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Abstract. With explosive growth of image and video data on the Internet, hash-

ing technique has been extensively studied for large-scale visual search. Bene-

fiting from the advance of deep learning, deep hashing methods have achieved

promising performance. However, those deep hashing models are usually trained

with supervised information, which is rare and expensive in practice, especially

class labels. In this paper, inspired by the idea of generative models and the min-

imax two-player game, we propose a novel semi-supervised generative adver-

sarial hashing (SSGAH) approach. Firstly, we unify a generative model, a dis-

criminative model and a deep hashing model in a framework for making use of

triplet-wise information and unlabeled data. Secondly, we design novel structure

of the generative model and the discriminative model to learn the distribution

of triplet-wise information in a semi-supervised way. In addition, we propose a

semi-supervised ranking loss and an adversary ranking loss to learn binary codes

which preserve semantic similarity for both labeled data and unlabeled data. Fi-

nally, by optimizing the whole model in an adversary training way, the learned

binary codes can capture better semantic information of all data. Extensive empir-

ical evaluations on two widely-used benchmark datasets show that our proposed

approach significantly outperforms state-of-the-art hashing methods.
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1 Introduction

With explosive growth of image and video data on the Internet, large-scale image re-

trieval task has attracted more and more attention in recent years. One of traditional

methods applied to this task is Nearest Neighbor Search (NNS), where the first k im-

ages with the smallest distance between the query one are returned as results. However,

for large-scale images with high-dimensional feature, NNS is extremely expensive in

terms of space and time. Hashing technique [26, 25] is a popular Approximate Nearest
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Neighbor Search due to its both computation efficiency and high retrieval accuracy by

calculating the Hamming distance between binary codes.

Hashing methods can be mainly grouped into traditional hashing methods and deep

hashing methods. In traditional hashing methods, images are firstly represented with

the hand-crafted visual descriptors (e.g. SIFT [15], GIST [20], HOG [3]), and then hash

functions and quantization algorithm are separately learned to encode the features into

binary codes. Based on whether the supervised information is adopted, traditional meth-

ods can be categorized into unsupervised hashing models (LSH [4], SH [29], ITQ [10],

AGH [14]) and supervised hashing models (SSH [27], BRE[8], MLH [18], KSH [13],

SDH [24]). Deep hashing methods (CNNH [30], NINH [9], DPSH [12], DHN [35],

DSDH[11]) simultaneously learn feature representation and hash functions based on

deep networks and usually are trained with supervised information. Due to its power-

ful ability of feature representation and nonlinear mapping, deep hashing methods have

shown their better performance than traditional ones.

Although encouraging performance reported in the models above, obtaining labeled

data is expensive. Contrarily, unlabeled data is always enough and free. Thus, semi-

supervised hashing method is a good solution where a small amount of labeled data

and lots of unlabeled data are utilized to learn better binary codes. Semi-supervised

Hashing (SSH) [27] is proposed to minimize the empirical error over labeled data and

maximize the information entropy of binary codes over both labeled and unlabeled data.

However, SSH is implemented without deep networks, which leads to unsatisfying per-

formance compared with deep hashing methods. Deep Semantic Hashing with GANs

(DSH-GANs) [21] minimizes the empirical error over synthetic data generated condi-

tioned on class labels based on deep architecture. However, class labels are more diffi-

cult and expensive to obtain than triplet-wise labels [9]. Semi-Supervised Deep Hashing

(SSDH) [34] and Deep Hashing with a Bipartite Graph (BGDH) use graph structure to

model unlableled data. However, constructing the graph model of large-scale data is

extremely expensive in terms of time and space, and using batch data instead may lead

to a suboptimal result.

To solve the problem above, we propose a novel semi-supervised generative adver-

sarial hashing (SSGAH), which utilizes a generative model to model unlabeled data and

uses triplet-wise labels as supervised information. Specifically, our SSGAH includes a

generative model, a discriminative model and a deep hashing model, where all three

models are optimized together in an adversarial framework. The generative model can

well learn the triplet-wise information in a semi-supervised way. Benefiting from both

adversary learning and the generative model, the deep hashing model is able to learn

binary codes which not only preserve semantic similarity but also capture the meaning-

ful triplet-wise information. Main contributions of our proposed approach are outlined

as below:

1) We propose a novel semi-supervised generative adversarial hashing (SSGAH)

approach to make full use of triplet-wise information and unlabeled data. Our approach

unifies generative, discriminative and deep hashing models in an adversarial framework,

where the generative and discriminative models are carefully designed for capturing the

distribution of triplet-wise information in a semi-supervised way, all of which contribute

to semantic preserving binary codes.
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2) We propose novel semi-supervised ranking loss and adversary ranking loss to

learn better binary codes that capturing semantic information of both labeled and unla-

beled data. For semi-supervised ranking loss, we propose to preserve relative similarity

of real and synthetic samples. For adversary ranking loss, we propose to make the deep

hashing model and generative model improve each other in a two-player minimax game.

