, one for each video clip. Let si denote the
ith sentence and wij the feature for the jth word out of n′i words. We denote by
D = {(vk, pk)} a set of corresponding videos and text descriptions.

We compute a clip vector embedding ci from the frame features {xij}, and
a sentence embedding si from the word features {wij}. From those, we derive v
and p, the embedding for the video and the paragraph, respectively.

3.2 Flat Sequence Modeling

Many sequence-to-sequence (seq2seq) methods leverage the encoder-decoder
structure [32, 22] to model the process of transforming from the input sequence
to the output sequence. In particular, the encoder, which is composed of a
layer of long short-term memory units (LSTMs) [10] or Gated Recurrent Units
(GRUs) [4], transforms the input sequence into a vector as the embedding h. The
similarly constructed decoder takes h as input and outputs another sequence.

The original seq2seq methods do not consider the hierarchical structures in
videos or texts. We refer the embeddings as flat sequence embedding (fse):

v = encv({xij}), p = encp({wij}), (1)
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Fig. 3. Hierarchical cross-modal modeling of videos and texts. We differ from previ-
ous works [19, 25] in two aspects (components in red color): layer-wise reconstruction
through decoders, and matching at both global and local levels. See texts for details.

Fig. 2 schematically illustrates this idea. We measure how well the videos
and the texts are aligned by the following cosine similarity

match(v, p) = v⊤p/‖v‖‖p‖ (2)

3.3 Hierarchical Sequence Modeling

One drawback of flat sequential modeling is that the LSTM/GRU layer needs
to have a sufficient number of units to model well the potential long-range de-
pendency among video frames (or words). This often complicates learning as the
optimization becomes difficult [26].

We leverage the hierarchical structures in those data to overcome this defi-
ciency: a video is made of clips which are made of frames. In parallel, a paragraph
of texts is made of sentences which in turn are made of words. Similar ideas have
been explored in [25, 19] and other previous works. The basic idea is illustrated
in Fig. 3, where we also add components in red color to highlight our extensions.

Hierarchical Sequence Embedding. Given the hierarchical structures in
Fig. 3, we can compute the embeddings using the forward paths

ci = enc
(1)
v ({xij , j = 1, 2, ni}), v = enc

(2)
v ({ci})

si = enc
(1)
p ({wij , j = 1, 2, n′i}), p = enc

(2)
p ({si})

(3)

Learning with Discriminative Loss. For videos and texts have strong corre-
spondences where clips and sentences are paired, we optimize the encoders such
that videos and texts are matched. To this end, we define two loss functions,
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corresponding to the matching at the low-level and the high-level respectively:

ℓhighmatch =
∑

k

∑

k′ 6=k

[α+match(vk,pk)−match(vk′ ,pk)]+

+ [α+match(vk,pk)−match(vk,pk′)]+ (4)

ℓlowmatch =
∑

k

∑

i

∑

(k′,i′) 6=(k,i)

[β +match(cki, ski)−match(ck′i′ , ski)]+

+[β +match(cki, ski)−match(cki, sk′i′)]+ (5)

These losses are margin-based losses [29] where α and β are positive numbers as
the margins to separate matched pairs from unmatched ones. The function [·]+
is the standard hinge loss function.
Learning with Contrastive Loss. Assuming videos and texts are well clus-
tered, we use the following loss to model their clustering in their own space.

ℓhighcluster =
∑

k

∑

k′ 6=k

[γ + 1−match(vk′ ,vk)]+ + [γ + 1−match(pk′ ,pk)]+ (6)

ℓlowcluster =
∑

k

∑

i

∑

(k′,i′) 6=(k,i)

[η + 1−match(ck′i′ , cki)]+

+[η + 1−match(sk′i′ , ski)]+ (7)

Note that the self-matching values match(vk,vk) and match(pk,pk) are 1 by
definition. This loss can be computed on videos and texts alone and does not
require them being matched.
Learning with Unsupervised Layer-wise Reconstruction Loss. Thus far,
the matching loss focuses on matching across modality. The clustering loss fo-
cuses on separating between video/text data so that they do not overlap. None
of them, however, focuses on the quality of the modeling data itself. In what
follows, we propose a layer-wise reconstruction loss – when minimized, this loss
ensures the learned video/text embedding faithfully preserves information in the
data.

