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Abstract. This work addresses the problem of billion-scale nearest neigh-
bor search. The state-of-the-art retrieval systems for billion-scale databases
are currently based on the inverted multi-index, the recently proposed
generalization of the inverted index structure. The multi-index provides
a very fine-grained partition of the feature space that allows extracting
concise and accurate short-lists of candidates for the search queries.
In this paper, we argue that the potential of the simple inverted index
was not fully exploited in previous works and advocate its usage both for
the highly-entangled deep descriptors and relatively disentangled SIFT
descriptors. We introduce a new retrieval system that is based on the
inverted index and outperforms the multi-index by a large margin for the
same memory consumption and construction complexity. For example,
our system achieves the state-of-the-art recall rates several times faster
on the dataset of one billion deep descriptors compared to the efficient
implementation of the inverted multi-index from the FAISS library.

1 Introduction

The last decade efficient billion-scale nearest neighbor search has become a sig-
nificant research problem[1–6], inspired by the needs of modern computer vision
applications, e.g. large-scale visual search[7], low-shot classification[8] and face
recognition[9]. In particular, since the number of images on the Internet grows
enormously fast, the multimedia retrieval systems need scalable and efficient
search algorithms to respond queries to the databases of billions of items in
several milliseconds.

All the existing billion-scale systems avoid the infeasible exhaustive search
via restricting the part of the database that is considered for a query. This
restriction is performed with the help of an indexing structure. The indexing
structures partition the feature space into a large number of disjoint regions,
and the search process inspects only the points from the regions that are the
closest to the particular query. The inspected points are organized in short-lists

of candidates and the search systems calculate the distances between the query
and all the candidates exhaustively. In scenarios, when the database does not fit
in RAM, the compressed representations of the database points are used. The
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compressed representations are typically obtained with product quantization[10]
that allows to compute the distances between the query and compressed points
efficiently. The step of the distances calculation has a complexity that is linear in
the number of candidates hence the short-lists provided by indexing structures
should be concise.

The first indexing structure that was able to operate on the billion-scale
datasets was introduced in [1]. It was based on the inverted index structure
that splits the feature space into Voronoi regions for a set of K-Means centroids,
learned on the dataset. This system was shown to achieve reasonable recall rates
in several tens of milliseconds.

Later a generalization of the inverted index structure was proposed in [2].
This work introduced the inverted multi-index (IMI) that decomposes the fea-
ture space into several orthogonal subspaces and partitions each subspace into
Voronoi regions independently. Then the Cartesian product of regions in each
subspace formes the implicit partition of the whole feature space. Due to a huge
number of regions, the IMI space partition is very fine-grained, and each re-
gion contains only a few data points. Therefore, IMI forms accurate and concise
candidate lists while being memory and runtime efficient.

However, the structured nature of the regions in the IMI partition also has a
negative impact on the final retrieval performance. In particular, it was shown in
[5] that the majority of IMI regions contain no points and the effective number of
regions is much smaller than the theoretical one. For certain data distributions,
this results in the fact that the search process spends much time visiting empty
regions that produce no candidates. In fact, the reason for this deficiency is
that the IMI learns K-Means codebooks independently for different subspaces
while the distributions of the corresponding data subvectors are not statistically
independent in practice. In particular, there are significant correlations between
different subspaces of CNN-produced descriptors that are most relevant these
days. In this paper, we argue that the previous works underestimate the simple
inverted index structure and advocate its use for all data types. The contributions
of our paper include:

1. We demonstrate that the performance of the inverted index could be sub-
stantially boosted via using larger codebooks, while the multi-index design
does not allow such a boost.

2. We introduce a memory-efficient grouping procedure for database points that
boosts retrieval performance even further.

3. We provide an optimized implementation of our system for billion-scale
search in the compressed domain to support the following research on this
problem. As we show, the proposed system achieves the state-of-the-art recall
rates up to several times faster, compared to the advanced IMI implementa-
tion from the FAISS library[6] for the same memory consumption. The C++
implementation of our system is publicly available online5.