3) Extensive evaluations on two widely-used datasets demonstrate that our SSGAH

approach significantly outperforms the state-of-the-art methods, and component analy-

sis verifies the effectiveness of each part of our model.

2 Related Work

Traditional Hashing Methods Conditioning whether labeled data is used in training

process, traditional hashing methods can be divided into unsupervised and supervised

ones. Unsupervised hashing methods employ unlabeled data even no data. Local Sen-

sitive Hashing (LSH) [4] uses random linear projections to map similar samples to

nearby binary codes. Spectral Hashing (SH) [29] tries to keep hash functions balanced

and uncorrelated. Iterative Quantization (ITQ) [10] proposes an alternating minimiza-

tion algorithm to minimize the quantization error. Anchor Graph Hashing (AGH) [14]

preserves the neighborhood structures by anchor graphs. Supervised hashing methods

utilize labeled information to improve binary codes. Semi-supervised Hashing (SSH)

[27] minimizes the empirical error and maximizes information entropy. Binary Recon-

struction Embedding (BRE) [8] minimizes the reconstruction error between original

distances and reconstructed distances in the Hamming space. Minimal Loss Hashing

(MLH) [18] minimizes loss between the learned Hamming distance and quantization

error. Supervised Hashing with Kernels (KSH) [13] utilizes the equivalence between

optimizing codes inner products and Hamming distance. Supervised Discrete hashing

(SDH) [24] integrates hash codes generation and classifier training.

Deep Hashing Methods Recently, deep learning has shown its powerful ability in var-

ious domains including classification, object detection, semantic segmentation and so

on. Inspired by powerful feature representation learning of deep networks, many hash-

ing methods based on deep networks have been proposed. Most deep hashing meth-

ods are trained in a supervised way. Convolutional Neural Network Hashing (CNNH)

[30] firstly learns binary codes by similarity matrix decomposition, then utilizes con-

volutional neural networks to simultaneously learn good feature representation and

hash functions guided by those binary codes. Network in Network Hashing (NINH)

[9] straightly learns feature representation and hash functions for binary codes which

preserve relative similarity of raw samples in an end-to-end manner. Deep Pairwise-

Supervised Hashing (DPSH) [12] performs simultaneous feature learning and binary

codes learning with pair-wise labels. Deep Hashing Network (DHN) [35] simultane-

ously optimizes pair-wise cross entropy loss and pair-wise quantization loss to remit

quantization error. Deep Supervised Discrete Hashing (DSDH) [11] straightly optimize

binary codes without relaxation by proposing a iterative optimization algorithm. Su-

pervised Semantics-preserving Deep Hashing [32] constructs hash functions as a latent

layer in a deep network and trains the model over classification error. Semi-supervised
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Deep Hashing (SSDH) [34] and BGDH [31] minimizes empirical error on labeled data

and exploits unlabeled data through a graph construction method. Different from SSDH

and BGDH, which use the graph to model unlabeled data and is time and space consum-

ing, our approach utilizes generative models to learn unlabeled data. DSH-GANs [21]

utilizes class labels to train AC-GANs [19] for synthetic images, and then use those

synthetic images to train a deep hashing model. Different from DSH-GANs, our ap-

proach utilizes triplet-labels which are more common, and specifically designs a GANs

model which can be well learned with limited supervised information. What’s more, we

import adversarial learning between the generative model and the deep hashing model

for better binary codes, while DSH-GANs not.

Generative Models The generative model is a kind of important model in machine

learning, which can understand data by learning its distribution. Goodfellow proposes

an efficient yet straightforward framework for estimating generative models named

Generative Adversarial Networks (GANs) [5] by making a generative model and a

discriminative model play a two-player minimax game. Conditional Generative Adver-

sarial Networks (cGANs) [17] extends GANs to its conditional version by using class

labels to limit the generator and the discriminator. Different from existed generative

models, the generative model in our approach is particularly designed for triplet-wise

information and unlabeled data.

