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Abstract. Due to the complementary benefits of visible (RGB) and
thermal infrared (T) data, RGB-T object tracking attracts more and
more attention recently for boosting the performance under adverse illu-
mination conditions. Existing RGB-T tracking methods usually localize
a target object with a bounding box, in which the trackers or detectors
is often affected by the inclusion of background clutter. To address this
problem, this paper presents a novel approach to suppress background
effects for RGB-T tracking. Our approach relies on a novel cross-modal
manifold ranking algorithm. First, we integrate the soft cross-modality

consistency into the ranking model which allows the sparse inconsisten-
cy to account for the different properties between these two modalities.
Second, we propose an optimal query learning method to handle label
noises of queries. In particular, we introduce an intermediate variable
to represent the optimal labels, and formulate it as a l1-optimization
based sparse learning problem. Moreover, we propose a single unified
optimization algorithm to solve the proposed model with stable and effi-
cient convergence behavior. Finally, the ranking results are incorporated
into the patch-based object features to address the background effects,
and the structured SVM is then adopted to perform RGB-T tracking.
Extensive experiments suggest that the proposed approach performs well
against the state-of-the-art methods on large-scale benchmark datasets.

Keywords: Visual tracking, Information fusion, Manifold ranking, Soft
cross-modality consistency, Label optimization

1 Introduction

The goal of RGB-T tracking is to estimate the states of the target object in
videos by fusing RGB and thermal (corresponds the visible and thermal in-
frared spectrum data, respectively) information, given the initial ground truth
bounding box. Recently, researchers pay more and more attention on RGB-T
tracking [1,2,3,4,5] partly due to the following reasons. i) The imaging quality of
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(a) (b)

Fig. 1. Typically complementary benefits of RGB and thermal data [5]. (a) Benefits of
thermal sources over RGB ones, where visible spectrum is disturbed by low illumina-
tion, high illumination and fog. (b) Benefits of RGB sources over thermal ones, where
thermal spectrum is disturbed by glass and thermal crossover.

visible spectrum is limited under bad environmental conditions (e.g., low illumi-
nation, rain, haze and smog, etc.). ii) The thermal information can provide the
complementary benefits for visible spectrum, especially in adverse illumination
conditions. iii) The thermal sensors have many advantages over others, such as
the long-range imaging ability, the insensitivity to lighting conditions and the
strong ability to penetrate haze and smog. Fig. 1 shows some examples.

Most of RGB-T tracking methods focus on the sparse representation because
of its capability of suppressing noises and errors [2,3,4]. These approaches, how-
ever, only adopt pixel intensities as feature representation, and thus be difficult
to handle complex scenarios. Li et al. [5] extend the spatially ordered and weight-
ed patch descriptor [6] to a RGB-T one, but this approach may be affected by
the inaccurate initialization to their model. Deep learning based trackers [7,8,9]
adopt powerful deep features or networks to improve tracking performance, but
extending them to multi-modal ones has the following issues: i) Regarding ther-
mal as one channel of RGB or directly concatenating their features might not
make the best use of the complementary benefits from multiple modalities [4].
For example, if one modality is malfunction, fusing it equals to adding noises,
which might disturb tracking performance [4]. ii) Designing multi-modal net-
works usually leads to the time-consuming procedures of network training and
testing, especially for multiple input videos.

In this paper, we propose a novel cross-modal ranking algorithm for robust
RGB-T tracking. Given one bounding box of the target object, we first partition
it into non-overlapping patches, which are characterized by RGB and thermal
features (such as color and gradient histograms). The bounding box can thus be
represented with a graph with image patches as nodes. Motivated by [6,5], we
assign each patch with a weight to suppress background information, and pro-
pose a cross-modal ranking algorithm to compute the patch weights. The patch
weights are then incorporated into the RGB-T patch features, and the object
location is finally predicted by applying the structured SVM [10]. Fig. 2 shows
the pipeline of our approach. In particular, our cross-modal ranking algorithm
advances existing ones in the following aspects.
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First, we propose a general scheme for effective multimodal fusion. The RG-
B and thermal modalities are heterogeneous with different properties, and the
hard consistency [11,4] between these two modalities may be difficult to perform
effective fusion. Therefore, we propose a soft cross-modality consistency to en-
force ranking consistency between modalities while allowing sparse inconsistency
exists.