5 https://github.com/dbaranchuk/ivf-hnsw
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The paper is structured as follows. We review related works on billion-scale
indexing in Section 2. Section 3 describes a new system based on the inverted
index. The experiments demonstrating the advantage of our system are detailed
in Section 4. Finally, Section 5 concludes the paper.

2 Related work

In this section we briefly review the previous methods that are related to our
approach. Also here we introduce notation for the following sections.

Product quantization (PQ) is a lossy compression method for high-
dimensional vectors [10]. Typically, PQ is used in scenarios when the large-
scale datasets do not fit into the main memory. In a nutshell, PQ encodes each
vector x ∈ RD by a concatenation of M codewords from M D

M
-dimensional

codebooks R1, . . . , RM . Each codebook typically contains 256 codewords Rm =
{rm1 , . . . , rm256} ⊂ RD so that the codeword id could fit into one byte. In other
words, PQ decomposes a vector x into M separate subvectors [x1, . . . , xM ] and
applies vector quantization (VQ) to each subvector xm, while using a separate
codebook Rm. Then the M -byte code for the vector x is a tuple of codewords
indices [i1, . . . , iM ] and the effective approximation is x ≈ [r1i1 , . . . , r

M
iM

]. As a
nice property, PQ allows efficient computation of Euclidean distances between
the uncompressed query and the large number of compressed vectors. The com-
putation is performed via the ADC procedure [10] using lookup tables:

‖q − x‖2 ≈ ‖q − [r1i1 , . . . , r
M
iM

]‖2 =

M
∑

m=1

‖qm − rmim‖
2

(1)

where qm is the mth subvector of a query q. This sum can be calculated in M

additions and lookups given that distances from query subvectors to codewords
are precomputed and stored in lookup tables. Thanks to both high compression
quality and computational efficiency PQ-based methods are currently the top
choice for compact representations of large datasets. PQ gave rise to active re-
search on high-dimensional vectors compression in computer vision and machine
learning community[11–19].

IVFADC [1] is one of the first retrieval systems capable of dealing with
billion-scale datasets efficiently. IVFADC uses the inverted index [20] to avoid
exhaustive search and Product Quantization for database compression. The in-
verted index splits the feature space into K regions that are the Voronoi cells of
the codebook C = {c1, . . . , cK}. The codebook is typically obtained via standard
K-means clustering. Then IVFADC encodes the displacements of each point from
the centroid of a region it belongs to. The encoding is performed via Product
Quantization with global codebooks shared by all regions.

The Inverted Multi-Index and Multi-D-ADC. The inverted multi-
index (IMI) [2] generalizes the inverted index and is currently the state-of-the-art
indexing approach for high-dimensional spaces and huge datasets. Instead of us-
ing the full-dimensional codebook, the IMI splits the feature space into several
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orthogonal subspaces (usually, two subspaces are considered) and constructs a
separate codebook for each subspace. Thus, the inverted multi-index has two D

2 -
dimensional codebooks for different halves of the vector, each with K subspace
centroids. The feature space partition then is produced as a Cartesian product
of the corresponding subspace partitions. Thus for two subspaces the inverted
multi-index effectively produces K2 regions. Even for moderate values of K that
is much bigger than the number of regions within the IVFADC system or other
systems using inverted indices. Due to a very large number of regions only a small
fraction of the dataset should be visited to reach the correct nearest neighbor.
[2] also describes the multi-sequence procedure that produces the sequence of
regions that are the closest to the particular query. For dataset compression, [2]
also uses Product Quantization with codebooks shared across all cells to encode
the displacements of the vectors from region centroids. The described retrieval
system is referred to as Multi-D-ADC.

The performance of indexing in the Multi-D-ADC scheme can be further
improved by using the global data rotation that minimizes correlations between
subspaces[3]. Another improvement[4] introduces the Multi-LOPQ system that
uses local PQ codebooks for displacements compression with the IMI structure.

