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Abstract. We present multiresolution tree-structured networks to process point

clouds for 3D shape understanding and generation tasks. Our network represents

a 3D shape as a set of locality-preserving 1D ordered list of points at multiple res-

olutions. This allows efficient feed-forward processing through 1D convolutions,

coarse-to-fine analysis through a multi-grid architecture, and it leads to faster

convergence and small memory footprint during training. The proposed tree-

structured encoders can be used to classify shapes and outperform existing point-

based architectures on shape classification benchmarks, while tree-structured de-

coders can be used for generating point clouds directly and they outperform ex-

isting approaches for image-to-shape inference tasks learned using the ShapeNet

dataset. Our model also allows unsupervised learning of point-cloud based shapes

by using a variational autoencoder, leading to higher-quality generated shapes.

1 Introduction

One of the challenges in 3D shape processing concerns the question of representa-

tion. Shapes are typically represented as triangle meshes or point clouds in computer

graphics applications due to their simplicity and light-weight nature. At the same time

an increasing number of robotic and remote-sensing applications are deploying sensors

that directly collect point-cloud representations of the environment. Hence architectures

that efficiently operate on point clouds are becoming increasingly desirable.

On the other hand the vast majority of computer vision techniques rely on grid-

based representation of 3D shapes for analyzing and generating them. These include

multiview representations that render a shape from a collection of views [31,39,37] or

voxel-based representations [44,19,30,4,43] that discretize point occupancy onto a 3D

grid. Such representations allow the use of convolution and pooling operations for ef-

ficient processing. However, voxel-representations scale poorly with resolution and are

inefficient for modeling surface details. Even multiscale or sparse variants [25,33,17]

incur relatively high processing cost. Image-based representations, while more efficient,

are not effective at modeling shapes with concave or filled interiors due to self occlu-

sions. Moreover, generating shapes as a collection of views requires subsequent reason-

ing about geometric consistency to infer the 3D shape, which can be challenging.

The main contribution of our work is a multiresolution tree network capable of both

recognizing and generating 3D shapes directly as point clouds. An overview of the net-

work and how it can be applied to different applications are shown in Figure 1. Our
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Fig. 1: Overview of MRTNet. On the left, the MRT-Encoder takes as input a 1D ordered list

of points and represents it at multiple resolutions. Points are colored by their indices in the list.

On the right, the MRT-Decoder directly outputs a point cloud. Our network can be used for

several shape processing tasks, including classification (red), image-to-shape inference (blue),

and unsupervised shape learning (green). Refer to Fig. 2 for details on the encoder and decoder.

approach represents a 3D shape as a set of locality-preserving 1D ordered list of points

at multiple resolution levels. We can obtain such a ordering by using space-partitioning

trees such as kd-tree or rp-tree. Feed-forward processing on the underlying tree can be

implemented as 1D convolutions and pooling on the list. However, as our experiments

show, processing the list alone is not sufficient since the 1D ordering distorts the un-

derlying 3D structure of the shape. To ameliorate this problem we employ a multi-grid

network architecture [22] where the representation at a particular resolution influences

feed-forward processing at adjacent resolutions. This preserves the locality of point in

the underlying 3D shape, improves information flow across scales, enables the network

to learn a coarse-to-fine representation, and results in faster convergence during train-

ing. Our network outperforms existing point-based networks [40,24,32] that operate on

position (xyz) information of points. Specifically, it obtains 91.7% accuracy on the

ModelNet40 classification task, while remaining efficient. It also outperforms similar

graph networks that do not maintain multiresolution representations.

Our multiresolution decoders can be used for directly generating point clouds. This

allows us to incorporate order-invariant loss functions, such as Chamfer distance, over

point clouds during training. Moreover it can can be plugged in with existing image-

based encoders for image-to-shape inference tasks. Our method is able to both preserve

the overall shape structure as well as fine details. On the task of single-image shape in-

ference using the ShapeNet dataset, our approach outperforms existing voxel-based [9],

view-based [26], and point-based [12] techniques.

Finally, the combined encoder-decoder network can be used for unsupervised learn-

ing of shape representations in a variational autoencoder (VAE) framework. The fea-

tures extracted from the encoder of our VAE (trained on the unlabeled ShapeNet dataset)

leads to better shape classification results (86.4% accuracy on ModelNet40) compared

to those extracted from other unsupervised networks [43].