Second, we propose a novel method to mitigate the effects of ranking noises.
In conventional manifold ranking models, the query quality is very important for
ranking accuracy, and thus how to set good queries need to be designed manual-
ly [12,13,14]. In visual tracking, the setting of initial patch weights (i.e., queries)
is not always reasonable due to noises of tracking results and irregular object
shapes [6]. To handle this problem, we introduce an intermediate variable to rep-
resent the optimal labels of initial patches, and optimize it in a semi-supervised
way based on the observation that visually similar patches tend to have same

labels or weights. We formulate it as a l1-optimization based sparse learning
problem to promote sparsity of the inconsistency between inferred queries and
initial ones (because most of the initial queries should be correct and the re-
maining ones are noises). We call this process as optimal query learning in this
paper.

Finally, we present an efficient solver for the objective. Instead of individual
consideration for each problem, we propose a single unified optimization frame-
work to learn the patch weights and the optimal queries at a same time, which
can be beneficial to boosting their respective performance. In particular, an effi-
cient ADMM (alternating direction method of multipliers) [15] is adopted, and a
linearized operation [16] is also employed to avoid matrix inversion for efficiency.
By this way, our algorithm has a stable convergence behavior, and each iteration
has small computational complexity.

In summary, we make the following contributions to RGB-T tracking and
related applications. i) We integrate a soft consistency into the cross-modal
ranking process to model the interdependency between two modalities while
allowing sparse inconsistency exists to account for their heterogeneous proper-
ties. The proposed cross-modality consistency is general, and can be applied to
other multimodal fusion problems. ii) To mitigate noise effects of initial patch-
es, we introduce an intermediate variable to represent the optimal labels of the
initial patches, and formulate it as a l1-optimization based sparse learning prob-
lem. It is also general and applicable to other semi-supervized tasks, such as
saliency detection and interactive object segmentation. iii) We present a uni-
fied ADMM-based optimization framework to solve the objective with stable
and efficient convergence behavior, which makes our tracker very efficient. iv)
To demonstrate the efficiency and superior performance of the proposed ap-
proach over the state-of-the-art methods, we conduct extensive experiments on
two large-scale benchmark datasets, i.e., GTOT [4] and RGBT210 [5].
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2 Related Work

The methods of visual tracking are vast, we only discuss the most related to us.

RGB-T tracking has drawn much attention in the computer vision communi-
ty with the popularity and affordability of thermal infrared sensors [17]. Works
on RGB-T tracking mainly focus on sparse representation because of its capa-
bility of suppressing noises and errors [2,3,18,4]. Wu et al. [2] concatenate the
intensity features of image patches from RGB and thermal sources into a one-
dimensional vector, which is sparsely represented in the target template space.
The RGB-T tracking is performed in Bayesian filtering framework by defining
reconstruction residues as the likelihood. Liu et al. [3] perform joint sparse repre-
sentation on both RGB and thermal modalities, and fuse the resultant tracking
results using min operation on the sparse representation coefficients. A Lapla-
cian sparse representation is proposed to learn a multi-modal features using the
reconstruction coefficients that encode both the spatial local information and oc-
clusion handling [18]. Li et al. [4] propose a collaborative sparse representation
based trackers to adaptively fuse RGB and thermal modalities by assigning each
modality with a reliability weight. These approaches, however, only adopt pixel
intensities as feature representation, and thus be difficult to handle complex sce-
narios. Kim et al. [6] propose a Spatially Ordered and Weighted Patch (SOWP)
descriptor for target object based on the random walk algorithm, and achieve
excellent performance for tracking. Li et al. [19] extend SOWP by optimizing
a dynamic graph, and an another extension is further proposed to integrate
multimodal information adaptively for RGB-T tracking [5].

Different from these works, we propose a novel cross-modal ranking algorithm
for RGB-T tracking from a new perspective. In particular, our approach has the
following advantages. i) Generality. The proposed model and schemes are gen-
eral and applicable, including soft cross-modality consistency and optimal query
learning, and can be easily extended to other vision problems. ii) Effective-

ness. Our approach performs well against the state-of-the-art RGB and RGB-T
trackers on two large-scale benchmark datasets. iii) Efficiency. The proposed
optimization algorithm is with a fast and stable convergence behavior, which
makes our tracker very efficient.

