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Abstract. Facial expressions are combinations of basic components called
Action Units (AU). Recognizing AUs is key for general facial expres-
sion analysis. Recently, efforts in automatic AU recognition have been
dedicated to learning combinations of local features and to exploiting
correlations between AUs. We propose a deep neural architecture that
tackles both problems by combining learned local and global features in
its initial stages and replicating a message passing algorithm between
classes similar to a graphical model inference approach in later stages.
‘We show that by training the model end-to-end with increased supervi-
sion we improve state-of-the-art by 5.3% and 8.2% performance on BP4D
and DISFA datasets, respectively.
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1 Introduction

Facial expressions (FE) are important cues for recognizing non-verbal behaviour.
The ability to automatically mine human intentions, attitudes or experiences
has many applications like building socially aware systems [18,4], improving
e-learning [9], adapting game status according to player’s emotions [1], and de-
tecting deception during police interrogations [11].

The Facial Action Unit System (FACS) [5] is a descriptive coding scheme of
FEs that focuses on what the face can do without assuming any cognitive or
emotional value. Its basic components are called Action Units (AU) and they
combine to form a complete representation of FEs.

AUs are patterns of muscular activation and the way they modify facial mor-
phology is localized (Fig. 1a). While initial AU recognition methods (like JPML
[25] and APL [28]) were using shallow predefined representations, recent methods
(like DRML [26], ROI [12] and GL [7]) applied deep learning to learn richer lo-
cal features that capture facial morphology. Therefore one could predict specific
AUs from informative face regions selected depending on the facial geometry. For
instance, contrary to non-adaptive methods like DRML [26] and APL[28], ROI
[12] and JPML [25] extract features around facial landmarks which are more ro-
bust with respect to non-rigid shape changes. Patch learning is challenging as the
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Fig. 1: Patch and structure learning are key problems in AU recognition. (a) By
masking a region an expressive face becomes indistinguishable from neutral. (b)
Multiple, correlated AUs can be active at the same time.

human face is highly articulated and different patches can contribute to either
specific or groups of AUs. Learning the best patch combination together with
learning specific features from each patch could be beneficial for AU recognition.

AU recognition is also multi-label. Several AUs can be active at the same
time and certain AU combinations are more probable than others (Fig. 1b). AU
prediction performance could be improved by considering probabilistic depen-
dencies. In deep learning approaches, correlations can be addressed implicitly in
the fully connected layers (e.g. DRML [26], GL [7] and ROI [12]). However, struc-
ture is not learned explicitly and inference and sparsity are implicit by design.
JPML [25] treats the problem by including pre-learned priors about AU corre-
lations into their learning. Learning structured outputs has also been studied
by using Graphical Models [25, 19, 6]. However, these models are not end-to-end
trainable.

In this work, we claim that patch and the structure learning are key problems
in dealing with AU recognition. We propose a deep neural network that tack-
les those problems in an integrated way through an incremental and end-to-end
trainable approach. First, the model learns local and holistic representations
exhaustively from facial patches. Then it captures structure between patches
by predicting specific AUs. Finally, AU correlations are captured by a struc-
ture inference network that replicates message passing inference algorithms in a
connectionist fashion. Tab. 1 compares some of the most important features of
the proposed method to the state-of-the-art (specifically JPML [25], APL [28],
DRML|[26], GL[7] and ROI[12]). We show that by separately treating problems
in different parts of the network and being able to optimize them jointly, we
improve state-of-the-art by 5.3% and 8.2% performance on BP4D and DISFA
datasets, respectively. Summarizing, our 2 main contributions are: 1) we propose
a model that learns representation, patch and output structure end-to-end, and
2) we introduce a structure inference topology that replicates inference algorithm
in probabilistic graphical models by using a recurrent neural network.



Deep Structure Inference Network 3

method |LRL|AP|PL|SL|EE|| method |LRL|AP|PL|SL|EE
APL [28] | x | X |v | x| X GL [7] X | x|V [x|V
JPML [25]| x | v |V | x| x || ROI[12] V I VIVIX|V
DRML [26]| v | v | x| x|V |[DSIN (ours)| v/ |V |V |V |V
Table 1: Features of our model and related work. LRL: local representation learning,
AP: adaptive patch, PL: patch learning, SL: structured learning, EE: end-to-end.

The paper is organized as follows. Sec. 2 presents related work. Sec. 3 details
the proposed model and Sec. 4 the results. Sec. 5 concludes the paper.

2 Related Work

Related work is discussed in relation to patch learning or structure learning.