3 Semi-Supervised Generative Adversarial Hashing

Given a dataset X that is composed of unlabeled data X u = {xu
i |i = 1, . . . ,m} in form

of individual images and labeled data X l = {(xq, xp, xn)i|i = 1, . . . , n} with triplet-

wise information where the query image xq is more similar to positive one xp than to

negative one xn , our primal goal is to learn a mapping function B(·) which encodes

the input image x ⊂ X into k-bit binary codes B(x) ∈ {0, 1}k, while preserves relative

semantic similarity of images in the dataset X .

As shown in Figure 1, our SSGAH approach consists of a generative model G, a

discriminative model D and a deep hashing model H . The generative model is to learn

the distribution of triplet-wise information in a semi-supervised way and generates syn-

thetic triplets {(x, xq
syn, x

n
syn)i|i = 1, 2, · · · ,m + n}, where the real image x is more

similar to the synthetic image xq
syn than to another synthetic one xn

syn. The discrimi-

native model is to distinguish the real triplets from synthetic ones. The deep hashing

model is to learn binary codes which preserve semantic similarity on the whole dataset.

All three models are trained together in an adversary way.

3.1 Model Architecture Structure

Generative and Discriminative Models The goals of our generative and discrimina-

tive models are to learn the distribution of unlabeled data X u = {xu
i |i = 1, 2, . . . , n}

and labeled data X l = {(xq, xp, xn)i|i = 1, 2, . . . , n}, and then synthesize realistic

meaningful triplets. Specifically, given a real sample x ∈ {X u,X l}, a synthetic triplet

(x, xp
syn, x

n
syn) should be generated, where x is more similar to the positive synthetic
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Fig. 1. Overview of our proposed SSGAH approach, where the curves indicate the data flow

and the straight lines indicate the fully connected layers. Our model consists of a generative

model, a discriminative model and a deep hashing model. The generative model is to capture

the distribution of triplet-wise information and unlabeled data, the discriminative model is to

distinguish the real triplets from synthetic ones, the deep hashing model is to learn binary codes

which not only preserve semantic similarity but also can identificate small difference between

real and synthetic images. The whole model is trained in an adversary way.

one xp
syn than to negative synthetic one xn

syn, and both synthetic ones are realistic.

Compared with common conditionally image generation tasks, several difficulties exist

in ours. Firstly, in common tasks, their conditions are low-dimensional and meaningful

(e.g. class labels) [17, 19], or their real and synthetic images share similar structure [6,

33]. In our task, the conditions are raw images which are high-dimensional and noisy,

and our synthetic images share only semantic information with raw ones, neither struc-

ture nor texture. What’s more, our labeled data is limited.

To mitigate the problem above, we propose novel generative and discriminative

models, whose architecture are shown in Figure 1. Firstly, to filter the noise and pro-

duce meaningful conditions, images are feed into a stack of convolutional layers fol-

lowed by a fully connected layer to extract short, meaningful features ν. Secondly, in

order to ease the lack of labeled data, the final conditions are randomly sampled from an

independent Gaussian distribution N (µ(ν), Σ(ν)), where the mean µ(ν) and diagonal

covariance matrix Σ(ν) are learned from the ν. What’s more, for better understanding

of the semantic relationship of triplets, we improve the discriminative model to dis-

tinguish real triplets (x, xp, xn) from synthetic ones (x, xp
syn, x

n
syn), and design extra

triplets (x, xn, xp) as negative samples beside synthetic triplets.

The architecture of the two models are shown in Figure 1. Firstly, a condition vector

c is generated through the condition generation module given an real image. Secondly,
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a random vector z sampled from standard normal distribution concatenated with the

generated condition is feed into the positive generator Gp and the negative generator

Gn to generate triplets (x, xp
syn, x

n
syn) where the x is more similar to xp

syn than to

xn
syn. Then, the discriminative model determines the probability that input triplets are

real. Finally, the generative model and the discriminative model can be optimized by

playing a two-player minimax game with value function LGD.

min
G

max
D

LGD = E(xq,xp,xn)∈X l{logD(xq, xp, xn) + log[1−D(xq, xn, xp)]}

+ Ex∈{Xu,X l}{log[1−D(x,Gp(x), Gn(x))]}

+DKL(N (µ(ν), Σ(ν)) || N (0, I))
(1)

where D(·, ·, ·) is the probability that input triplet is from labeled data X l, Gp(x) and

Gn(x) is the synthetic images generated by the two generators, DKL is a regularization

term which means the Kullback-Leibler divergence between standard Gaussian distri-

bution and conditioning Gaussian distribution.