3 Cross-Modal Ranking Algorithm

Our cross-modal ranking algorithm aims to compute patch weights to suppress
background effects in the bounding box description of target object. This section
will introduce the details of our cross-modal ranking model and the associated
optimization algorithm. The weighted patch feature construction and object
tracking will be described in detail in the next section. For clarity, we present
the pipeline of our tracking approach in Fig. 2.
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Fig. 2. Pipeline of our approach. (a) Cropped regions, where the red bounding box rep-
resents the region of initial patches. (b) Patch initilization indicated by red color. (c)
Optimized results from initial patches. (d) Ranking results with the soft cross-modality
consistency. (e) RGB-T feature representation. (f) Structured SVM. (g) Tracking re-
sults.

3.1 Model Formulation

The graph-based manifold ranking problem is described as follows: given a graph
and a node in this graph as query, the remaining nodes are ranked based on their
affinities to the given query. The goal is to learn a ranking function that defines
the relevance between unlabelled nodes and queries [12]. We employ the graph-
based manifold ranking model to solve our problem.

Given the target bounding box, we first partition it into a set of non-overlapping
patches, which are described with RGB and thermal features (e.g., color, thermal
and gradient histograms). To mitigate the effects of background information, we
assign each patch with a weight that describes its importance belonging to tar-
get, and compute these weights via the cross-modal ranking algorithm. Given
a patch feature set Xm = {xm

1 , ...,xm
n }, some patches are labelled as queries

and the rest need to be ranked according to their affinities to the queries. Here,
m ∈ {1, 2, ...,M} indicates the m-th modality, and M denotes the number of
modalities. Note that RGB-T data is the special case with M = 2, and we
discuss its general form from the applicable perspective. Let sm : Xm → R

n

denotes a ranking function which assigns a ranking value smi to each patch xm
i

in the m-th modality, and sm can be viewed as a vector sm = [sm1 , ..., smn ]T . In
this work, we regard the initial patch weights as query labels, and sm is thus a
patch weight vector.

Let qm = [qm
1 , ...,qm

n ]T denote an indication vector, in which qm
i = 1 if

xm
i is target object patch, and qm

i = 0 if xm
i is the background patch. qm is

computed by the initial ground truth (for the first frame) or tracking results (for
the subsequent frames) as follows. For i-th patch, if it belongs to the shrunk
region of the bounding box then qm

i = 1, and if it belongs to the expanded
region of the bounding box then qm

i = 0, as shown in Fig. 3 (a). The remaining
patches are non-determined, and will be diffused by other patches. In general,
the ranking is performed in a two-stage way to account for background and
objects, respectively [13], but we aim to integrate them in a unified model.
To this end, we define an indication vector Γ that Γi = 1 indicates that the



6 Chenglong Li, Chengli Zhu, Yan Huang, Jin Tang, Liang Wang

i-th patch is foreground or background patch, and Γi = 0 denotes that the i-
th patch is non-determined patch. Given the graph Gm of the m-th modality,
through extending traditional manifold ranking model [12], the optimal ranking
of queries are computed by solving the following optimization problem:

min
{sm}

1

2

M
∑

m=1

n
∑

i,j=1

Wm
ij ||

smi
√

Dm
ii

−
smj

√

Dm
jj

||2 + λ||Γ ◦ (sm − qm)||2F +
λ2

2
∥sm∥2F ,

(1)
where λ is a parameter to balance the smoothness term and fitting term, and λ2

is a regularization parameter. ◦ indicates the element-wise product. Dm is the
degree matrix of the graph affinity matrix Wm, whose computation is as follows.
In them-th modality, if graph nodes vi and vj are adjacent with 8-neighbors, they

are connected by an edge eij , which is assigned a weight Wm
ij = exp(−γ∥xm

i −xm
j ∥),

where γ is the scaling parameter, which is set to 5 in this paper.

In (1), it inherently indicates that the available modalities are independent,
which may significantly limit the performance in dealing with occasional pertur-
bation or malfunction of individual sources. In addition, the settings of initial
patch weights (i.e., queries) are not always reasonable due to noises of tracking
results and irregular object shapes, as shown in Fig. 3 (a). In this paper, we inte-
grate the soft cross-modality consistency and the optimal query learning into (1)
to handle above problems, respectively.