Patch Learning. Inspired by locally connected convolutional layers [17],
Zhao et al. [26] proposed a regional connected convolutional layer that learns
specific convolutional filters from sub-areas of the input. In [12], different CNNs
are trained on different parts of the face merging features in an early fusion
fashion with fully connected layers. Zhao et al. [25] performed patch selection and
structure learning with shallow representations where patches for each AU were
selected by group sparsity learning. Jaiswal et al. [8] used domain knowledge and
facial geometry to pre-select a relevant image region for a particular AU, passing
it to a convolutional and bi-directional Long Short-Term Memory (LSTM) neural
network. Zhong et al. [28] proposed a multi-task sparse learning framework for
learning common and specific discriminative patches for different expressions.
Patch location was predefined and did not take into account facial geometry.

Structure Learning. Zhang et al. [23] proposed a multi-task approach to
learn a common kernel representation that describes AU correlations. Elefteri-
adis et al. [6] adopted a latent variable Conditional Random Field (CRF) to
jointly detect multiple AUs from predesigned features. While existing methods
capture local pairwise AU dependencies, Wang et al. [20] proposed a restricted
Boltzmann machine that captures higher-order AU interactions. Together with
patch-learning, Zhao et al. [25] used positive and negative competitions among
AUs to model a discriminative multi-label classifier. Walecki et al. [19] placed
a CRF on top of deep representations learned by a CNN. Both components are
trained iteratively to estimate AU intensity. Wu et al. [21] used a Restricted
Boltzman Machine that captures joint probabilities between facial landmark lo-
cations and AUs. More recently, Benitez et al. [7] proposed a loss combining the
recognition of isolated and groups of AUs.

3 Method

Let D = {X,Y} be a set of pairs of input images X = {xy,...,x3/} and out-
put AU labels Y = {y1,...,ya} with M number of instances. Each image x;
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is composed of P patches {I3,...,Ip} and output label y; is a set of N AUs
{y1,...,yn} taking a binary value {0,1}. Several AU classes can be active for
an observation as a multi-label problem. Predicting such output is challenging
as a softmax function can not be applied on the set of outputs contrary to the
standard mono-label/multi-class problems. In addition, using independent AU
activation functions in losses like cross-entropy, ignores AU correlations. Includ-
ing the ability to learn structure in the model design is thus relevant.

Two main ways of solving multi-label learning in AU recognition are either
capturing correlations through fully-connected layers [26, 7, 12] or inferring struc-
ture through probabilistic graphical models (PGM) [25, 19, 6]. While the former
can capture correlations between classes, this is not done explicitly. On the other
hand, PGMs offer an explicit solution and their optimization is well studied. Un-
fortunately, placing classical PGMs on top of neural network predictions consid-
erably lowers the capacity of the model to learn high order relationships since it
is not end-to-end trainable. One solution is to replicate graphical model inference
in a conectionist fashion which would make possible joint optimization. Jointly
training CNNs and CRFs has been previously studied in different problems [27,
2, 3]. Following this trend, in this work we formulate AU recognition by a graph-
ical model and implement it by neural networks, more specifically CNNs and
recurrent neural network (RNN). This way, AU predictions from local regions
along AU correlations are learned end-to-end.

Let G = (V,€) denote a graph with vertices V = y specifying AUs and
edges £ C V x V indicating the relationships between AUs. Given the Gibbs
distribution we compute conditional probability P(y|x,©) as:

1 — X
Pylx,0) = — e EOx©), 1)

(v,x,0)

where © are model parameters, Z is a normalization function and F is an energy
function. The model can be updated by introducing latent variables p as:

P(y[x,0) =Y P(y,plx,0), (2)

where p is given as the output of CNN. The vertices and edges in the graph G
can be updated as V =y Up and £ = &, U &,y U Ey. Although edges £, can be
defined by a prior knowledge taken from a given dataset, we use a fully connected
graph independent to the dataset and assign a mutual gating strategy to control
information passing through edges (more details in Sec. 3.3). We define &,, as
edges between p and y, and use a selective strategy to define edges in this set.
Finally, edges &, is an empty set, since in our model an independent CNN is
trained on each image patch I; and we do not assign any edge among p. Given
this assumption, probability distribution P(y,p|x, @) is given by:

P(y,p|X,@) = P(y|p7xa@)HP(pk|Xa @) (3)
k
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Fig.2: Deep Structure Inference Network (DSIN) learns independent AU predictions
from global and local learned features. It refines each AU prediction by taking into
account correlation to the other AUs. Each input image is cropped into a set of patches
{Ii}fll which is used for training an independent CNN for producing a probability
vector p; for N AUs (¢, in Eq. 4). From s; (the patch predictions for a specific AU) we
learn a combination for producing a single AU prediction f; (simplified 1, in Eq. 4).
Final predictions y; are computed by inferring structure among AUs through iterative
message passing similar to inference in a probabilistic graph model (1, in Eq. 4).