Deep Hashing Model For easy comparison with other hashing algorithms, we adopt

AlexNet [7] as our basic network. AlexNet contains 5 convolutional layers (conv1 −
conv5) with max-pooling operations followed by 2 fully connected layers (fc6− fc7)

and an output layer. In the convolutional layers, units are organized into feature maps

and are connected locally to patches in the outputs of the previous layer. The fully

connected layers (fc6 − fc7) are activated by rectified linear units (Relu) for faster

training.

AlexNet is designed particularly for multi-class classification task, so the amount of

units in the output layer is equal to class amounts. To adapt AlexNet to our deep hashing

architecture, we replace the output layer with a fully connected layer fh and activate it

by a sigmoid function, through which the high dimensional feature of the fc7 layer can

be projected to k-bits hash real-value in [0, 1]. The formulation is in Eq.(2), where f(x)
is the feature representation in fc7 layer of AlexNet, Wh and bh denote weights and

bias in hash layer fh, σ is sigmoid function. Since the output of the neural network is

continuous, we transfer the H(x) ∈ [0, 1]k to binary codes B(x) ∈ {0, 1}k with Eq.(3)

H(x) = σ(f(x)Wh + bh) (2)

B(x) = (sgn(H(x)− 0.5) + 1)/2 (3)

3.2 Objective Function

Existing deep hashing methods usually design the objective function to preserve the

relative semantic similarity of samples in labeled data, but ignore the unlabeled data.

To address the problem, we propose novel semi-supervised ranking loss and adver-

sary ranking loss to exploit the relative similarity of samples in both triplet-wise label

and unlabeled data. By jointly minimizing the supervised ranking loss, semi-supervised

ranking loss, as well as adversary ranking loss, the learned binary codes can better cap-

ture semantic information of all data.
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Supervised Ranking Term For most existing hashing methods, class labels [32], pair-

wise labels [30], and triplet-wise labels [9] are most frequently used as supervised in-

formation. Among the three kinds of labels, class labels contain the most accurate in-

formation, followed by pair-wise ones and triplet-wise ones. In contrast, the most easily

available labels are triplet-wise labels, followed by pair-wise ones and class ones [9].

Considering easy acquirement in practice, we choose triplet-wise labels as our super-

vised information. Specially, given labeled data Xs = {(xq
i , x

p
i , x

n
i )|i = 1, . . . , n}, the

supervised ranking loss can be formulated in Eq.(4), where || · ||H denotes Hamming

distance, B(x) is the binary codes of x, and msr is the margin between match pairs and

the mismatch pairs.

min
H

L̂sr =

n∑

i=1

L̂triplet(msr, (x
q, xp, xn)i)

=

n∑

i=1

max(0,msr − (||B(xq)− B(xn)||H − ||B(xq)− B(xp)||H)i)

(4)

Semi-supervised Ranking Term Training the deep hashing model solely based on

supervised information usually leads to an unsatisfying result for that limited labeled

data can’t accurately reflect similarity relation of samples in unlabeled data. In order to

address the problem, we propose to leverage Generative Adversarial Networks (GANs)

to learn distribution of real data, which is composed of limited labeled data and lots of

unlabeled data, and in return synthetic samples generated by GANs are used to train

the deep hashing model to learn better feature representation and more discriminative

binary codes.

Accordingly, we propose a novel semi-supervised ranking loss. On the one hand,

to learn more discriminative binary codes, we use a synthetic sample xp
syn which is

similar with the query one xq in a real triplet or a synthetic sample xn
syn which is

dissimilar with xq to replace corresponding real one. Through this method, labeled data

can be augmented without losing supervision information. On the other hand, for better

utilizing the unlabeled data, given an unlabeled sample, we generate a synthetic triplet

where the given real sample is more similar to a synthetic positive sample than to a

synthetic negative one.

Specifically, given a real triplet (xq, xp, xn), we can get synthetic triplets (xq, xp
syn, x

n)
and (xq, xp, xn

syn), where xp
syn and xn

syn are generated by positive generator Gp and

negative generator Gn respectively conditioned on real sample xq and random noise z.