Soft cross-modality consistency. To take advantage of the complementary
benefits of RGB and thermal data, we need impose the modality consistency on
the ranking process. Wang et al. [11] propose a multi-graphs regularized manifold
ranking method to integrate different protein domains using hard constraints,
i.e., employing multiple graphs to regularize the same ranking score. It is not
suitable for our problem, as RGB and thermal sources are heterogeneous with
different properties. Therefore, we introduce a soft cross-modality consistency

to enforce ranking consistency between modalities while allowing sparse incon-
sistency exists to account for their heterogeneous properties. To this end, we
propose the soft cross-modality consistency as a l1-optimization based sparse
learning problem as follows:

min
{sm}

λ1

M
∑

m=2

||sm − sm−1||1 = min
sm

λ1||CS||1, (2)

where λ1 is a regularization parameter, and S = [s1; s2; ...; sM ]. C is the cross-
modal consistency matrix, which is defined as:

C =









I1 −I2 0 0

0 I2 −I3

... ...

0 IM−1 −IM









where I is the identity matrix.



Cross-Modal Ranking for Robust RGB-T Tracking 7

Optimal query learning. To mitigate noise effects of initial patch weights, we
introduce an intermediate variable to represent the optimal ones, and optimize
it in a semi-supervised way. The details are presented below.

Denoting the intermediate variable as q̂m = [q̂m
1 , ..., q̂m

n ]T , we first introduce
two constraints for inferring q̂m, i.e., visual similarity constraint and inconsisten-

cy sparsity constraint. The first constraint assumes that visually similar patches
should have same labels and weights, and vice versa. Therefore, we add a s-
moothness term

∑n

i,j=1 W
m
ij (q̂

m
i − q̂m

j )2 that can make visual similarity become
a graph smoothness constraint. The second constraint aiming to compel sparsity
in q̂m−qm is enlightened by the common use of l1-norm sparsity regularization
term in data noise, which has been proven to be effective even when the data
noise is not sparse [20,21]. Therefore, we formulate it as ||q̂m − qm||1, where
l1-norm is used to promote sparsity on the inconsistency between inferred la-
bels and initial ones (because most of the initial labels should be correct and
the remaining ones are noises). Fig. 3 shows the superiority of the l1 norm over
the l2 norm. By combining these two constraints, the proposed l1-optimization
problem is formulated as follows:

min
{q̂m}

α

n
∑

i,j=1

Wm
ij (q̂

m
i − q̂m

j )2 + β||q̂m − qm||1, (3)

where α and β are the balance parameters. Integrating the soft cross-modality

consistency (2) and the optimal query learning (3) into (1), the final cross-modal
ranking model is written as:

min
{sm},{q̂m}

1

2

M
∑

m=1

(
n
∑

i,j=1

Wm
ij ||

smi
√

Dm
ii

−
smj

√

Dm
jj

||2 + λ||Γ ◦ (sm − q̂m)||2F

+
λ2

2
∥sm∥2F + α

n
∑

i,j=1

Wm
ij (q̂

m
i − q̂m

j )2 + β||q̂m − qm||1) + λ1||CS||1.
(4)

Although (4) seems complex, as demonstrated in the experiments, the track-
ing performance is insensitive to parameter variations.

3.2 Optimization Algorithm

Although the variables of (4) are not joint convex, the subproblem to each vari-
able with fixing others is convex and has a closed-form solution. The ADMM
(alternating direction method of multipliers) algorithm [15] is efficient and ef-
fective solver for the problems like (4). To apply ADMM to our problem, we
introduce two auxiliary variables P = CS and fm = q̂m to make (4) separable.
With some algebra, we have

min
{sm},{q̂m},P,{fm}

M
∑

m=1

((sm)TLmsm + λ||Γ ◦ (sm − q̂m)||2F +
λ2

2
∥sm∥2F

+ 2α(fm)T (Dm −Wm)fm + β∥q̂m − qm∥1) + λ1∥P∥1,
s.t. P = CS, fm = q̂m,

(5)
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Fig. 3. Comparison of l1-norm and l2-norm in learning the optimal queries. (a) Target
bounding box (red color), shrink bounding box (white color) and expand bounding
box (green color). (b) Heatmap optimized by l1-norm. (c) Heatmap optimized by l2-
norm. (d) Heatmap without optimal query learning. Herein, the heatmap represents
the ranking results.

where Lm = I − (Dm)−
1
2Wm(Dm)−

1
2 is the normalized Laplacian matrix of

m-th modality. The augmented Lagrange function of (5) is:

L({sm}, {q̂m},P, {fm},Y1,Y2)

=

M
∑

m=1

((sm)TLmsm + λ||Γ ◦ (sm − q̂m)||2F +
λ2

2
∥sm∥2F

+ 2α(fm)T (Dm −Wm)fm + β∥q̂m − qm∥1) + λ1∥P∥1

+
µ

2
(∥P−CS+

Y1

µ
∥2F +

M
∑

m=1

∥q̂m − fm +
ym
2

µ
∥2F )

− 1

2µ
(∥Y1∥2F + ∥Y2∥2F ),

(6)

where Y1 and Y2 = [y1
2,y

2
2, ...,y

M
2 ] are the Lagrangian multipliers, and µ is the

Lagrangian parameter. Due to space limitation, we present the detailed deriva-
tions in the supplementary file. ADMM alternatively updates one variable by
minimizing (6) with fixing other variables. Besides the Lagrangian multipliers,
there are four variables, including S, q̂m, P and fm to solve. Note that the S-
subproblem includes the inversion operation of a matrix with size of Mn×Mn,
which is time consuming. To handle this problem, we adopt a linearized oper-
ation [16] to avoid matrix inversion for efficiency. Due to space limitation, we
only present the solutions of these subproblems as follows:

fm = (4α(Dm −Wm) + µI)−1(µq̂m + ym
2 )

q̂m = soft thr1(s
m, fm − ym

2

µ
,qm, λ ◦ Γ ◦ Γ, µ

2
, β)

P = soft thr(CS− Y1

µ
,
λ1

µ
)

Sk+1 = Sk − 1

ηµ
∇Sk

Jk,

(7)

where soft thr is a soft thresholding operator and soft thr1 is also a soft thresh-
olding operator with different inputs to soft thr, see the supplementary file
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for detailed definitions. k indicates the k-th iteration, and Jk is the abbreviation
of J(Sk, Q̂

m
k ,Pk,Y1,k, µk) = ST

kLSk + λ∥Γ ◦ (Sk − Q̂k)∥2F + µk

2 ∥Pk − CSk +
Y1,k

µk
∥2F + λ2

2 ∥Sk∥2F , where Q̂ = [q̂1; q̂2; ...; q̂M ], and

L =









L1 0 0

0 L2

...

0 LM









∇SJ is the partial differential of J with respect to S, and η = 1
M

∑M

m=1 ∥Xm∥2F .
Please refer to the supplementary file for the detailed derivations.

4 RGB-T Object Tracking

This section first imposes the optimized patch weights on the extracted multi-
spectral features for more robust feature representation, and then present the
tracker’s details.

4.1 Feature Representation

We perform cross-modal ranking to obtain the patch weights, i.e., s1, s2, ..., sM .
Let xi = [x1

i ; ...;x
M
i ] ∈ R

dM×1 be the RGB-T feature vector of i-th patch. Then,
we construct the final collaborative feature representation by incorporating the
patch weights. Specifically, for the i-th patch, we compute its final weight ŝi by
combining all modal weights as follows:

ŝi =
1

1 + exp(−σ
∑

M
m=1 sm

i

M
)
, (8)

where σ is a scaling parameter fixed to 35 in this work. The collaborative feature
representation is thus obtained by x̂ = [ŝ1x1; ...; ŝnxn] ∈ R

dMn×1.

4.2 Tracking

We adopt the structured SVM (S-SVM) [10] to perform object tracking in this
paper, and other tracking algorithm, such as correlation filters [22], can also be
utilized.

Instead of using binary-labeled samples, S-SVM employs the structured sam-
ple that consists of a target bounding box and nearby boxes in the same frame
to prevent the labelling ambiguity in training the classifier. Specifically, it con-
strains that the confidence score of an target bounding box yt is larger than that
of nearby box y by a margin determined by the intersection over union overlap
ratio (denoted as IoU(yt, y)) between two boxes:

h∗ = argmin
h

ξ||h||2 +
∑

y

max{0,△(yt, y)− hT ϵ(yt, y)}, (9)
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where △(yt, y) = 1 − IoU(yt, y), ϵ(yt, y) = Ψ(yt) − Ψ(y), and ξ = 0.0001 is
a regularization parameter. Ψ(yt) denotes the object descriptor representing a
bounding box yt at the t-th frame, and h is the normal vector of a decision
plane. In this paper, we employ the stochastic variance reduced gradient (SVRG)
technique [23] to optimize (9). By this way, S-SVM can reduce adverse effects of
false labelling.