We first introduce a set of layer-wise decoders for both videos and texts. The
key idea is to pair the encoders with decoders so that each pair of functions is
an auto-encoder. Specifically, the decoder is also a layer of LSTM/GRU units,
generating sequences of data. Thus, at the level of video (or paragraph), we will
have a decoder to generate clips (or sentences). And at the level of clips (or
sentences), we will have a decoder to generate frames (or words). Concretely,
we would like to minimize the difference between what are generated by the
decoders and what are computed by encoders on the data. Let

{ĉi} = dec
(2)
v (v), {ŝi} = dec

(2)
p (p) (8)

be the two (high-level) decoders for videos and texts respectively. And similarly,
for the decoder at the low-level

{x̂ij} = dec
(1)
v (ĉi), {ŵij} = dec

(1)
p (ŝi) (9)
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where the low-level decoders take each generated clip and sentence embed-
dings as inputs and output sequences of generated frame and word embeddings.

ℓreconstruct(v, p) =
∑

i

{‖ĉi − ci‖
2
2 +

1

ni

∑

j

‖x̂ij − xij‖
2
2}

+
∑

i

{‖ŝi − si‖
2
2 +

1

n
′
i

∑

j

‖ŵij −wij‖
2
2} (10)

Using those generated embeddings, we can construct a loss function charac-
terizing how well the encoders encode the data pair (v, p) (see Eq 10).

3.4 Final Learning Objective and Its Extensions

The final learning objective is to balance all those loss quantities

ℓ = ℓhigh + ℓlow + τ
∑

k

ℓreconstruct(vk,pk) (11)

where the high-level and low-level losses are defined as

ℓhigh = ℓhighmatch + ℓhighcluster, ℓlow = ℓlowmatch + ℓlowcluster (12)

In our experiments, we will study the contribution by each term.
Learning under Weak Correspondences. Our idea can be also extended
to the common setting where only high-level alignments are available. In fact,
high-level coarse alignments of data are easier and more economical to obtain,
compared to fine-grained alignments between each sub-level sentence and video
clip.

Since we do not have enough information to define the low-level matching loss
ℓlowmatch exactly, we resort to approximation. We first define an averaged matching
over all pairs of clips and sentences for a pair of video and paragraph

match(v, p) =
1

nm

∑

ci

∑

sj

match(ci, sj) (13)

where we relax the assumption that there is precisely the same number of
sentences and clips. We use this averaged quantity to approximate the low-level
matching loss

ℓ̃lowmatch =
∑

k

∑

k′ 6=k

[β′ +match(vk,pk)−match(vk′ ,pk)]+

+ [β′ +match(vk,pk)−match(vk,pk′)]+ (14)

This objective will push a clip embedding closer to the embeddings of the sen-
tences belonging to the corresponding video (and vice versa for sentences to the
corresponding video). A more refined approximation involving a soft assignment
of matching can also be derived, which will be left for future work.
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4 Experiments

We evaluate and demonstrate the advantage of learning hierarchical cross-modal
embedding with our proposed approach on several tasks: (i) large-scale video-
paragraph retrieval (Section 4.2), (ii) down-stream tasks such as video captioning
(Section 4.3), and (iii) action recognition (Section 4.4).

4.1 Experiment Setups

Datasets. We evaluate on three large-scale video datasets:
(1) ActivityNet Dense Caption [17]. This variant of ActivityNet contains
densely labeled temporal segments for 10,009 training and 4,917/4,885 (val1/val2)
validation videos. Each video contains multiple clips and a corresponding para-
graph with sentences aligned to the clips. In all our retrieval experiments, we
follow the setting in [17] and report retrieval metrics such as recall@k (k=1,5,50)
and median rank (MR). Following [17] we use ground-truth clip proposals as in-
put for our main results. In addition, we also study our algorithm with a heuristic
proposal method (see Section 4.2). In the main text, we report all results on val-
idation set 1 (val1). Please refer to the Supp. Material for the results on val2.
For video caption experiment, we follow [17] and evaluate on the validation set
(val1 and val2). Instead of using action proposal method, ground-truth video
segmentation is used for training and evaluation. Performances are reported in
Bleu@K, METEOR and CIDEr.
(2) DiDeMo [1]. The original goal of DiDeMo dataset is to locate the tempo-
ral segments that correspond to unambiguous natural language descriptions in a
video. We re-purpose it for the task of video and paragraph retrieval. It contains
10,464 videos, 26,892 video clips and 40,543 sentences. The training, validation
and testing split contain 8,395, 1,065 and 1,004 videos and corresponding para-
graphs, respectively. Each video clip may correspond to one or many sentences.
For the video and paragraph retrieval task, paragraphs are constructed by con-
catenating all sentences that corresponding to one video. Similar to the setting
in ActivityNet, we use the ground-truth clip proposals as input.
(3) ActivityNet Action Recognition [9].We use ActivityNet V1.3 for afore-
mentioned off-the-shelf action recognition. The dataset contains 14,950 untrimmed
videos with 200 action classes, which is split into training and validation set.
Training and validation set have 10,024 and 4,926 videos, respectively. Among
all 200 action classes, 189 of the action classes have been covered by the vocab-
ulary extracted from the paragraph corpus and 11 of the classes are unseen.