For a real unlabeled sample xu ∈ Xu , similar procedure can be performed to gener-

ate a synthetic triplet (xu, xp
syn, x

n
syn). Hence the semi-supervised ranking term can be

defined in Eq.(5), where L̂triplet(·, (·, ·, ·)) is defined in Eq.(4).

min
H

L̂ssr =

n∑

i=1

[L̂triplet(mssr, (x
q, xp

syn, x
n)i) + L̂triplet(mssr, (x

q, xp, xn
syn)i)]

+
m∑

i=1

L̂triplet(mssr, (x
u, xp

syn, x
n
syn)i)

(5)
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Adversary Ranking Term Wang et al. [28] has shown simultaneously learning a gen-

erative retrieval model and a discriminative retrieval model in an adversary way is able

to improve both models and achieve a better performance than separately training them.

Inspired by the idea, we also introduce the idea of minimax two-player game between

the generative and deep hashing models and propose a novel adversary ranking loss.

Specifically, in the minimax two-player game, the deep hashing model try to learn bi-

nary codes that can identificate small difference between (x, xp) and (x, xp
syn), and

the generative model is to make the binary codes of x, xp and xp
syn distinguishable.

Given real triplets {(xq, xp, xn)i|i = 1, 2, . . . , n} and corresponding synthetic triplets

{(xq, xp
syn, x

n
syn)i|i = 1, 2, . . . , n}, the minimax two-player game can be formulated

in Eq.(6), where L̂triplet(·, (·, ·, ·)) is defined in Eq.(4).

min
H

max
G

L̂ar =

n∑

i=1

L̂triplet(mar, (x
q, xp, xp

syn)) (6)

3.3 Overall Objective Function and Adversary Learning

The overall objective function of our semi-supervised generative adversarial hashing

approach integrates loss in Eq.(1), supervised ranking loss in Eq.(4), semi-supervised

ranking loss in Eq.(5) and adversary ranking loss in Eq.(6). Hence, the overall objective

function L̂ can be formulated in Eq.(7).

min
G

max
D,H

L̂ = LGD − L̂sr − L̂ssr − L̂ar (7)

Considering the the mapping function B(·) is discrete and Hamming distance || · ||H
is not differentiable, natural relaxation are utilized on Eq.(7) by changing the integer

constraint to a range constraint and replacing Hamming distance with Euclidean Dis-

tance || · ||2. Using the supervised ranking term as an example, relaxed term Lsr is in

Eq.(8).

Lsr =

n∑

i=1

Ltriplet(msr, (x
q, xp, xn)i)

=

n∑

i=1

max(0,msr − (||H(xq)−H(xn)||22 − ||H(xq)−H(xp)||22)i)

(8)

Then, the relaxed semi-supervised ranking loss Lssr and adversary ranking loss Lar

and be derived similarly. Finally, we apply mini-batch gradient descent, in conjunction

with back propagation [16] to network training in Eq.(9).

min
G

max
D,H

L = LGD − Lsr − Lssr − Lar (9)

3.4 Image Retrieval

After the optimization of SSGAH, one can compute binary codes of a new image and

find its similar images. Firstly, a query image x is fed into the deep hashing model and
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real-value codes H(x) can be obtained through Eq.(2). Secondly, binary codes B(x)
can be calculated by quantization process via Eq.(3). Finally, the retrieval list of images

is produced by sorting the Hamming distances of binary codes between the query image

and images in search pool.

4 Experiment

4.1 Dataset

We conduct our experiments on two widely-used datasets, namely CIFAR-10 and NUS-

WIDE. CIFAR-10 is a small image dataset including 60,000 32×32 color images in 10

categories with 6000 images per class. NUS-WIDE [2] contains nearly 270,000 images

collected from Flickr associated with one or multiple labels in 91 semantic concepts.

For NUS-WIDE, we follow [9] to use the images associated with the 21 most frequent

concepts, where each of these concepts associates with at least 5,000 images.

Following [30, 9], we randomly sample 100 images per class to construct query set,

and the others are as the base set. In training process, we randomly sample 500 images

per class from the base set as labeled data, and the others are as unlabeled data. Triplets

are generated from the labeled set conditioned on corresponding labels. Specifically,

(xq, xp, xn) are constructed where xq shares at least one label with xp and no label

with xn.