Given the bounding box of the target object in previous frame (t − 1), we
first set a searching window in current frame t, and sample a set of candidates
within the searching window. S-SVM selects the optimal target bounding box
y∗t in the t-th frame by maximizing a classification score:

y∗t = argmax
yt

(ωhT
t−1Ψ(yt) + (1− ω)hT

0 Ψ(yt)), (10)

where ω is a balancing parameter, and ht−1 is the normal vector of a decision
plane of (t − 1)-th frame. h0 is learnt in the initial frame, which can prevent
it from learning drastic appearance changes. To prevent the effects of unreli-
able tracking results, we update the classifier only when the confidence score
of tracking result is larger than a threshold θ, where the confidence score of
tracking result in t-th frame is defined as the average similarity between the
weighted descriptor of the tracked bounding box and the positive support vec-
tors: 1

|Vt|

∑

v∈Vt
vTΨ(y∗t ), where Vt is the set of the positive support vectors at

time t. In addition, we update object scales with three frames interval using the
method from [24].

5 Performance Evaluation

5.1 Evaluation Settings

Data. There are only two large RGB-T tracking datasets, i.e., GTOT [4] and
RGBT210 [5]. They are large and challenging enough, and we evaluate our ap-
proach on them for comprehensive validations. GTOT includes 50 RGB-T video
clips with ground truth object locations under different scenarios and conditions.
RGBT210 is another larger dataset for RGB-T tracking evaluation. It is highly-
aligned, and contains 210 video clips with both RGB and thermal data. This
dataset takes many challenges into consideration, such as camera moving, dif-
ferent occlusion levels, large scale variations and environmental challenges. The
precision rate (PR) and success rate (SR) are employed to measure quantitative
performance of various trackers.

Parameters. We fix all parameters and other settings in our experiments. We
partition all bounding box into 64 non-overlapping patches to balance accuracy-
efficiency trade-off [6], and extract RGB-T features for each patch, including
color, thermal and gradient histograms, where the dimensions of gradient and
each color channel are set to be 8. To improve the efficiency, each frame is scaled
so that the minimum side length of a bounding box is 32 pixels, and the side
length of a searching window is fixed to be 2

√
WH, where W and H are the
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Fig. 4. Success Rate (SR) on the public GTOT benchmark dataset.
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Fig. 5. The evaluation results on the public RGBT210 benchmark dataset. The repre-
sentative score of PR/SR is presented in the legend.

width and height of the scaled bounding box, respectively. We shrink and expand
the tracked bounding box (lx, ly,W,H) as (lx+0.1W, ly+0.1H, 0.8W, 0.8H) and
(lx −W ′, ly − H ′,W + 2W ′, H + 2H ′), respectively, where (lx, ly) denotes the
top-left coordinate of the tracked bounding box, and W ′ and H ′ indicate the
patch width and height, respectively.

The proposed model involves several parameters in (6), including α, β, λ,
λ1 and λ2, and the tracking sensitivity with different parameters are shown in
Table 1. The results show the robustness of the proposed model to parameters’
variations, and we set α, β λ, λ1 and λ2 to be 0.65, 0.002, 0.56, 0.3 and 0.4,
respectively. In S-SVM, we empirically set {ω, θ} = {0.598, 0.3}, and employ a
linear kernel.

Baselines. For comprehensive evaluation, we compare ours method with 23
popular trackers, some of which are from GTOT and RGBT210 benchmarks.
Since there are few RGB-T trackers [2,3,4,18,5], we extend some RGB tracking
methods to RGB-T ones by concatenating RGB and thermal features into a
single vector or regarding the thermal as an extra channel, such as KCF [22],
Struck [25], SCM [26] and CFnet [27]. In addition, we also select recently pro-
posed state-of-the-art trackers for comparison, such as C-COT [9], ECO [28],
ACFnet [29], SiameseFC [30] and Staple-CA [31], see Fig. 4 and Fig. 5 for de-
tails.
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Table 1. Success Rate (SR) of the proposed method with different parameters on the
GTOT dataset.