Baselines and Our Methods. We use the fse method (as described in Sec-
tion 3.1) as a baseline model. It ignores the clip and sentence structures in the
videos and paragraphs. We train a one-layer GRU directly on the extracted
frame/word features and take their outputs as the embedding representing each
modality. Results with C3D features are also included (see Table 1).

Our method has two variants: when τ = 0, the method (hse[τ=0]) simplifies
to a stacked/hierarchical sequence models as used in [19, 25] except that they
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Table 1. Video paragraph retrieval on ActivityNet (val1). Standard deviation from 3
random seeded experiments are also reported.

Paragraph ⇒ Video Video ⇒ Paragraph
R@1 R@5 R@50 MR R@1 R@5 R@50 MR

C3D Feature with Dimensionality Reduction [33]

lstm-yt [35] 0.0 4.0 24.0 102.0 0.0 7.0 38.0 98.0
no context [36] 5.0 14.0 32.0 78.0 7.0 18.0 45.0 56.0
dense online[17] 10.0 32.0 60.0 36.0 17.0 34.0 70.0 33.0
dense full[17] 14.0 32.0 65.0 34.0 18.0 36.0 74.0 32.0

fse 12.6±0.4 33.2±0.3 77.6±0.3 12.0 11.5±0.5 31.8±0.3 77.7±0.3 13.0
hse[τ=0] 32.8±0.3 62.3±0.4 90.5±0.1 3.0 32.0±0.6 62.5±0.5 90.5±0.3 3.0

hse[τ=5e-4] 32.7±0.7 63.2±0.4 90.8±0.2 3.0 32.8±0.4 63.2±0.2 91.2±0.3 3.0

Inception-V3 pre-trained on Kinetics [40]

fse 18.2±0.2 44.8±0.4 89.1±0.3 7.0 16.7±0.8 43.1±1.1 88.4±0.3 7.3
hse[τ=0] 43.9±0.6 75.8±0.2 96.9±0.3 2.0 43.3±0.6 75.3±0.6 96.6±0.2 2.0

hse[τ=5e-4] 44.4±0.5 76.7±0.3 97.1±0.1 2.0 44.2±0.6 76.7±0.3 97.0±0.3 2.0

do not consider cross-modal learning with cross-modal matching loss while we
do. We consider this as a very strong baseline. When τ 6= 0, the hse takes full
advantage of layer-wise reconstruction with multiple decoders, at different levels
of the hierarchy. In our experiments, this method gives the best results.

Implementation Details. Following the settings of [17], we extract the C3D
features [33] pretrained on Sports-1M dataset [13] for raw videos in ActivityNet.
PCA is then used to reduce the dimensionality of the feature to 500. To verify
the generalization of our model across different sets of visual feature, as well as
leveraging the state-of-the-art video models, we also employed recently proposed
TSN-Inception V3 network [38] pre-trained on Kinetics [14] dataset to extract
visual features. Similarly, we extract TSN-Inception V3 feature for videos in
Didemo dataset. We do not fine-tuning the convolutional neural network on the
video along the training to reduce the computational cost. For word embedding,
we use 300 dimension GloVe [27] features pre-trained on 840B common web-
crawls. In all our experiments, we use GRU as sequence encoders. For hse, we
choose τ = 0.0005 from tuning this hyper-parameter on the val2 set of Activi-
tyNet retrieval dataset. The same τ value is used for experiments on DiDeMo,
without further tuning. (More details in the Supp. Material)

4.2 Results on Video-Paragraph Retrieval

In this section, we first compare our proposed approach to the state-of-the-art
algorithms, and then perform ablation studies on variants of our method, to
evaluate the proposed learning objectives.