4.2 Evaluation Protocol and Baseline Methods

We adopt mean Average Precision (mAP) to measure the performance of hashing meth-

ods, and mAP on the NUS-WIDE dataset is calculated with the top 5,000 returned

neighbors. Based on the evaluation protocol, we compare our SSGAH with nine state-

of-the-art hashing methods, including four traditional hashing methods LSH [4], SH

[29], ITQ [10], SDH [24], two supervised deep hashing methods CNNH [30], NINH

[9], and three semi-supervised deep hashing methods DSH-GANs [21], SSDH [34] and

BGDH [31].

Following the settings in [9], hand-crafted features for traditional hashing methods

are presented by 512-dimensional GIST [20] features in the CIFAR-10 dataset and by

500-dimensional bag-of-words features in the NUS-WIDE dataset. Besides, for a fair

comparison between traditional and deep hashing methods, we also construct traditional

methods on features extracted from the fc7 layer of AlexNet which is pre-trained on

ImageNet. For deep hashing methods, we adopt raw pixels as input.

4.3 Implementation Details

We implement our SSGAH based on the open-source Tensorflow [1] framework. The

generative and discriminative models are implemented and optimized under the guid-

ance of DCGANs [22]. Specifically, we use fractional-strided convolutions and ReLU

activation for the generative model, strided convolutions and Leaky ReLU activation

for the discriminative model, and both models utilize batch normalization and are op-

timized by ADAM with learning rate 0.0002 and β1 0.5. The hyper-parameters msr,
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Methods
CIFAR-10 NUS-WIDE

12bits 24bits 32bits 48bits 12bits 24bits 32bits 48bits

SSGAH(Ours) 0.819 0.837 0.847 0.855 0.835 0.847 0.859 0.865

BGDH 0.805 0.824 0.826 0.833 0.803 0.818 0.822 0.828

SSDH 0.801 0.813 0.812 0.814 0.773 0.779 0.778 0.778

DSH-GANs 0.745 0.789 0.793 0.811 0.807 0.820 0.831 0.834

NINH 0.535 0.552 0.566 0.558 0.581 0.674 0.697 0.713

CNNH 0.439 0.476 0.472 0.489 0.611 0.618 0.625 0.608

SDH+CNN 0.363 0.528 0.529 0.542 0.520 0.507 0.591 0.610

ITQ+CNN 0.212 0.230 0.234 0.240 0.728 0.707 0.689 0.661

SH+CNN 0.158 0.157 0.154 0.151 0.620 0.611 0.620 0.591

LSH+CNN 0.134 0.157 0.173 0.185 0.438 0.586 0.571 0.507

SDH 0.255 0.330 0.344 0.360 0.414 0.465 0.451 0.454

ITQ 0.162 0.169 0.172 0.175 0.452 0.468 0.472 0.477

SH 0.124 0.125 0.125 0.126 0.433 0.426 0.426 0.423

LSH 0.116 0.121 0.124 0.131 0.404 0.421 0.426 0.441

Table 1. Mean Average Precision (mAP) scores for different methods on two datasets. The best

mAP scores are emphasized in boldface. Note that the mAP scores on NUS-WIDE dataset is

calculated based on the top 5,000 returned neighbors.

mssr, mar are set k
4 , k

8 and 1 respectively via cross validation, where k is code length.

The deep hashing model is optimized by stochastic gradient descent with learning rate

0.0001 and momentum 0.9. The mini-batch size of images is 64. For faster conver-

gence, we firstly train the generative and discriminative models under the Eq.(1), and

then optimize the whole model under the Eq.(9).

4.4 Experiment Results and Analysis

The mAP scores of hashing methods on CIFAR-10 and NUS-WIDE datasets with dif-

ferent code length k are shown in Table 1. From Table 1 we can see that our proposed

SSGAH substantially outperforms the other methods. Specifically, the performance of

traditional hashing method with hand-crafted features is poor, where SDH achieves only

36.0% on CIFAR-10 datasets, and ITQ achieves only 47.7% on the NUS-WIDE dataset.

Traditional methods with CNN features achieve better performance, which shows that

features learned from deep neural networks capture more semantic information.

Among deep methods except ours, the best performance on the two datasets are

achieved by BGDH [31] and DSH-GANs [21] with 83.3% and 83.4% respectively.

The semi-supervised methods (BGDH, SSDH, DSH-GANs) outperforms the super-

vised ones (NINH, CNNH), which demonstrates that unlabeled data indeed improves

the performance of binary codes. Finally, our SSGAH approach outperforms all meth-

ods on two datasets by 2.2% and 3.1% and achieves 85.5% and 86.5% correspondingly.