Several other works consider the problem of the memory-efficient billion-
scale search. [5] proposes the modification of the inverted multi-index that uses
two non-orthogonal codebooks to produce region centroids. [16] proposes to use
Composite Quantization[15] instead of Product Quantization to produce the
partition centroids. While these modifications were shown to achieve higher recall
rates compared to the original multi-index, their typical runtimes are about ten
milliseconds that could be prohibitively slow in practical scenarios. Several works
investigate efficient GPU implementations for billion-scale search[6, 21]. In this
paper, we focus on the niche of the CPU methods that operate with runtimes
about one millisecond.

3 Inverted Index Revisited

In this section we first compare the inverted index to the IMI. In particular, we
show that the simple increase of the codebook size could substantially improve
the indexing quality for the inverted index while being almost useless for the
IMI. Second, we introduce a modification for the inverted index that could be
used to boost the indexing performance even further without efficiency drop.

3.1 Index vs Multi-Index

We compare the main properties of the inverted index and the IMI in the Ta-
ble 3.1. The top part of the table lists the features that make the IMI the state-
of-the-art indexing structure these days: precise candidate lists, fast indexing
and query assignment due to small codebook sizes (typically K does not exceed
214 for billion-sized databases).
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Structure Inverted Index Inverted Multi-Index

Candidate lists quality Medium High

Query assignment & indexing cost Medium Low

Number of random memory
accesses during search

Small Large

Performance increase from large K High Small

Memory consumption scalability O(K) O(K2)
Table 1. Comparison of the main properties of the inverted index and the IMI. K
denotes the codebook sizes in both systems. The IMI provides more precise candidate
lists and has low indexing and query assignment costs due to smaller codebook sizes.
On the other hand, the inverted index requires a smaller number of expensive random
memory accesses when searching, and could benefit from large codebooks, while the
IMI performance saturates with K about 214. Moreover, the increase of K is memory-
inefficient in the IMI as its additional memory consumption scales quadratically.

Nevertheless, the fine-grained partition in the multi-index imposes several
limitations that are summarized in the bottom part of the Table 3.1. First, the
IMI has to visit much more partition regions compared to the inverted index to
accumulate the reasonable number of candidates. Skipping to the next region
requires a random memory access operation that is more expensive compared
to the sequential PQ-distance computation, especially for short code lengths.
A large number of random access operations slows down the search, especially
when large number of candidates is needed.

Another property that favors the inverted index is the possibility to increase
its codebook size K. To the best of our knowledge, the largest codebook sizes
used in the index vs multi-index comparison were 217 and 214 respectively[5]. We
argue that the multi-index performance is closer to saturation w.r.t K compared
to the inverted index, and the usage of K > 214 would not result in substantially
better feature space partition. On the other hand, in the inverted index one
could use much larger codebooks compared to K = 217 without saturation in
the space partition quality. To support this claim, we compare the distances from
the datapoints to the closest centroids for the inverted index and the IMI with
different K values for the DEEP1B dataset[5] in Table 2. The smaller distances
typically indicate that the centroids represent the actual data distribution better.
Table 2 demonstrates that the increase of K in the multi-index results in the
much smaller decrease of the closest distances compared to the inverted index.
E.g. the 16-fold increase of K from 218 to 222 in the inverted index results in
18% drop in the average distance. On the other hand, the 16-fold increase of
regions number in the IMI partition (that corresponds to the fourfold increase
in K from 213 to 215) results only in 11% drop. We also compare amounts
of additional memory consumption required by both systems with different K

values to demonstrate that the IMI is memory-inefficient for large codebooks.
E.g. for K = 215 the inverted multi-index requires about four additional bytes
per point for one billion database, that is non-negligible, especially for short code
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lengths. The reason for the quadratic scalability is that the IMI has to maintain
K2 inverted lists to represent the feature space partition.