Param Setting SR Param Setting SR Param Setting SR

α

0.325 0.624
β

0.0002 0.615
0.65 0.643 0.002 0.643
1.3 0.59 0.02 0.633

λ

0.28 0.62
λ1

0.15 0.628
λ2

0.2 0.602
0.56 0.643 0.3 0.643 0.4 0.643
1.12 0.605 0.6 0.628 0.8 0.632

Table 2. Attribute-based Precision Rate and Success Rate (PR/SR %) on RGBT210
dataset with 9 trackers, including CSR [4], DSST [32], MEEM [33], CNN [22], SOW-
P [6], KCF [22], SGT [5], CFnet [27] and ECO [28]. The best and second results are
in red and green colors, respectively.

ECO SOWP DSST CSR SGT
KCF+
RGBT

MEEM+
RGBT

CNN+KCF+
RGBT

CFnet+
RGBT

Ours

NO 87.7/64.3 75.0/46.1 70.2/41.4 68.1/45.2 82.4/50.7 56.6/36.3 64.7/41.2 63.7/42.9 69.7/52.2 86.1/59.4
PO 72.2/52.5 61.3/39.5 57.0/35.1 52.7/36.6 75.4/48.3 49.6/31.6 57.4/35.5 56.0/36.4 57.2/38.4 77.1/52.2
HO 58.3/41.3 52.0/32.8 39.4/25.7 37.1/24.3 53.1/34.1 33.0/22.2 37.2/24.2 36.6/25.9 39.3/27.3 54.3/34.6
LI 66.6/45.6 48.3/30.7 47.8/29.0 47.3/31.1 71.6/44.7 48.3/30.4 39.2/25.6 52.8/34.5 49.8/33.6 71.4/46.4
LR 64.1/38.1 51.0/29.1 52.8/29.1 46.0/23.1 65.8/37.5 42.6/26.2 44.9/23.4 54.6/32.5 45.2/27.7 64.8/37.4
TC 82.1/58.8 70.0/44.9 50.9/32.2 43.2/29.3 64.9/40.7 39.0/24.1 58.2/35.6 49.6/33.2 42.8/29.4 65.8/43.0
DEF 61.2/45.0 61.4/41.7 46.5/33.0 44.7/33.0 65.3/45.9 40.6/29.5 48.7/33.5 44.8/34.4 48.9/35.2 65.2/45.8
FM 58.2/39.2 56.0/32.3 34.4/21.2 42.6/25.0 58.0/33.1 33.3/19.1 43.5/26.8 37.1/24.1 36.5/23.0 58.8/34.9
SV 74.5/55.4 62.8/37.7 58.7/33.5 53.3/37.5 67.4/41.7 42.4/27.5 52.8/33.0 50.3/32.6 56.7/40.6 72.5/49.2
MB 67.8/49.9 55.2/38.3 32.3/23.2 34.7/23.8 58.6/39.6 29.1/20.7 46.2/31.4 30.4/22.0 30.3/22.4 58.4/40.5
CM 61.7/45.0 55.8/36.9 38.7/26.9 38.9/27.4 59.0/40.7 37.5/26.0 48.7/31.9 36.2/27.0 37.2/27.9 59.7/41.8
BC 52.9/35.2 47.2/28.6 43.8/26.3 38.4/23.7 58.6/35.5 41.0/25.6 40.5/23.4 42.3/28.4 43.7/28.1 57.9/35.2

ALL 69.0/49.8 59.9/37.9 52.2/32.4 49.1/33.0 67.5/43.0 44.0/28.5 50.5/31.9 49.3/33.1 51.8/36.0 69.4/46.3

5.2 Comparison Results

GTOT Evaluation. We present the evaluation results on the GTOT dataset
in Fig. 4. Overall, the proposed algorithm performs favorably against the state-
of-the-art methods. In particular, our approach outperforms the state-of-the-art
methods using deep features with a clear margin, e.g., 5.0%/1.2% over ECO [28]
and 11.5%/7.6% over C-COT [9] in PR/SR score. It is beneficial to the effective
fusion of visible and thermal information in our method. Note that the methods
based on deep features have weak performance on GTOT, including ECO and
C-COT. It may be partly due to the weakness of deep features in representing
the target objects with low resolution (many targets are small in GTOT). Our
approach can handle this challenging factor. Fig. 4 shows that our tracker per-
forms well against the state-of-the-art RGB-T methods, which suggest that the
proposed fusion approach is effective. SGT [5] is better than our tracker in PR
mainly due to adaptive fusion of different modalities by introducing modality
weights, but performs weaker than ours in SR.