As in CRF, energy function F(.) is computed by unary and pairwise terms as:

E(y7p7x78):Z@P(pkvx77T)+ Z ¢py(yi7pk,¢)+ Z wy(yivijw)7 (4)
k

(4,k) EEpy (1,7) €&y

where ¢(.) is a unary term, ¥,(.) are pairwise terms and © = 7 U ¢ U w. Fig.
2 presents our Deep Structure Inference Network (DSIN). It consists of three
components each designed to solve a term in Eq. 4. We refer to the initial part
as Patch Prediction (PP), whose purpose is to exhaustively learn deep local rep-
resentations from facial patches and produce local predictions. Then, the Fusion
(F) module performs patch learning per AU. The final stage, Structure Inference
(SI), refines AU prediction by capturing relationships between AUs. The DSIN
is end-to-end trainable and CNN features can be trained based on gradients
back-propagated from structure inference in a multi-task learning fashion.

3.1 Patch Prediction

Given image patches x, unary terms ¢, (p, x, ) provide AUs confidences for each
patch which are defined as the log probability:

©p(P, %, m) = log P(pl[x, T). (5)

Probability P(p|x,n) is modeled by independent patch prediction functions
{II;(I;; ;) } |, where I; is input image patch and m; are function parameters.
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Fig. 3: (a) Topology of patch prediction CNNs. Each convolutional block has stride 2
and batch normalization. Number of filters followed by the size of the kernel are marked.
The last layers are fully-connected (FC) layers marked with the number of neurons.
All neurons use ReLU activations. (b) Each fusion unit is a stack of 2 FC layers. (c)
A structure inference unit. For better visualization, we just show the interface of the
unit without the inner topology. See details in Sec. 3.3.

Each II; is a CNN computing N AUs probabilities through sigmoid function at
last layer. P independent predictions are provided at this stage, each being a
vector of AU predictions. Although image patches may overlap, we assume inde-
pendence to let each network be expert at predicting AUs on local regions. By
learning independent global representations and local representations, we can
better capture facial morphology and address AU locality.

In Fig. 3(a) we detail the topology of the CNNs used for learning the patch
prediction functions. Many complex topologies have been proposed in recent
years and searching for the best is out of the scope of this work. The chosen

topology, a shallow network, follows the intuition behind well known models like
VGG [16].

3.2 Fusion

Computational complexity to marginalize pairwise relationships in &, is high. In
our formulation, we simplify edges such that &£,, becomes directed from nodes
in p to nodes in y. It means we omit mutual relationships among p and y.
Therefore, nodes in y are conditioned on the nodes in p. However, we want
each AU node in y to be conditioned on the same AU nodes in p from different
patches. It means different patches can provide complementary information to
predict target AU independent to other AUs. Finally, ¢, (y, P, ¢) is defined
as the log probability of P(y|p,¢) which is modeled by a set of independent
functions, so called fusion functions {®;(s;; q/)j)};\[:l, where s; C p corresponds
to the set of j-th AU predictions from all patches and ¢; is function parameters.
We simply model each function @; with 2 fully connected layers with 64 hidden
units, each followed by a sigmoid layer, as shown in Fig. 3(b). We found 64
hidden units works well in practice while higher dimensionality does not bring
any additional performance and quickly starts over-fitting. The output of each
&; is the predicted probability f; for j-th AU.
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3.3 Structure Inference

Up to now, we computed individual AU probabilities in a feed-forward neural
network without taking AU relationships explicitly into account. The goal is to
model pairwise terms 1, such that the whole process is end-to-end trainable in
a compact way. Belief propagation and message passing between nodes is one of
the well known algorithms for PGM inference. Inspired by [3], which proposes a
connectionist implementation for action recognition, we build a Structure Infer-
ence (SI) module in the final part of DSIN.