Inverted Index Inverted Multi-Index
K Average distance Memory K Average distance Memory
218 0.315 97Mb 213 0.345 256Mb
220 0.282 388Mb 214 0.321 1024Mb
222 0.259 1552Mb 215 0.305 4096Mb

Table 2. The indexing quality and the amount of additional memory consumption for
the inverted index and the IMI with different codebook sizes on the DEEP1B dataset.
The indexing quality is evaluated by the average distance from the datapoints to the
closest region centroid. The IMI indexing quality does not benefit from K > 214 while
the required memory grows quadratically.

The numbers from Table 2 encourage to use the inverted index with larger
codebook instead of the IMI, despite the smaller number of the partition regions.
The only practical reason, preventing their usage, is the expensive procedure of
query assignment that takes O(K) operations. But in the experimental section
below we demonstrate that due to the recent progress in the million-scale ANN-
search one can use the approximate search of high accuracy for query assignment.
We show that the usage of the approximate search does not result in the search
performance drop and the overall scheme of the inverted index with approximate
query assignment outperforms the state-of-the-art IMI implementation.

3.2 Grouping and pruning

Now we describe a technique that is especially useful for the IVFADC scheme for
compressed domain search. In general, we propose a procedure that organizes the
points in each region into several groups such that the points in nearby locations
belong to the same group. In other words, we want to split each inverted index
region into a set of smaller subregions, corresponding to Voronoi cells of a set
of subcentroids. The naive solution of this problem via K-Means clustering in
each region would require storing full-dimensional subcentroids codebooks that
would require too much memory. Instead, we propose an almost memory-free
approach that constructs the subcentroids codebook in each region as a set of
convex combinations of the region centroid and its neighboring centroids. We
refer to the proposed technique as grouping procedure and describe it formally
below.

The model. The grouping procedure is performed independently for all the
regions so it is sufficient to describe it for the single region with the centroid c.
We assume that the database points {x1, . . . , xn} belong to this region. Let us
denote by s1, . . . , sL ∈ C the nearest centroids of the centroid c:

{s1, . . . , sL} = NNL(c) (2)



Revisiting the Inverted Indices for Billion-Scale ANN 7

q q

Fig. 1. The indexing and the search process for the dataset of 200 two-dimensional
points (small black dots) with the inverted index (left) and the inverted index aug-
mented with grouping and pruning procedures (right). The large green points denote
the region centroids, and for each centroid L=5 neighboring centroids are precomputed.
For three regions in the center of the right plot, the region subcentroids are denoted
by the red points. The fractions of the database traversed by the same query q with
and without pruning are highlighted in blue. Here the query is set to visit only τ=40%
closest subregions.

where NNL(c) denotes the set of L nearest neighbors for c in the set of all
centroids. The region subcentroids then taken to be {c+α(sl−c)}, l = 1, . . . , L,
where α is a scalar parameter that is learnt from data as we describe below. Note
that different α values are used in different regions. The points {x1, . . . , xn} are
distributed over Voronoi subregions produced by this set of subcentroids. For
each point xi we determine the closest subcentroid

li = argmin
l

‖xi − (c+ α(sl − c))‖2 (3)

In the indexing structure the region points are stored in groups, i.e. all points
from the same subregion are ordered continuously. In this scheme, we store only
the subregion sizes to determine what group the particular point belongs to.
After grouping, the displacements from the corresponding subcentroids

xi − (c+ α(sli − c)) (4)

are compressed with PQ, as in the original IVFADC. Note that the displace-
ments to subcentroids typically have smaller norms than the displacements to
the region centroid as in the IVFADC scheme. Hence they could be compressed
more accurately with the same code length. This results in higher recall rates of
the retrieval scheme as will be shown in the experimental section.
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Distance estimation. Now we describe how to compute the distances to
the compressed points after grouping. One has to calculate an expression:

‖q − c− α(s− c)− [r1, . . . , rM ]‖2 (5)

where the [r1, . . . , rM ] is the PQ approximation of the database point displace-
ment. The expression (5) can be transformed in the following way:

‖q − c− α(s− c)− [r1, . . . , rM ]‖2 = (1− α)‖q − c‖2+

+α‖q − s‖2 − 2

M
∑

m=1

〈qm, rm〉+ const(q) (6)