Main Results. We reported our results on ActivityNet Dense Caption val1
set and DiDeMo test set as Table 1 and Table 2, respectively. For both C3D
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Table 2. Video paragraph retrieval on DiDeMo dataset. s2vt method is re-
implemented for retrieval task.

Paragraph ⇒ Video Video ⇒ Paragraph
R@1 R@5 R@50 MR R@1 R@5 R@50 MR

s2vt [36] 11.9 33.6 76.5 13.0 13.2 33.6 76.5 15.0

fse 13.9±0.7 36.0±0.8 78.9±1.6 11.0 13.1±0.5 33.9±0.4 78.0±0.8 12.0
hse[τ=0] 30.2±0.8 60.5±1.1 91.8±0.7 3.3 29.4±0.4 58.9±0.7 91.9±0.6 3.7

hse[τ=5e-4] 29.7±0.2 60.3±0.9 92.4±0.3 3.3 30.1±1.2 59.2±0.9 92.1±0.5 3.0

Table 3. Ablation studies on the learning objectives.

Paragraph ⇒ Video Video ⇒ Paragraph
Dataset ℓ

low R@1 R@5 R@50 R@1 R@5 R@50

ActivityNet

hse[τ=0]

✗ 41.8±0.4 74.1±0.6 96.6±0.1 40.5±0.4 73.9±0.6 96.3±0.1

weak 42.6±0.4 74.8±0.3 96.7±0.1 41.3±0.2 74.7±0.4 96.5±0.1

strong 43.9±0.6 75.8±0.2 96.9±0.3 43.3±0.6 75.3±0.6 96.6±0.2

hse[τ=5e-4]

✗ 42.5±0.3 74.8±0.1 96.9±0.0 41.6±0.2 74.7±0.6 96.6±0.1

weak 43.0±0.6 75.2±0.4 96.9±0.1 41.5±0.1 75.2±0.6 96.8±0.2

strong 44.4±0.5 76.7±0.3 97.1±0.1 44.2±0.6 76.7±0.3 97.0±0.3

DiDeMo

hse[τ=0]

✗ 27.1±1.9 59.1±0.4 92.2±0.3 27.3±1.0 57.6±0.5 91.3±1.2

weak 28.0±0.8 58.9±0.5 91.4±0.6 28.3±0.3 58.5±0.6 91.2±0.3

strong 30.2±0.8 60.5±1.1 91.8±0.7 29.4±0.4 58.9±0.7 91.9±0.6

hse[τ=5e-4]

✗ 28.1±0.8 59.5±1.1 91.7±0.7 28.2±0.8 58.1±0.5 90.9±0.5

weak 28.7±2.1 59.1±0.2 91.6±0.7 28.3±0.8 59.2±0.6 91.1±0.1

strong 29.7±0.2 60.3±0.9 92.4±0.3 30.1±1.2 59.2±0.9 92.1±0.5

and Inception V3 feature, we observed performances on our hierarchical models
improved the previous state-of-the-art result by a large margin (on Recall@1,
over ∼ 15% improvement with C3D and ∼ 30% improvement with InceptionV3).
dense full [17], which models the flat sequences of clips, outperforms our fse

baseline as they augment each segment embedding with a weighted aggregated
context embedding. However, it fails to model more complex temporal structures
of video and paragraph, which leads to inferior performance to our hse models.

Comparing to our flat baseline model, both hse[τ=0] and hse[τ=5e-4] improve
performances over all metrics in retrieval. It implies that hierarchical mod-
eling can effectively capture the structure information and relationships over
clips and sentences among videos and paragraphs. Moreover, we observe that
hse[τ=5e-4] consistently improves over hse[τ=0] across most retrieval metrics on
both datasets. This attributes the importance of our layer-wise reconstruction
objectives, which suggests that better generalization performances.