The SI updates each AU prediction in an iterative manner by taking into ac-
count information from other AUs. The intuition behind this is that by passing
information between predictions in an explicit way, we can capture AU correla-
tions and improve predictions. The structure inference module is a collection of
interconnected recurrent structure interference units (SIU) (see Fig. 3(c)). For
each AU there is a dedicated SIU. We denote the computations done by SIU by
a function £2. Let {£2;}}_, be the set of SIU functions £2; : RV*2 — R? where:

g)j»,mz = Q;(f;,mi™t mbt, ...,mﬁvfl,g);f*l;wj). (6)
At each iteration ¢, £2; takes as input the initial prediction f; for its class, a set of
incoming messages {mé‘l}é\’:l from the SIUs corresponding to the other classes
and its own previous prediction g§—1. Each function {2; has two inline units:
producing j-th AU prediction 17; and message mé— for next time step. In this
way, predictions are improved iteratively by receiving information from other
nodes. Computationally, we replicate this iterative message passing mechanism
in the collection of SIUs with a recurrent neural network that shares function
parameters {2; across all time steps. We show a SIU unit in Fig. 3(c).
A message unit basically corresponds to the distribution of the AU node. A
message unit from a SIU is a parametrized function of the previous messages,
the initial fused prediction and the previous prediction of the same SIU:

b = o (w7 [ulm ) 131 + A7), g

where o(.) is the sigmoid function, u(.) is the mean function, wj* € R* and
B € R are message function parameters. Messages between two nodes at each
time step have a mutual relationship which can be controlled by a gating strategy.
Therefore, a set of correction factors are computed as:

X; =0 (w']q [,u(mia amg\/)vfjagﬁ_l] +6]9) ’ (8)

where wf € R® and 7 € R are gating function parameters. Then, a message
mj_,; that is passed from AU node i to j will be updated by the mutual factors
of the gate between nodes ¢ and j as:

mh = p(xg, xX5)mi_; (9)

Finally, updated messages coming to the j-th node along with initial estimation
f; are used to produce output prediction Q; as:

it = o (WY [pm@t, .., m), f5] + BY) (10)
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E right cheek

Fig.4: Each input image is aligned and cropped into 5 patches.

where wé-/ € R? and B;-’ € R are prediction function parameters. By doing this,
we are able to combine representation learning in function II, patch learning
in function @ and structure inference in the (2 in a single end-to-end trainable
model. We introduce our training strategy in Sec. 4.1.

4 Experimental Analysis

In the following, we describe experimental settings and results.

4.1 Experimental Setting

Data. We used BP4D [24] and DISFA [13] datasets. BP4D contains 2D and 3D
videos of 41 young adults. It has 328 videos (8 videos for 41 participants) with
12 coded AUs, resulting in about 140k valid face images [24]. DISFA contains
27 adults (12 women and 15 men) with ages between 18 to 50 years and relative
ethnic diversity. The data corpus consists of approximately 130k frames in total.
AU intensity is coded for each video frame on a 0 (not present) to 5 (maximum
intensity) ordinal scale. For our purpose we consider all labels with intensity
greater than 3 as active and the rest as non-active. Both datasets are widely
used in most recent AU recognition works.

Preprocessing. For each image, facial geometry is estimated using [10].
From all neutral faces we compute 3 reference anchors as the mean of the eyes
and the mouth landmarks. Faces are resized to 224 x 224 x 3 and a rigid transfor-
mation is applied for registering to the anchors, reducing variance to scale and
rotation. We crop 5 patches of size 56 x 56 x 3 around points defined by the de-
tected landmarks (see Fig. 4). For reducing redundancy we ignore corresponding,
symmetrical patches like the left eye and cheek.

Training. We incrementally train each part of DSIN before end-to-end model
training. During training we use supervision on the patch prediction p, the fusion
f and the structure inference outputs §. On p we use a weighted Lo loss denoted
by L (p,y). The weights are inversely proportional to the ratio of positives in the
total number of observations for each AU class in training. The weighting gives
more importance to the minority classes in each training batch which ensures
a more equal gradient update across classes and overall better performance.
On the fusion and structure inference outputs we apply a binary cross-entropy
loss (denoted by Lg(f,y) and Lo(g,y)). For the structure inference we include
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Algorithm 1: Training procedure of DSIN.