The first term in the sum above can be easily computed as the distance
‖q−c‖2 is known from the closest centroids search result. The distances ‖q−s‖2

are computed online before visiting the region points. Note that the sets of neigh-
boring centroids for the close regions typically have large intersections, and we
do not recalculate the distances ‖q− s‖2, which were computed earlier for previ-
ous regions, for efficiency. The scalar products between the query subvectors and
PQ codewords 〈qm, rm〉 are precomputed before regions traversal. The last term
is query-independent, and we quantize it into 256 values and explicitly keep its
quantized value as an additional byte in the point code. Note that the computa-
tion of distances to the neighboring centroids results in additional runtime costs.
In the experiments below we show that these costs are completely justified by
the improvement in the compression accuracy. The number of subregions L is set
in such a way that the additional memory consumption (K · L·sizeof(float)
bytes) is negligible compared to the compressed database size.

Subregions pruning. The use of the grouping technique described above
also allows the search procedure to skip the least promising subregions during
region traversal. This provides the total search speedup without loss in search
accuracy. Below we refer to such subregions skipping as pruning. Let us describe
pruning in more details. Consider traversing the particular region with a centroid
c, the neighboring centroids s1, . . . , sL and the scaling factor α. The distances
to the subcentroids can then be easily precomputed as follows:

‖q − c− α(sl − c)‖2 = (1− α)‖q − c‖2 + α‖q − sl‖
2 + const(q), l = 1 . . . L (7)

In the sum above the first and the second terms are computed as described in the
previous paragraph while the last term is precomputed offline and stored explic-
itly for each neighboring centroid. If the search process is set to visit k inverted
index regions, then kL distances to the subcentroids are calculated, and only a
certain fraction τ of the closest subregions is visited. In practice, we observed
that the search process could filter out up to half of the subregions without ac-
curacy loss that provides additional search acceleration. Figure 1 schematically
demonstrates the retrieval stage with and without pruning for the same query.

Learning the scaling factor α. Finally, we describe how to learn the
scaling factor α for the particular region with a centroid c and the neighboring
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centroids s1, . . . , sL. α is learnt on the hold-out learning set, and we assume that
the region contains the learning points x1, . . . , xn. We aim to solve the following
minimization problem:

min
α∈[0;1]

n
∑

i=1

min
li

‖xi − c− α(sli − c)‖2 (8)

In other words, we want to minimize the distances between the data points
and the scaled subcentroids given that each point is assigned to the closest
subcentroid. We also restrict α to belong to the [0; 1] segment so that each
subcentroid is a convex combination of c and one of the neighboring centroid s.

The exact solution of the problem above requires joint optimization over
the continuous variable α and the discrete variables li. Instead, we solve (8)
approximately in two steps:

1. First, for each training point xi we determine the optimal sli value. This is
performed by minimizing the auxiliary function that is the lower bound of
the target function in (8):

n
∑

i=1

min
li,αi∈[0;1]

‖xi − c− αi(sli − c)‖2 (9)

This problem is decomposable into n identical minimization subproblems for
each learning point xi:

min
αi∈[0;1],sli

‖xi − c− αi(sli − c)‖2 (10)

This subproblem is solved via exhaustive search over all possible sli . For
a fixed sli , the minimization over αi has a closed form solution and the
corresponding minimum value of the target function (10) can be explicitly
computed. Then the solution of the subproblem (10) for the point xi is:

s∗li = argmin
sli

∣

∣

∣

∣

∣

∣

∣

∣

xi − c−
(xi − c)T (sli − c)

‖sli − c‖2
(sli − c)

∣

∣

∣

∣

∣

∣

∣

∣

2

(11)

2. Second, we minimize (8) over α with the values of s∗li obtained from the
previous step. In this case the closed-form solution for the optimal value is:

α =

∑n

i=1(xi − c)T (s∗li − c)
∑n

i=1 ‖s
∗

li
− c‖2

(12)

Discussion. The grouping and pruning procedures described above allow to
increase the compression accuracy and the candidate lists quality. This results
in a significant enhancement in the final system performance as will be shown in
the experimental section. Note that these procedures are more effective for the
inverted index, and they cannot be exploited as efficiently in the IMI due to a
very large number of regions in its space partition.
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4 Experiments

In this section we present the experimental comparison of the proposed indexing
structure and the corresponding retrieval system with the current state-of-the-
art.