2 Related Work

A number of approaches have studied 3D shape recognition and generation using uni-

form 3D voxel grids [9,44,19,30,4,43]. However, uniform grids have poor scalability

and require large memory footprint, hence existing networks built upon them often op-

erate on a relatively low-resolution grid. Several recent works address this issue through
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multiscale and sparse representations [33,41,42,17,38,16] at the expense of additional

book keeping. Still, voxel-based methods generally incur high processing cost, and are

not well suited for modeling fine surface details. Moreover, it’s not clear how to in-

corporate certain geometric attributes, like surface normals, into voxel representation,

since these attributes do not exist in the interior of the shape.

Multiview methods [39,31,37,28,20] represent a 3D shape as images rendered from

different viewpoints. These methods use efficient convolutional and pooling operations

and leverage deep networks pretrained on large labeled image datasets. However, they

are not optimal for general shapes with complex interior structures due to self occlu-

sions. Nonetheless since most models on existing shape repositories are described well

by their exterior surface, view-based approaches have been adapted for shape classifica-

tion and segmentation tasks. Recently they have also been used for generation where a

set of depth and normal maps from different viewpoints are inferred using image-based

networks, and have been successfully used for image to shape generation tasks [28,26].

However such approaches requires subsequent processing to resolve view inconsisten-

cies and outliers which is a challenging task.

Previous work has also studied extensions of ConvNets to mesh surfaces such as

spectral CNNs [5,45], geodesic CNNs [29], or anisotropic CNNs [2]. They have shown

success for local correspondence and matching tasks. However, some of these methods

are constrained on manifold surfaces, and generally it’s unclear how well they perform

on shape generation tasks. A recent work in [35] generalized the convolution opera-

tor from regular grid to arbitrary graphs while avoiding the spectral domain, allowing

graphs of varying size and connectivity.

Another branch of recent works focused on processing shapes represented as point

clouds. One example is PointNet [40,32], that directly consumes point clouds as input.

The main idea is to first process each point identically and independently, then leverage

a symmetric function (max pooling) to aggregate information from all points. The use

of max pooling preserves the permutation invariance of a point set, and the approach is

quite effective for shape classification and segmentation tasks. Similarly, KD-net [24]

operates directly on point cloud shapes. It spatially partitions a point cloud using a kd-

tree, and imposes a feed-forward network on top of the tree structure. This approach

is scalable, memory efficient, achieves competitive performance on shape recognition

tasks. While successful as encoders, it hasn’t been shown how these networks can be

employed as decoders for shape generation tasks.

Generating shapes as a collection of points without intermediate modeling of view-

based depth maps has been relatively unexplored in the literature. The difficulty stems

from the lack of scalable approaches for generating sets. Two recent works are in this

direction. Fan et al. [12] train a neural network to generate point clouds from a sin-

gle image by minimizing Earth Mover’s Distance (EMD) or Chamfer distance (CD)

between the generated points and the model points. These distances are order invari-

ant and hence can operate directly on point sets. This approach uses a two-branched

decoder, one branch is built with 2D transposed convolutions and the other one is com-

posed by fully connected layers. On the other hand, our approach uses a simpler and

shallower decoder built as a composition of 1D deconvolutions that operate at multi-

ple scales. This representation improves information flow across scales, which leads to
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higher quality generated shapes. Moreover, we use permutation invariant losses along

with regularization of latent variables to build a model similar to a variational autoen-

coder [23] that can be used to sample shapes from Gaussian noise. Another work in [13]

learns a distribution over shape coefficients using a learned basis for a given category

using a generative adversarial network [15]. However, in this approach, the underlying

generative model assumes a linear shape basis, which produces less detailed surfaces.

The improved scalability of our method allows generating shapes with more points and

more accurate geometric details in comparison to previous work.

Our tree network builds on the ideas of multiscale [18,27], mutligrid [22] and di-

lated [46] or atrous filters [11,8] effective for a number of image recognition tasks.

They allow larger receptive fields during convolutions with a modest increase in the

number of parameters. In particular Ke et al. [22] showed that communication across

multiresolutions of an image throughout the network leads to improved convergence

and better accuracy on a variety of tasks. Our approach provides an efficient way of

building multigrid-like representations for 3D point clouds.