Low-level Loss is Beneficial. Table 1 and Table 2 have shown results with
optimizing both low-level and high-level objectives. In Table 3, we further per-
formed ablation studies on the learning objectives. Note that rows with ✗ repre-
sent learning without low-level loss ℓlow. In all scenarios, joint learning with both
low-level and high-level correspondences improves the retrieval performance.
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Table 4. Performance of using proposal instead of ground truth on ActivityNet dataset

P ⇒ V V ⇒ P

Proposal Method # Segments R@1 R@5 R@1 R@5 Precision Recall

hse + ssn - 10.4 31.9 10.8 31.7 1.5 17.1

hse + uniform

1 18.0 45.5 16.5 44.9 63.2 31.1
2 20.0 48.9 18.4 47.6 61.8 46.0
3 20.0 48.6 18.2 47.9 55.3 50.6
4 20.5 49.3 18.7 48.1 43.2 45.5

hse + ground truth - 44.4 76.7 44.2 76.7 100.0 100.0

fse - 18.2 44.8 16.7 43.1 - -

Learning with Weak Correspondences at Low-level. As mentioned in
Section 3, our method can be extended to learn the low-level embedding with
weak correspondence. We evaluate its effectiveness on both ActivityNet and
DiDeMo datasets. Performance are listed in Table 3. Note that for the rows of
“weak”, no auxiliary alignments between sentences and clips are available during
training.

Clearly, including low-level loss with weak correspondence (ie, correspon-
dence only at the high-level) obtained superior performances when compared to
models that do not include low-level loss at all. On several occasions, it even
attains the same competitive result as including low-level loss with strong cor-
respondences at the clip/sentence levels.

Learning with Video Proposal Methods. As using ground-truth tempo-
ral segments of videos is not a natural assumption, we perform experiments to
validate the effectiveness of our method with proposal methods. Specifically, we
experiment with two different proposal approaches: SSN [46] pre-trained on Ac-
tivityNet action proposal and a heuristic uniform proposal. For uniform proposal
of K segments, we meant naturally segmenting a video into K non-overlapping
and equal-length temporal segments.

The results are summarized in Table 4 (with columns of precision and re-
call being the performance metrics of the proposal methods). There are two
main conclusions from these results: (1) The segments of Dense Caption dataset
deviate significantly from the action proposals, therefore a pre-trained action
proposal algorithm performs poorly. (2) Even with heuristic proposal methods,
the performance of hse is mostly better than (or comparable with) fse. We
leave to future work on identifying stronger methods for proposals.

Retrieval with Incomplete Video and Paragraph. In this section, we in-
vestigate the correlation between the number of observed clips and sentences and
models’ performance of video and paragraph retrieval. In this experiment, we
gradually increase the number of clips and sentences observed by our model dur-
ing the testing and obtained the Figure 4, on ActivityNet. When the video/paragraph
contains fewer clips/sentences than the number of observations we required, we
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Fig. 4. Retrieval performance improves given more observed clips/sentences.

take all those available clips/sentences for computing the video/paragraph em-
bedding. (On average 3.65 clips/sentences per video/paragraph)

From Figure 4, we note that increasing the number of the observed clips
and sentences leads to improved performance results in retrievals. We can see
that when observing only one clip and sentence, our model already outperforms
the previous state-of-the-art method as well as our baseline fse that observes
the entire sequence. With observing less than the average length of clips and
sentences, our learned model can achieve ∼ 70% of the final performance.

4.3 Results on Video Captioning

Setups. In addition to the video paragraph retrieval, we evaluate our learned
embeddings for video captioning. Specifically, we follow [17] and train a cap-
tion model [37] on top of the pre-trained video embeddings. Similar to [17], we
concatenate the clip-level feature with contextual video-level feature, and build
a two-layer LSTM as a caption generator. We randomly initialized the word
embedding as well as LSTM and trained the model for 25 epochs with learning
rate of 0.001. We use the ground-truth proposal throughout training and evalu-
ation following the setting of [17, 20]. During testing, beam search is used with
beam=5. Results are reported in Table 5.