Datasets. We perform all the experiments on the publicly available datasets
that are commonly used for billion-scale ANN search evaluation:

1. DEEP1B dataset[5] contains one billion of 96-dimensional CNN-produced
feature vectors of the natural images from the Web. The dataset also con-
tains a learning set of 350 million descriptors and 10,000 queries with the
groundtruth nearest neighbors for evaluation.

2. SIFT1B dataset[1] contains one billion of 128-dimensional SIFT descriptors
as a base set, a hold-out learning set of 100 million vectors, and 10,000 query
vectors with the precomputed groundtruth nearest neighbors.

In most of the experiments the search accuracy is evaluated by the Recall@R

measure which is calculated as a rate of queries for which the true nearest neigh-
bor is presented in the short-list of length R. All trainable parameters are ob-
tained on the hold-out learning sets. All experiments are performed on the Intel
Xeon E5-2650 2.6GHz CPU in a single thread mode.

Large codebooks in the inverted index. As we show in Section 3 the
indexing quality of the inverted index does not saturate even with codebooks of
several million centroids. As the exhaustive query assignment would be inefficient
for large codebooks, we use the approximate nearest centroids search via HNSW
algorithm[22]. The algorithm is based on the proximity graph, constructed on
the set of centroids. As we observed in our experiments, HNSW allows obtaining
a small top of the closest centroids with almost perfect accuracy in a submillisec-
ond time. We also use HNSW on the codebooks learning stage to accelerate the
assignment step during K-Means iterations. The only cost of the HNSW search
is the additional memory required to maintain the proximity graph. In our ex-
periments each vertex of the proximity graph is connected to 32 other vertices,
hence the total memory for all the edge lists equals 32 ·K·sizeof(int) bytes,
where K denotes the codebook size.

Note that the accuracy and efficiency of the HNSW are crucial for the success-
ful usage of large codebooks with an approximate assignment. The earlier efforts
to use larger codebooks were not successful: [2] evaluated the scheme based on
the inverted index with a very large codebook where the closest centroids were
found via kd-tree[23]. It was shown that this scheme was not able to achieve the
state-of-the-art recall rates due to inaccuracies of the closest centroids search.

Indexing quality. In the first experiment we evaluate the ability of different
indexing approaches to extract concise and accurate candidate lists. The candi-
dates reranking is not performed here. We compare the following structures:

1. Inverted Multi-Index (IMI) [2]. We evaluate the IMI with codebooks of
size K = 214 and consider the variant of the IMI with global rotation before
dataspace decomposition [3] that boosts the IMI performance on datasets of
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Fig. 2. Recall as a function of the candidate list length for inverted multi-indices with
K=214, inverted index with K=220 with and without pruning. On DEEP1B the in-
verted indices outperform the IMI for all reasonable values of R by a large margin. For
SIFT1B the candidate lists quality of the inverted index with pruning is comparable
to the quality of the IMI for R larger than 213.

deep descriptors. In all experiments we used the implementation from the
FAISS library[6].

2. Inverted Index[20]. We use a large codebook of K=220 centroids. The
query assignment is performed via HNSW.

3. Inverted Index + Grouping + Pruning. Here we augment the inverted
index setup from above with the grouping and pruning procedures described
in Section 3.2. The number of subregions is set to L=64, and the pruning
ratio is set to τ=50%.