3 Method
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Fig. 2: Our multiresolution tree network (MRTNet) for processing 3D point clouds. We repre-

sent a 3D shape as a 1D list of spatially sorted point cloud. The network represents each layer

at three scales (indicated by yellow, red, and blue), the scale ratio is k between each two. The

last two convolution layers have kernel size 1 and stride 1. MR-CONV refers to multi-resolution

convolution (zoom-in to the inset for details); and MR-CONV-T refers to MR-CONV with trans-

posed convolution. Our network is flexible and can be used for several shape processing tasks.

Figure 2 shows the complete architecture of our multiresolution tree network (MRT-

Net) that includes both the encoder and decoder. We represent 3D shapes as a point

cloud of a fixed size N = 2D (e.g. N = 1K). We center the point cloud at the origin

and normalize its bounding box; then spatially sort it using a space-partitioning tree.

The input to the network are thus a 1D list (N ⇥ 3 tensor) containing the xyz coordi-

nates of the points. The network leverages 1D convolution and represents each layer at

three scales, with a ratio of k between each two. MR-CONV refers to multi-resolution

convolution, and MR-CONV-T refers to MR-CONV with transposed convolution. The

encoding z is a 512-D vector. Our network architecture is flexible and can be used for

several shape processing tasks. For shape classification, we use only the multiresolu-

tion encoder but adding a fully connected layer after the encoding z to output a 40-D
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vector representing the ModelNet40 shape classes. For single-image shape inference,

we employ a pretrained VGG-11 image encoder [36], combined with our multiresolu-

tion decoder to directly an output point cloud shape as a N⇥3 tensor. For unsupervised

learning of point clouds, we use both the multiresolution encoder and decoder, form-

ing a variational autoencoder.

Spatial sorting. As a point cloud is unordered to begin with, we use a space-partitioning

tree such as KD-tree to order the points. To start, we sort the entire point set along

the x-axis, then split it in half, resulting in equal-sized left and right subsets; we then

recursively split each subset, this time along the y-axis; then along z-axis; then back

along the x-axis and so on. Basically it’s a recursive process to build a full tree where the

splitting axes alternate between x, y, z at each level of the tree. The order of leaf nodes

naturally becomes the order of the points. There are several variants on the splitting

strategy. If at each split we choose an axis among x, y, z with probability proportional

to the span of the subset along that axis, it builds a probabilistic KD-tree as described

in [24]. If we choose axes from a random set of directions, it builds an RP-tree [10].

Note that after the ordering is obtained, the underlying details of the how the splits

were taken are discarded. This is fundamentally different from [24] where the network

computations are conditioned on the splitting directions.

The purpose of spatial sorting is to build a hierarchical and locality-preserving order

of the points. Thus functions computed based on the local 3D neighborhood at a point

can be approximated using convolutions and pooling operations on the 1D structure.

However, any ordering of points is distortion inducing and in particular long-range re-

lationships are not preserved well. Maintaining multiple resolutions of the data allows

us to preserve locality at different scales. Since the partitioning is constructed hierar-

chically this can be efficiently implemented using pooling operations described next.

Multiresolution convolution. With the spatially sorted point set, we can build a net-

work using 1D convolution and pooling operations. The convolution leverages the spa-

tial locality of points after sorting, and the pooling leverages the intrinsic binary tree

structure of the points.

With a conventional CNN, each convolutional operation has a restricted receptive

field and is not able to leverage both global and local information effectively. We resolve

this issue by maintaining three different resolutions of the same point cloud using a

mutligrid architecture [22]. Different resolutions are computed directly through pooling

and upsampling operations. Specifically, we use average pooling with kernel size and

stride of k, where k is a power of 2. This configuration allows pooling/downsampling

the point cloud while preserving its hierarchical tree structure. Figure 1 (left) shows an

example point cloud at three different resolutions computed by pooling with k = 2. For

upsampling, we use nearest neighbor (NN) upsampling with a factor of k.

Once we can pool and upsample the point clouds, we are able to combine global and

local information in the convolutional operations by using the MR-CONV block in the

inset of Fig. 2. The multiresolution block operates in the following way. We maintain

the point cloud representations at three resolutions f(0), f(1), f(2), where the scale ratio

between each two is (as mentioned above) k. The MR-CONV block receives all three

as input, and each resolution will be upsampled and/or pooled and concatenated with
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each other, creating three new representations f 0(0), f
0

(1), f
0

(2):

f 0(0) = f(0) ⊕up(f(1)); f 0(1) = pool(f(0))⊕ f(1) ⊕up(f(2)); f 0(2) = pool(f(1))⊕ f(2).

where ⊕ is the concatenation operation, up and pool are the upsampling and average

pooling operations. Each new representation f 0 then goes through a sequence of op-

erations: 1D convolution (kernel size=2 and stride=2), batch normalization and ReLU

activation. Note that due to the stride 2, each output is half the size of its associated

input. In our generative model and shape inference model we use k = 4, while for

classification we use k = 8.