Training data: {{I}/,y}
Model parameters: patch prediction: {m;}/2,, fusion {¢;}IL,, structure
inference {w;} X4
Step 0: random initialization around 0: 7, ¢,w < N(0, c?)
Step 1: train patch prediction: m; «— ming (L (I1;(1;;m:)),y), Vi € {1,..., P}
Step 2: freeze patch prediction; train fusion: ¢ < ming La(P(IT; ¢), )
Step 3: train patch prediction and fusion jointly:
7,6+ ming (L (T(1;)), ) + La((IT; 6), )
Step 4: freeze patch prediction and fusion; train structure inference:
w < ming, Lo (2(P;w),y)
Step 5. train all:
T, ¢,w < ming o w (w1 L (I(I;7)),y) + waLle(P(I1;8), y) + wsLa(2(P;w),y))
Output: optimized parameter: 7°F%, ¢°Pt, (Pt

a regularization on the correction factors (denoted by x in Eq. 8 and Eq. 9)
to force sparsity in the message passing. Details of the training procedure are
shown in Alg. 1. We use an Adam optimizer with learning rate of 0.001 and mini-
batch size 64 with early stopping. Experimentally, we found the individual loss
contributions wy; = 0.25, wy = 0.25 and w3 = 0.5 to work well in training. For
both datasets we perform a subject exclusive 3-fold cross-validation. Similarly
o [12], on DISFA we take the best CNNs trained for patch prediction on the
BP4D and retrained fully connected layers for the new set of outputs. We fix
the convolutional filters throughout the rest of the training.

Methods and metrics. We compare against CPM [22], APL [28], JPML
[25], DRML [26], and ROI [12] state-of- the art alternatives. We evaluate F'1-
frame score as F'1 = 2 PP+R, where P = > + - R= tpipfn, tp being true positives,
fn false negatives and fp false positives 1l metrics are computed per AU and
then averaged. Targeted AUs shown in Fig. 6.

4.2 Results

In the following, we explore the effect design decisions included in the DSIN
followed by comparison against state-of-the-art alternatives in Sec. 4.2 and qual-
itative examples in Sec. 4.2.

Ablation Study. We analyze DSIN design decisions in the following.

Class balancing. In both datasets, classes are strongly imbalanced. This
can be harmful during training. To alleviate this, we use a weighted loss on
patch prediction CNNs. Tab. 2 shows results with and without class balancing.
This overall improves performance, especially on poorly represented classes. On
BP4D the classes with ratios of positives in the total of samples lower than 30%
are AUO1, AU02, AU04, AU17, AU24. These are the classes that are improved
the most. AUs like AUO7 or AU12 have positives to total rations higher than
50%. Balancing can reduce performance on these classes.
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method AUO01|AU02|AU04|AU06|AU07|AU10|AU12|AU14|AU15/AU17|AU23|AU24| avg
VGG (face)’” [35.2]31.2[25.4 [ 73.1 [72.1]80.1[59.2[35.1]32.152.3]26.1|36.2[46.5
PP(face)™® 35.1 |38.1|53.9|77.2|70.7 | 83.1|86.2 |56.1|39.8|54.5|37.2| 31.4 |55.3

PP (right eye)"?[46.8]40.4] 453683692 - | - | - | - | - | - | - | -
PP(mouth)™ | - | - | - | - | - |78.6 820542386547 |[39.3]|43.3| -
PP (right eye) | 38.0 |[37.7]] 48.3 | 69.5 | 71.0 | 72.4 | 77.4 | 50.7 | 15.0 | 38.9 | 13.8 | 15.3 | 45.7
PP (between cye)| 41.7 | 34.8 | 45.9 | 64.9 | 655 | 72.1 | 73.0 | 54.9 | 19.7 | 33.9 | 13.9 | 7.0 | 44.0
PP(mouth) | 12.4 | 7.3 | 22.4 | 75.5 | 70.5 | 78.9 | 81.3 | 66.2 | 35.8 | 59.6 | 37.6 |[42.8]| 49.3
DP(right cheek) | 30.5 | 18.4 | 41.8 | 75.2 | 73.2 | 79.1 | 81.9 [[61.9]| 35.7 | 55.1 | 35.5 | 35.7 | 52.0
PP(nose) | 41.6 | 28.4 | 46.4 | 71.1 | 70.5 | 78.8 | 78.0 | 57.1 | 21.3 | 43.7 | 34.0 | 20.3 | 49.3
PP (face) 438 | 37.5 |[54.9]| 77.4 | [71.2]|[79.2] | 84.0 | 56.6 |[39.7]|[59.7]| 39.2 | 39.5 |[56.9]