The Recall@R values for different values of R are demonstrated in Figure 2.
Despite a much smaller number of regions, the inverted index produces more
accurate short-lists compared to the IMI for the DEEP1B dataset. Note that the
pruning procedure in the inverted index improves short-lists quality even further.
The most practically important part of this plot corresponds to R = 104 − 105

and in this range the inverted index outperforms the IMI by up to 10%.
For the SIFT1B dataset, the IMI with K=214 produces a slightly better

candidate lists for small values of R. For R > 213 the quality of the inverted
index is comparable to the IMI quality. The IMI is successful on SIFT vectors,
as they are histogram-based and the subvectors corresponding to the different
halves of them describe disjoint image parts that typically have relatively weak
statistical inter-dependency. However, as we show in the next experiment, the
runtime cost of candidates extraction in the IMI is high due to the inefficiency of
the multi-sequence algorithm and a large number of random memory accesses.

ANN: indexing + reranking. As the most important experiment, we eval-
uate the performance of the retrieval systems built on top of the aforementioned
indexing structures for approximately the same memory consumption. All the
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systems operate in the compressed domain, i.e. the displacements of database
points from their region centroids are OPQ-compressed with code lengths equal
to 8 or 16 bytes per point. In this experiment candidate lists are reranked based
on the distances between the query and the compressed candidate points. The
OPQ codebooks are global and shared by all regions. We compare the following
systems:
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Fig. 3. The R@1 and R@10 values after reranking as functions of runtime on the
DEEP1B. The systems based on the inverted index substantially outperform the IMI-
based system. The IVFOADC system with grouping outperforms the IVFOADC sys-
tems with larger codebooks for the same memory consumption.

1. O-Multi-D-OADC is our main baseline system. It uses the inverted multi-
index with global rotation and a codebook of size K=214. This system re-
quires 1 Gb of additional memory to maintain the IMI structure.

2. IVFOADC is based on the inverted index with a codebook of a size K=222.
This system requires 2.5Gb of additional memory to store the codebook and
the HNSW graph.

3. IVFOADC-fast is a system that uses the expression (6) for efficient dis-
tance estimation with α = 0. This system is also based on the inverted
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index without grouping but requires one additional code byte per point to
store the query-independent term from (6). We use K=221 for this scheme
to make the total memory consumption the same as for the previous system.
The memory consumption includes 1Gb for the additional code bytes and
1.25Gb to store the codebook and the graph that gives 2.25Gb in total.

4. IVFOADC+Grouping additionally employs the grouping procedure with
L=64 subcentroids per region. In this system we use a codebook with K=220

that results in the total memory consumption of 1.87Gb.
5. IVFOADC+Grouping+Pruning employs both grouping and pruning

procedures with L=64 subcentroids. The pruning is set to filter out 50%
of the subregions. In this system we also use a codebook with K=220.

We plot Recall@1 and Recall@10 on the DEEP1B dataset for different
lengths of candidate lists as functions of the corresponding search runtime. The
results are summarized in Figure 3. We highlight several key observations:

1. The systems based on the inverted index outperform the IMI-based system
in terms of accuracy and search time. In particular, for a time budget of
1.5 ms, the IVFOADC+G+P system outperforms the O-Multi-D-OADC by
7 and 17 percent points of R@1 and R@10 respectively on the DEEP1B
dataset and 8-byte codes. As for the runtime, this system reaches the same
recall values several times faster compared to O-Multi-D-OADC.

2. The IVFOADC system with grouping and pruning outperforms the IV-
FOADC systems with larger codebooks without grouping. The advantage
is the most noticeable for short 8-byte codes when an additional encoding
capacity from grouping is more valuable.

The inverted multi-index limitations. Here we perform several experi-
ments to demonstrate that both approximate query assignment and grouping are
more beneficial for IVFADC than for IMI. In theory, one could also accelerate
the IMI-based schemes via using approximate closest subspace centroids search.
However, in this case, one would have to find several hundred closest items
from a moderate codebook of size K=214, and we observed that in this setup
the approximate search with HNSW takes almost the same time as brute-force.
Moreover, such acceleration would not speed up the candidates accumulation
that is quite slow in the multi-index due to a large number of empty regions.