RGBT210 Evaluation. We further evaluate our method on the RGBT210
dataset in Fig. 5 and Table 2. The comparison curves show that our tracker also
performs well against the state-of-the-art methods on RGBT210. In particular,
our approach outperforms the state-of-the-art RGB-T tracking methods, e.g.,
1.9%/3.3% over SGT [5] and 20.3%/13.3% over CSR [4] in PR/SR score. It jus-
tifies the effectiveness of the proposed method in fusing multimodal information
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Table 3. PR/SR (%) of the proposed method with the different versions on the GTOT
dataset.

Ours-noC Ours-noq̂ Ours-noS Ours

PR 78.7 78.0 71.1 82.7

SR 61.2 63.1 57.6 64.3

for visual tracking. For the state-of-the-art methods using deep features, the pro-
posed tracker performs well against the SiameseFC [30] and CFnet [27] methods
in all aspects. The proposed tracker performs equally well against the C-COT [9]
and ECO [28] schemes in terms of PR and slightly worse in terms of SR. Fur-
thermore, the proposed algorithm advances the C-COT and ECO methods in
several aspects.

– It does not require laborious pre-training or a large training set, and also does
not need to save a large pre-trained deep model. We initialize the proposed
model using the ground truth bounding box in the first frame, and update
it in subsequent frames.

– It is easy to implement as each subproblem of the proposed model has a
closed-form solution.

– It performs favorably against the state-of-the-art deep tracking methods in
terms of efficiency on a cheaper hardware setup (Ours: 8 FPS on 4.0GHz
CPU, ECO: 8 FPS on 3.4GHz CPU and NVIDIA Tesla K40m GPU, C-
COT: 1 FPS).

– It performs more robustly than the ECO and C-COT methods in some sit-
uations. In particular, it outperforms the ECO method on sequences with
partial occlusion, low illumination, object deformation and background clut-
ters in terms of PR and SR, which suggests the effectiveness of our approach
in fusing the multimodal information and suppressing the background effects
during tracking.

In addition, the example visual results on RGBT210 and GTOT are presented
in the supplementary file, which further qualitatively verify the effectiveness
of our method.

5.3 Ablation Study

To justify the significance of the main components, we implement 3 versions
of our approach for empirical analysis on GTOT. The 3 versions are: 1) Ours-
noC, that computes the patch weights without the constraint of cross-modal
consistency. 2) Ours-noq̂, that removes the optimal query learning operation
in ranking model. 3) Ours-noS, that removes the patch weights in the feature
presentation.

From the evaluation results reported in Table 3, we can draw the following
conclusions. 1) The patch weights in collaborative object representation plays
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critical roles in RGB-T tracking by observing that Ours outperforms Ours-noS.
2) The improvements of Ours over Ours-noq̂ demonstrate the effectiveness of
the introduced optimal query learning. 3) The soft consistency is important for
cross-modal ranking from the observation that Ours-noC is much lower than
Ours.

5.4 Runtime Performance

The experiments are carried out on a PC with an Intel i7 4.0GHz CPU and
32GB RAM, and implemented in C++. The proposed tracker performs at about
8 frames per second. In particular, our ranking algorithm converges within 30
iterations, and costs about 20 ms per frame (tested on all datasets). Note that
our codes do not include any optimization and parallel operation, and the feature
extraction and the structured SVM take most of time per frame (above 80%).

6 Conclusion

In this paper, we propose a graph-based cross-modal ranking algorithm to learn
robust RGB-T object features for visual tracking. In the ranking process, we in-
troduce the soft cross-modality consistency between modalities and the optimal
query learning to improve the robustness. The solver to the proposed mod-
el is fast makes the tracker efficient. Extensive experiments on two large-scale
benchmark datasets demonstrate the effectiveness and efficiency of the proposed
approach against the state-of-the-art trackers.

However, our approach has the following two major limitations. First, the
tracking performance is affected by the imaging limitation of some individual
source, as shown in Table 2 (TC). Second, the runtime does not meet the de-
mand of real-time applications. In future work, we will introduce the modality
weights [4,5] in our model to address the first limitation, and implement our ap-
proach using parallel computation to improve the efficiency, such as multi-thread
based multimodal feature extraction and GPU based structured SVM [34].
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