PP

PP+F [44.8]| 35.8 | 57.1|[76.7]| 74.3 | 79.6 |[83.7]| 56.6 | 41.1| 61.8 | 42.2| 40.1 | 57.8
DSING <7 46.7[34.1[62.0] 76.5 [ 74.1[[83.1]] 84.9 [ 60.9 [ 36.0 [ 57.1 [ 43.3] 36.1 [ 57.9
7 DSIN, 477 | 36.5 | 55.6 | 76.3 |[73.7]| 80.1 | 85.0 | 64.0 |[39.2]| 60.6 |[43.1]| 39.9 | 58.2
= DSIN; [49.7]| 36.3 | 57.3 | 76.8 | 73.4 | 81.6 | 84.5 |[64.7]| 38.5 |[63.0]| 39.0 | 37.3 | 58.5
A DSINy, 51.7 |[40.4]| 56.0 | 76.1 | 73.5 | 79.9 |[85.4]| 62.7 | 37.3 | 62.9 | 38.6 |[41.6]|[58.9]

DSING, 51.7 | 41.6 |[58.1]|[76.6]| 74.1 | 85.5 | 87.4 | 72.6 | 40.4 | 66.5 | 38.6 | 46.9 |61.7
Table 2: Recognition results on BP4D. PP([patch]) stands for patch prediction on the
indicated patch. F stands for the fusion and DSIN is the final model. We indicate the
results when training on individual AUs with [method]™?, fine tuning on the validation
dataset of the decision threshold by DSIN®*, number of iterations of the structure
inference by DSIN7 and training without correction factors as DSIN™/. VGG (face)/*
is a pre-trained VGG-16 [14] fine-tuned on BP4D. PP(face)™" is a patch prediction
without class balancing. All results are obtained by 3-fold cross-validation on BP4D.

Choice of prediction topology. In Tab. 2 we compare the proposed CNN
for patch prediction (PP(face)) against VGG-16. The VGG-16 model used was
trained for face recognition [14] and fine-tuned on our data for AU recognition.
Our model shows superior performance.

Targeting subsets of AUs. We explore the effect of the considered target
set on the overall prediction performance. In Tab. 2 we show prediction results
from the right eye and from the mouth patches when training either on the full
set of targets ([method]) or on individual targets ([method]'™?). When training
on individual AUs the decision for the classifier is simpler. On the other hand any
correlation information between classes that could be captured by the FC layers
is ignored. In certain cases the individual prediction is superior to the exhaustive
prediction. In the case of the right eye patch this is particularly true for AUOL.
But this is rather the exception. On average and across patches training on
groups of AUs or on all AUs is beneficial as correlation information between
classes is employed by the network in the fully connected layers. Additionally,
predicting AU individually with independent nets would quickly increase the
number of parameters with considerable effects on the training speed and final
model performance.

Tab. 2 and 3 show AU recognition results on both datasets trained on patches.
That proves the locality assumption. When training on the mouth the perfor-
mance on the upper face AUs is greatly affected. Similarly, training on the eye
affects the performance on the lower face AUs. This is expected as the patch
prediction can only infer the other AUs from the ones visible in the patch.
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Fig. 5: Different levels of regularization on the mean p(x) (white line) and standard
deviation o(x) (envelope) of the correction factors during training. Small regularization
values force the correction factors to diverge faster. Increasing regularization collapses
the correction factors hurting the message passing.

method AUO01|{AU02|AU04|AU06|AU09|AU12|AU25|AU26| avg
PP(right eye) | 27.2 [ 15.4 | 58.8 | 8.0 |[18.2]53.6|73.3| 9.1 |33.0
PP (between eye)| 34.6 | 13.2 | 59.7 | 15.4 | 21.1 | 50.9 | 72.9 | 8.5 | 34.5
PP (mouth) 7.5 | 6.4 | 44.6 | 28.5 | 23.9 | 72.1 | 87.5 [[27.3]] 37.2
PP(right cheek) | 24.6 | 12.2 | 46.1 | 31.2 | 45.2 | 71.5 | 84.5 | 22.4 | 33.8

PP (nose) 21.9 | 19.1 | 52.0 | 32.0 | 50.9 | 66.5 | 76.6 | 8.9 | 41.0
PP (face) 29.8 |[31.4]] 64.6 | 26.8 | 21.3 | 70.1 | 87.0 | 20.3 | 43.9
PPIF [40.1]| 18.6 | 70.8 | 25.4 | 42.1 |[71.8]|[38.8]| 26.4 |[48.0]
DSIN 42.439.0 |[68.4]|[28.6]|[46.8]| 70.8 | 90.4 | 42.2 | 53.6

Table 3: Results of DSIN on DISFA. PP([patch]) stands for patch prediction on the
indicated patch. F stands for the fusion. DSIN is the final model. For DISFA we only
show the DSIN with 7" = 10, the best performing on BP4D.