Second, the grouping procedure is less effective for the IMI compared to the
inverted index. With K=214 each region in the IMI space partition contains
only a few points, hence grouping is useless. To evaluate grouping effectiveness
for the IMI with coarser codebooks we perform the following experiment. We
compute the relative decrease in the average distance from the datapoints to the
closest (sub-)centroid before and after grouping with L=64. Here we compare
the inverted index with K=220 and the IMI with K=210 that result in the
space partitions with the same number of regions. The average distances before
and after grouping are presented in Table 3, right. The relative decrease in
the average distances is smaller for the IMI that implies that grouping is more
effective for the inverted index compared to the IMI. However, we assume that
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one of the interesting research directions is to investigate if the grouping could
be incorporated in the IMI effectively.

L R@1 R@10 R@100 t(ms)

32 0.417 0.776 0.869 1.22

64 0.433 0.785 0.878 1.28

128 0.441 0.791 0.882 1.48

Inverted Index Inverted Multi-Index

No grouping 0.282 0.415

With grouping 0.255 0.385

Decrease 10% 7%

Table 3. Left: The recall values and the runtimes of the IV-
FOADC+Grouping+Pruning system for different numbers of subcentroids per
region on the DEEP1B dataset. Here we use the candidate lists of length 30K
and 16-byte codes. Right: The average distances from the datapoints to the closest
(sub-)centroids with and without grouping for the inverted index with K = 220 and
the IMI with K = 210 on the DEEP1B dataset.

Number of grouping subregions. We also demonstrate the performance
of the proposed scheme for different numbers of subcentroids per region L. In
Table 3, left we provide the evaluation of the IVFOADC+Grouping+Pruning
system on DEEP1B for candidate lists of size 30K and 16-byte codes. The usage
of L > 64 is hardly justified due to increase in runtime and memory consumption.

Comparison to the state-of-the-art. Finally, we compare the proposed
IVFADC+G+P with the results reported in the literature on the DEEP1B and
SIFT1B, see Table 4. Along with the recall values and timings we also report
the amount of additional memory per point, required by each system.

DEEP1B SIFT1B
Method K R@1 R@10 R@100 t Mem R@1 R@10 R@100 t Mem

O-Multi-D-OADC[24] 214 0.397 0.766 0.909 8.5 17.34 0.360 0.792 0.901 5 17.34
Multi-LOPQ[4] 214 0.41 0.79 - 20 18.68 0.454 0.862 0.908 19 19.22
GNOIMI[5] 214 0.45 0.81 - 20 19.75 - - - - -

IVFOADC+G+P 220 0.452 0.832 0.947 3.3 17.87 0.405 0.851 0.957 3.5 18
Table 4. Comparison to the previous works for 16-byte codes. The search runtimes
are reported in milliseconds. We also provide the memory per point required by the
retrieval systems (the numbers are in bytes and do not include 4 bytes for point ids).

5 Conclusion

In this work, we have proposed and evaluated a new system for billion-scale
nearest neighbor search. The system expands the well-known inverted index
structure and makes no assumption about database points distribution what
makes it a universal tool for datasets with any data statistics. The advantage of
the scheme is demonstrated on two billion-scale publicly available datasets.
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19. Jain, H., Pérez, P., Gribonval, R., Zepeda, J., Jégou, H.: Approximate search with

quantized sparse representations. In: ECCV. (2016)
20. Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching

in videos. In: ICCV. (2003)
21. Wieschollek, P., Wang, O., Sorkine-Hornung, A., Lensch, H.P.A.: Efficient large-

scale approximate nearest neighbor search on the gpu. In: CVPR. (2016)
22. Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neigh-

bor search using hierarchical navigable small world graphs. arXiv preprint
arXiv:1603.09320 (2016)

23. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18(9) (1975)

24. Babenko, A., Lempitsky, V.S.: The inverted multi-index. IEEE Trans. Pattern
Anal. Mach. Intell. 37(6) (2015) 1247–1260