Results. We observe that our proposed model outperforms baseline over most
metrics. Meanwhile, hse also improves over previous approaches such as lstm-
yt, s2vt, and hrnn on B@2, METEOR, and CIDEr by a margin. hse achieves
comparable results with dvc in all criterions. However, both hse and hse[τ=0]

failed to obtain close performance to dense [17]. This may due to the fact
that dense [17] carefully learns to aggregate the context information of a video
clip for producing high-quality caption, while optimized for video-paragraph
retrieval our embedding model does not equip with such capability. However,
it is worth noting that our model obtains higher CIDEr score compared to all
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Table 5. Results for video captioning on
ActivityNet

B@1 B@2 B@3 B@4 M C

lstm-yt [35] 18.2 7.4 3.2 1.2 6.6 14.9
s2vt [36] 20.4 9.0 4.6 2.6 7.9 21.0
hrnn [43] 19.5 8.8 4.3 2.5 8.0 20.2
dense [17] 26.5 13.5 7.1 4.0 9.5 24.6
dvc [20] 19.6 9.9 4.6 1.6 10.3 25.2

fse 17.9 8.2 3.6 1.7 8.7 32.1
hse[τ=0] 19.6 9.4 4.2 2.0 9.2 39.5

hse[τ=5e-4] 19.8 9.4 4.3 2.1 9.2 39.8

Table 6. Results for action recognition
on ActivityNet (low-level embeddings)

Zero-Shot Train

Transfer Classifier

Top-1 Top-5 Top-1 Top-5

fv-vae [28] - - 78.6 -
tsn [39] - - 88.1 -

fse 48.3 79.4 74.4 94.1
hse[τ=0] 50.2 84.4 74.7 94.3

hse[τ=5e-4] 51.4 83.8 75.3 94.3

random 0.5 2.5 0.5 2.5

existing methods. We empirically observe that fine-tuning the pre-trained video
embedding does not lead to further performance improvement.

4.4 Results on Action Recognition

To evaluate the effectiveness of our model, we take the off-the-shelf clip-level
embeddings trained on video-paragraph retrieval for action recognition (on Ac-
tivityNet with non-overlapping training and validation data). We use two action
recognition settings to evaluate, namely zero-shot transfer and classification.

Setups. In the zero-shot setting, we directly evaluate our low-level embedding
model learned in the video and text retrieval, via treating the phrases of actions
as sentences and use the sentence-level encoder to encode the action embedding.
We take the raw video and apply clip-level video encoder to extract the feature
for retrieving actions. No re-training is performed and all models have no ac-
cess to the actions’ data distribution. Note though action are not directly used
as sentences during the training, some are available as verbs in the vocabulary.
Meanwhile, as we are using pre-trained word vector (GloVe), it allows the trans-
fer to unseen actions. In the classification setting, we discriminatively train a
simple classifier to measure the classification accuracy. Concretely, a one-hidden-
layer Multi-Layer Perceptron (MLP) is trained on the clip-level embeddings. We
do not fine-tune the pre-trained clip-level video embedding here.

Results. We report results of above two settings on the ActivityNet validation
set (see Table 6). We observe that our learned low-level embeddings allow supe-
rior zero-shot transfer to action recognition, without accessing any training data.
This indicates that semantics of actions are indeed well reserved in the learned
embedding models. More interestingly, we can see that both hse[τ=0] and hse

improve the performance over fse. It shows that our hierarchical modeling of
video benefits not only high-level embedding but also low-level embedding. A
similar trend is also observed in the classification setting. Our method achieves
comparable performance to the state-of-the-art video modeling approach such
as fv-vae [28]. Note tsn [39] is fully supervised thus not directly comparable.
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Fig. 5. T-SNE visualization of off-the-shelf video embedding of hse on ActivityNet
v1.3 training and validation set. Points are marked with its action classes.

4.5 Qualitative Results

We use t-SNE [23] to visualize our results in the video to paragraph and para-
graph to video retrieval task. Fig 5 shows that the proposed method can cluster
the embedding of videos with regard to its action classes. To further explain the
retrieval quality, we provide qualitative visualization in the Supp. Material.

5 Conclusion

In this paper, we propose a novel cross-modal learning approach to model videos
and texts jointly, which leverages the intrinsic hierarchical structures of both
videos or texts. Specifically, we consider the correspondences of videos and texts
at multiple granularities, and derived loss functions to align the embeddings for
the paired clips and sentences, as well as paired video and paragraph in ac-
cordance in their own semantic spaces. Another important component of our
model is layer-wise reconstruction, which ensures that learned embeddings cap-
ture video (paragraph) and clips (words) at different levels. Moreover, we further
extend our learning objective so that it allows to handle a more generalized learn-
ing scenario where only video paragraph correspondence exists. We demonstrate
the advantage of our proposed model in a range of tasks including video and
text retrieval, zero-shot action recognition and video caption.
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