Learning Local Representations. On average, face prediction compared
to patch prediction performs better on the entire output set. However, when
individual AUs are considered, this is no longer the case. For BP4D, the per-
formance on AU15 and AU24 are considerably higher when predicting from the
mouth patch than from the face (see Tab. 2). On DISFA the prediction from
the whole face is the best on just 3 AUs (see Tab. 3). The nose patch is better
for predicting AU06 and AU09, the mouth patch is better for AU12, AU25 and
AU26, and the between eye patch for AUOL.

Patch Learning. Tab. 2 and 3 show results of AU-wise fusion for BP4D and
DISFA (PP+F). On both, patch learning through fusion is beneficial, but on
DISFA benefits are higher. This might be due to the fact that prediction results
on DISFA are considerably more balanced across patches. Overall on BP4D
the fusion improves results on almost all AUs compared to face prediction. This
shows that even though the other patches perform worse on certain classes, there
is structure to learn from their prediction that helps to improve performance.
However, the fusion is not capable to replicate the result of the mouth prediction
on AU14. On DISFA, in almost every case fusion gets close or higher to the
best patch prediction. In both cases, fusion has greater problems in improving
individual patches in cases where input predictions are already very noisy.

Structure Learning. Tab. 2 and 3 show results of the final DSIN model.
For BP4D, we also perform a study of the number of iterations 7" considered for
structure inference. Since parameters w; are shared across iterations, more itera-
tions are beneficial to capture AU relationships in a fully connected graph with a
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Fig. 7: 7 vs AU performance on BP4D valida-
geted in this work.

tion set. Black circles denote best score.

large number of nodes (12 in our case). We also trained DSIN without correction
factors (Eq. 9 is not applied in this case). Results are inferior compared with the
same model with correction factors. In the case of DISFA, we only applied the
structure inference with the best previously found 7' = 10 steps. Structure in-
ference is beneficial in both cases. On BP4D, it considerably improves AU2 and
AU14. For DISFA, the results are even more conclusive. Adding the structure
inference brings more than 5% improvement over the fusion.

Correction factor regularization. Fig. 5 shows the effect of increasing
regularization applied on the correction factors y. Overall, regularizing y does
not bring significant benefits. When comparing r = 1072 with no regulariza-
tion the differences are minimal. The network has the ability to learn sparse
message passing by itself without regularization. Still, small values of r lead to
faster divergence of x and faster convergence of the network. The difference in
performance is not significant. On the other hand values of » > 5 x 1072 nega-
tively affect performance as most of x get closer to 0 and no messages are passed
anymore. For these reasons, we keep r = 5 x 1073,

Threshold Tuning. Prediction value per AU takes values between 0 and 1.
In all results, we compute the performance by binarizing the output with respect
to threshold 7 = 0.5. Although class balancing as a weighted loss is beneficiary, it
does not totally solve data imbalance. Fig. 7 shows performance in terms of 7 for
validation set of BP4D. As shown, a threshold 7 = 0.5 is not an ideal value. For
most classes 7 € [0.1,0.3] is preferable. Exception is AU04. Tables 2 and 3 show
the performance of the proposed model after tuning 7 per class (DSIN®). This
way 2.8% and 3.1% of performance is gained on BP4D and DISFA, respectively.

Comparison with state-of-the-art. Tables 4 and 5 show how our model
compares against the state-of-the-art related methods on BP4D and DISFA,
respectively. DSIN and ROI are the best performing in both datasets. Both
methods learn deep local representations and patch combinations end-to-end.
The worst performing methods, JPML on BP4D and APL on DISFA, use pre-
defined features and are not end-to-end trained. Comparing DSIN and ROI with
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method |AUO1|AUO02|{AU04|AU06|AU07|AU10|AU12|AU14|AU15|/AU17|AU23|AU24|AVG
JPML [25]| 32.6 | 25.6 | 37.4 | 42.3 | 50.5 | 72.2 | 74.1 |[65.7]| 38.1 | 40.0 | 30.4 ([42.3]| 45.9
DRML [26]| 36.4 |41.8 | 43.0 | 55.0 | 67.0 | 66.3 | 65.8 | 54.1 | 33.2 | 48.0 | 31.7 | 30.0 | 48.3
CPM [22] |[43.4]| 40.7 | 43.3 | 59.2 | 61.3 | 62.1 | 68.5 | 52.5 | 36.7 | 54.3 | 39.5| 37.8 | 50.0
ROT [12] | 36.2 | 31.6 | 43.4 | 77.1|[73.7]|[85.0]| [37.0]| 62.6 | 45.7 | 58.0 | 38.3 | 37.4 | 56.4