Shape classification model. For classification, we use our multiresolution encoder in

Figure 2, and add a fully connected layer after encoding z that outputs a 40-D vector

representing the ModelNet40 classification. Specifically, we train the network on the

ModelNet40 [44] dataset, which contains 12,311 objects covering 40 different cate-

gories. It is split into 9,843 shapes for training and 2,468 shapes for testing. For each

object, we sample 1K points on the surface using Poisson Disk sampling [3] to evenly

disperse the points. Each sampled point cloud is then spatially sorted using the proba-

bilistic kd-tree [24]. Specifically, at each split of the tree we choose a random split axis

according to the following PDF:

P (n = ei|x) =
exp{spani(x)}Pd

j=1 exp{spanj(x)}

where x is the subset of points to be split, n is the split axis chosen from the canonical

axes ei (i.e. x,y,z in 3D), and spani(x) returns the span of x along each axis ei.

The network parameters are as follows: the first MR-CONV layer has 16 filters

and the following layers double the amount of filter of the previous one, unless the

previous layer has 1024 filters. In that case, the next layer also has 1024 filters. The

network is trained by minimizing a cross-entropy loss using an Adam optimizer with

learning rate 10−3 and β = 0.9. The learning rate is decayed by dividing it by 2 every

5 training epochs. We employ scale augmentation at training and test time by applying

anisotropic scaling factors drawn from N (1, 0.25). At test time, for each point cloud we

apply the sampled scale factors and build the probabilistic kd-tree 16 times as described

above, thus obtaining 16 different versions and orderings of the point set. Our final

classification is the mean output of those versions. The test-time average has very little

impact on the computation time (a discussion is included in Sec. 4.4).

Single-image shape inference. Our multiresolution decoder can be used to perform

image-to-shape inference. Specifically, we use a pretrained VGG-11 image encoder [36]

combined with our decoder in Figure 2. Our decoder is set to generates 4K points. The

entire network is trained using the dataset and splits provided by [9], which contains 24

renderings from different views for 43783 shapes from ShapeNet divided in 13 different

categories. We sample each ShapeNet mesh at 4K points and use them for supervision.

Given a rendered image, the task is to predict the complete point cloud (4K points)

representing the object in the image. The decoder in Figure 2 has the following number

of filters per layer: 512-512-256-256-128-64-64-64. As in Figure 2, the two additional
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convolutional layers at the end have kernel size 1 and stride 1: the first one has 128

filters and the second one outputs the final 4K point set.

There are many possible choices for the reconstruction loss function. One straight-

forward choice would be to use the ordering induced by the spatial partitioning and

compute the L2 loss between the output and ground-truth point clouds. However, L2

loss turns out to work very poorly. We chose to use the Chamfer distance between two

point clouds (x and y), defined as:

Ch(x,y) =
1

|x|

X

x2x

min
y2y

kx− yk2 +
1

|y|

X

y2y

min
x2x

kx− yk2

The Chamfer distance is invariant to permutations of points, making it suitable to mea-

sure dissimilarities between unstructured point clouds. The model is trained using an

Adam optimizer with learning rate 10−3 and β = 0.9. Learning rate is divided by two

at each two epochs.

Unsupervised learning of point clouds. By combining the multiresolution encoder and

decoder together, we can perform unsupervised learning of 3D shapes. The entire net-

work, called MR-VAE, builds upon a variational autoencoder (VAE) [23] framework.

The encoder Q receives as an input a point cloud x and outputs an encoding z 2 R
512.

The decoder D tries to replicate the point cloud x from z. Both encoder and decoder

are built using a sequence of MR-CONV blocks as in Fig. 2. Similar to above, we use

Chamfer distance as the reconstruction loss function. Besides this, we also need a regu-

larization term that forces the distribution of the encoding z to be as close as possible to

the Gaussian N (0, I). Differently from the original VAE model, we found that we can

get more stable training if we try to match the first two moments (mean and variance)

of z to N (0, I). Mathematically, this regularization term is defined as:

Lreg = kcov(Q(x) + δ)− Ik2 + E[Q(x) + δ]

where cov is the covariance matrix, Q is the encoder, k·k2 is the Frobenius norm and

E[·] is the expected value. δ is a random value sampled from N (0, cI) and c = 0.01.