Note that the two graph-based models BGDH and SSDH achieve good performance

on CIFAR-10, but a common performance on NUS-WIDE, DSH-GANs obtains an op-

posite result, and our SSGAH achieves the best performance on both datasets. The rea-

son may be that compared with complex multi-label images on NUS-WIDE, a graph is
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Methods
CIFAR-10 NUS-WIDE

12bits 24bits 32bits 48bits 12bits 24bits 32bits 48bits

SSGAH(Ours) 0.309 0.323 0.341 0.339 0.539 0.553 0.565 0.579

SSDH 0.285 0.291 0.311 0.325 0.510 0.533 0.549 0.551

NINH 0.241 0.249 0.253 0.272 0.484 0.483 0.485 0.487

DRSCH 0.219 0.223 0.242 0.251 0.457 0.464 0.469 0.460

CNNH 0.210 0.225 0.227 0.231 0.445 0.463 0.471 0.477

SDH+CNN 0.185 0.193 0.199 0.213 0.471 0.490 0.489 0.507

ITQ+CNN 0.157 0.165 0.189 0.201 0.488 0.493 0.508 0.503

SH+CNN 0.134 0.127 0.126 0.124 0.416 0.386 0.380 0.379

LSH+CNN 0.107 0.119 0.125 0.138 0.341 0.358 0.371 0.373

Table 2. Mean Average Precision (mAP) scores under retrieval of unseen classes on two datasets.

The best mAP scores are emphasized in boldface. Following settings in [34], mAP scores are

calculated based on all returned images.

easier to capture the structure of simple images on CIFAR-10. Contrarily, DSH-GANs

is able to generate meaningful and plentiful images conditioned on multi-label on the

NUS-WIDE dataset, but easily lead to lack of diversity of synthetic samples condi-

tioned on limited discrete labels on the CIFAR-10 dataset. Different from graph and

DSH-GANs, our approach extracts continuous conditions through a Condition Gen-

eration module, and can well capture the distribution of triplet-wise information. The

experiments on two datasets demonstrate the efficiency of our SSGAH approach.

4.5 Retrieval of Unseen Classes

To further evaluate our SSGAH approach, we additionally adopt the evaluation protocol

from [23], where 75% of classes are known during the training process, and the remain-

ing 25% classes are used to for evaluation. Specifically, the dataset is divided into four

folds train75, test75, train25 and test25, where the set75 (train75 + test75) in-

cludes data of 75% classes, the set25 (train25+ test25) contains data of 25% classes,

and data amount in train and test set are the same. Following settings in [34], we use

train75 as training set, test25 as query set, and train25 + test75 as database set.

The specific experiment settings are as below. The set75 of CIFAR-10 and NUS-

WIDE consist of 7 classes and 15 classes respectively, results are calculated by the

average of 5 different random splits, mAP scores are calculated based on all returned

images, and the non-deep methods use features extracted from fc7 layer of pre-trained

AlexNet as inputs.

The mAP scores under the retrieval of unseen classes are shown in Table 2. As

we can see, the gaps between unsupervised methods and supervised ones reduce under

retrieval of unseen classes, which is because the unsupervised methods learn on the

whole dataset and own better generalization performance, but the supervised methods

easily overfit labeled data. SSDH achieves a good performance, which demonstrates

that unlabeled data can improve the binary codes. Our SSGAH approach achieves the

best result when retrieving unseen classes, which is because the generative model in
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Methods
CIFAR-10 NUS-WIDE

12bits 24bits 32bits 48bits 12bits 24bits 32bits 48bits

SSGAH 0.819 0.837 0.847 0.855 0.835 0.847 0.859 0.865

w/ ssr 0.799 0.819 0.836 0.846 0.810 0.819 0.834 0.835

w/ ar 0.776 0.804 0.820 0.829 0.787 0.794 0.810 0.812

baseline 0.744 0.771 0.782 0.789 0.759 0.780 0.794 0.803

Table 3. Mean Average Precision scores (mAP) under different components of our model.

our framework can capture triplet-wise information of unlabeled data, and our semi-

supervised ranking loss and adversary ranking loss can make the learned binary codes

not only preserve the semantic similarity of labeled data but also capture underlying

relationship of data. Thus our approach achieves better generalization performance to

unseen class.