DSIN | 51.7 | 40.4 |[56.0]| 76.1 | 73.5 | 79.9 | 85.4 | 62.7 | 37.3 |[62.9]|[38.8]| 41.6 |[58.9]
DSIN” | 51.7 |[41.6]| 58.1 | [76.6]| 74.1 | 85.5 | 87.4 | 72.6 | [40.4]| 66.5 | 38.6 | 46.9 | 61.7
Table 4: AU recognition results on BP4D. Best results are shown in bold. Second best
results are shown in brackets. For the proposed model we show an additional set of
results (DSINy¢) obtained when the decision threshold is tuned per AU.

method |AUOI[AU02[AU04[AUO6[AUO9[AUI2[AU25[AU26] avg
APL[28] | 11.4 | 12.0 | 30.1 | 12.4 | 10.1 | 65.9 | 21.4 | 26.0 | 23.8
DRML [26]] 17.3 [ 17.7 | 37.4 | 29.0 | 10.7 | 37.7 | 38.5 | 20.1 | 26.7
ROI [12] | 41.5 | 26.4 | 66.4 | 50.7 | 8.5 | 89.3 | 88.9 | 15.6 | 48.5
DSIN  |[42.4]([39.0]|[68.4]| 28.6 |[46.8]| 70.8 |[90.4] [[42.2]|[53.6]
DSIN®® [46.9[42.5(68.8([32.0]| 51.8 [[73.1][ 91.9 | 46.6 | 56.7

Table 5: AU recognition results on DISFA. Best results are shown in bold. Second best
results are shown in brackets.

DRML one can observe the advantage in learning independent local represen-
tation. Both ROI and our model learn independent local representations, while
DRML disentangles the representation learning in just one layer of their net-
work. Interestingly though, there is also an exception. On BP4D, CPM performs
slightly better than DRML even though it is not a deep learning method. When
comparing our proposed model with ROI on BP4D our CNN trained just on face
without class balancing has inferior results. When we include class balancing and
patch learning our topology improves performance, further enhanced by struc-
ture inference and end-to-end final training. In the case of DISFA, single CNN
trained on the whole face with class balancing has a performance of 43.9, being
4.6% lower than ROI. When we add patch prediction fusion (PP+F) we get just
0.5% lower than ROI while the addition of the structure inference and threshold
tuning improves ROI performance. Finally, DSIN shows the best results on both
datasets. For BP4D, from the 12 AUs target it performs best on 5 and second
best on additional 5. In the case of DISFA the improvement over ROI is greater,
DSIN performing best in all but one AU. Overall, we obtain 5.3% absolute and
9.4% relative performance improvement on BP4D and 8.2% absolute and 16.9%
relative performance improvement on DISFA, respectively.

Qualitative results. Fig. 8(a) shows examples of how structure inference tends
to correct predictions following AU correlations. We show the magnitude of AU
correlations on BP4D in Fig. 8(b). In the first 3 column examples, AU06 and
AUO07 are not correctly classified by the fusion model (middle row). Both these
AUs are highly correlated with already detected AUs like AU10, AU12 and AU14.
Such correlation could be captured by SI (bottom row). The rightmost example
shows how AU17, a false positive, is corrected. As shown in Fig. 8(b), AU17
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Fig. 8: (a) Examples of AU predictions: ground-truth (top), fusion module (middle)
and structure inference (bottom) prediction (e: true positive, e: false positive). (b)
AUs correlation in BP4D (e: positive, e: negative). Line thickness is proportional with
correlation magnitude. (c) Class activation map for AU24 that shows the discriminative
regions of simple patch prediction (left) and DSIN (right). Best seen in color.

is negatively correlated with AU4, which was already detected. In Fig. 8(c) we
show a class activation map [15] for AU24 of the patch prediction (left) vs. the
DSIN (right). Contrary to very localized patch prediction, the attention on right
expands to a larger area of the face where possible correlated AUs might exist.

5 Conclusion

We proposed the Deep Structured Inference Network, designed to deal with both
patch and structure learning for AU recognition. DSIN first learns independent
local and global representations and corresponding predictions. Then, it learns
relationships between predictions per AU through stacked fully connected layers.
Finally, inspired by inference algorithms in graphical models, DSIN replicates a
message passing mechanism in a connectionist fashion. This adds the ability to
capture correlations in the output space. The model is end-to-end trainable and
improves state-of-the-art results by 5.3% and 8.2% performance on BP4D and
DISFA datasets, respectively. Future work includes learning patch structure at
feature level and a structure inference module with increased capacity.
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