4.6 Component Analysis

To further analyze the affect of each component in our SSGAH, we report the results

of two variants of our model and a baseline method. For simplicity, we use G, D and

H to represent the generative model, discriminative model and deep hashing model

respectively. For the baseline method, we only train H under the supervised ranking

loss Lsr. For the first variant, we train the G, D and H together, but remove the semi-

supervised ranking loss Lssr from Eq.(9), and mark it as w/ ar. For the second variant,

we first train the G and D together under Eq.(1), and then train H under the supervised

ranking loss Lsr and semi-supervised ranking loss Lssr, and mark it as w/ssr. Finally,

SSGAH achieves the best performance, which demonstrates the effectiveness of our

proposed approach.

As shown in Table 3, the best method is SSGAH, followed by w/ssr, w/ar and

baseline. Firstly, w/ar improves the baseline by 3.2% ∼ 4.0% and 0.9% ∼ 2.8%
on CIFAR-10 and NUS-WIDE datasets, which shows that the adversary ranking loss

Lar helps for better binary codes. Secondly, w/ssr improves the baseline by 4.8% ∼
5.7% and 3.2% ∼ 5.1% on CIFAR-10 and NUS-WIDE datasets, which shows that H

can capture the triplet-wise information and the semi-supervised ranking loss Lssr can

significantly improve the binary codes.

4.7 Effect of Supervision Amounts

To further analyze our proposed semi-supervised generative adversarial hashing ap-

proach, we report the results of SSGAH and baseline (illustrated in Section 4.6) with

different supervision amounts on the CIFAR-10 and NUS-WIDE datasets. As shown in

Figure 2, our SSGAH always outperforms the baseline, which demonstrates the effec-

tiveness of our approach. What’s more, the difference between the two models increases

as the supervision amount decreases, which shows that our SSGAH can better utilize

the unlabeled data to improve the binary codes.
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Fig. 2. Mean Average Precision (mAP) scores @48bits of SSGAH and baseline with different

supervision amounts on the CIFAR10 (left) and NUS-WIDE (right) datasets. Note that our SS-

GAH always outperforms baseline, and the difference between the two models increase as the

supervision amount decrease, both of which verify the effectiveness of our proposed approach.

4.8 Visualization of Synthetic Images

Figure 3 displays the synthetic triplets generated by our SSGAH (green) and its two

variants (blue and red). As we can see, our SSGAH can generate color images with size

ranging from 32 × 32 to 64 × 64. On both datasets, the synthetic images (green) are

clear and meaningful, which are indistinguishable from real images. What’s more, they

successfully acquire the triplet-wise information, i.e. x is more similar to xp
syn than to

xn
syn.

Besides the phenomenons above, some extra phenomenons can be observed. Firstly,

the red synthetic images are noisy and meaningless and fail to constitute useful triplet,

which show that vanilla generative model is hard to capture the distribution of triplet-

wise information with limited labeled data. Secondly, the blue images are meaningful,

and x are more similar to xp
syn than to xn

syn, which show that our condition genera-

tion part contributes to understanding the triplet-wise information. Finally, compared

with blue images, the green ones are not only meaningful but also realistic and clear,

which verifies that the adversary learning further improves the generative model. Note

that compared with synthetic images (blue) on NUSWIDE, those on CIFAR-10 are

more clear and meaningful, which is because images on CIFAR-10 dataset are single-

labeled and their structures are simple. Thus it’s easy to capture the distribution of

triplet-relation. The three phenomenons observed above verify the effectiveness of each

component of our model and demonstrate that SSGAH can well capture the distribution

of labeled and unlabeled data.

4.9 Conclusion

In this paper, we first propose a novel semi-supervised generative adversarial hash-

ing (SSGAH) approach, which unifies the generative model and deep hashing model
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Fig. 3. Visualization of synthetic triplets on (a) CIFAR-10 and (b) NUS-WIDE datasets (better

viewed in color). Images in the first row are real images x, followed by synthetic images xp

syn and

xn

syn, which are generated by Gp and Gn respectively, thus the three images make up a synthetic

triplet (x, xp

syn, x
n

syn). The green images are generated by our SSGAH, the blue images are

generated by our SSGAH without the adversary ranking loss, and the red images are generated

by SSGAH without adversary ranking loss and condition generation module.

in minimax two-player game to make full use of a small amount of labeled data and

lots of unlabeled data. What’s more, we also propose novel semi-supervised ranking

loss and adversary ranking loss to learn better binary codes that capturing semantic in-

formation of both labeled and unlabeled data. Finally, extensive experiments on two

widely-used datasets demonstrate our SSGAH approach outperforms the state-of-the-

art hashing mehtods.
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