Thus, our generative model is trained by minimizing the following loss function:

L = Ch(x, D(Q(x))) + λLreg

We set λ = 0.1. The model is trained using an Adam optimizer with learning rate 10−4

and β = 0.9. The encoder follows the classification model and the decoder follows the

one used in the shape inference model, both described previously.

Shape part segmentation. MRTNet can also be applied for shape part segmentation

tasks. For details please refer to the supplemental material.

4 Experimental Results and Discussions

This section presents experimental results. We implemented MRTNet using PyTorch.
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Method Accuracy

View-based methods

MVCNN [39] 90.1

MVCNN-MultiRes [31] 91.4

Point-based methods (w/o normals)

KDNet (1K pts) [24] 90.6

PointNet (1K pts) [40] 89.2

PointNet++ (1K pts) [32] 90.7

MRTNet (1K pts) 91.2

MRTNet (4K pts) 91.7

KDNet (32K pts) [24] 91.8

Point-based methods (with normals)

PointNet++ (5K pts) [32] 91.9

Voxel-based methods

OctNet [33] 86.5

O-CNN [42] 90.6

(a) Comparisons with previous work. Among

point-based methods that use xyz data only, ours

is the best in the 1K points group; and our 4K

result is comparable with KDNet at 32K points.

Method Accuracy

Full model (MRTNet, 4K pts) 91.7

Filters/4 91.7

Single res. 89.3

Single res., no aug. (kd-tree) 86.2

Single res., no aug. (rp-tree) 87.4

(b) MRTNet ablation studies. Filters/4 reduces

the number of filters in each layer by 4. The last

three rows are the single resolution model.

Method Accuracy

SPH [21] 68.2

LFD [7] 75.5

T-L Network[14] 74.4

VConv-DAE [34] 75.5

3D-GAN [43] 83.3

MRTNet-VAE (Ours) 86.4

(c) Unsupervised representa-

tion learning. Section 4.3.

Table 1: Instance classification accuracy on the ModelNet40 dataset.

4.1 Shape classification

To demonstrate the effectiveness of the multiresolution encoder, we trained a baseline

model that follows the same classification model but replacing multiresolution con-

volutions with single-scale 1D convolutions. Also, we apply the same test-time data

augmentation and compute the test-time average as described in the Section 3.

Classification benchmark results are in Table 1(a). As shown in the table, MRTNet

achieves the best results among all point-based methods that use xyz data only. In

particular, ours is the best in the 1K points group. We also experimented with sampling

shapes using 4K points, and the result is comparable with KDNet at 32K points – in

this case, KDNet uses 8⇥ more points (hence 8⇥ more memory) than ours, and is only

0.1% better. PointNet++ [32] with 5K points and normals is 0.2% better than ours.
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Fig. 3: Cross entropy decay

Table 1(b) shows ablation study results with variants

of our approach. Particularly, the multiresolution version

is more than 2% better than the baseline model (i.e. sin-

gle resolution), while using the same number of parame-

ters (the Filters/4 version). Besides, MRTNet converges

must faster than the baseline model, as we can see in the

cross entropy loss decay plots in Figure 3. This shows

that the multiresolution architecture leads to higher qual-

ity/accuracy and is memory efficient.
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Category
3D-R2N2 [9] Fan et al. [12] Lin et al. [26] MRTNet

1 view 3 views 5 views (1 view) (1 view) (1 view)

airplane 3.207 / 2.879 2.521 / 2.468 2.399 / 2.391 1.301 / 1.488 1.294 / 1.541 0.976 / 0.920

bench 3.350 / 3.697 2.465 / 2.746 2.323 / 2.603 1.814 / 1.983 1.757 / 1.487 1.438 / 1.326

cabinet 1.636 / 2.817 1.445 / 2.626 1.420 / 2.619 2.463 / 2.444 1.814 / 1.072 1.774 / 1.602

car 1.808 / 3.238 1.685 / 3.151 1.664 / 3.146 1.800 / 2.053 1.446 / 1.061 1.395 / 1.303

chair 2.759 / 4.207 1.960 / 3.238 1.854 / 3.080 1.887 / 2.355 1.886 / 2.041 1.650 / 1.603

display 3.235 / 4.283 2.262 / 3.151 2.088 / 2.953 1.919 / 2.334 2.142 / 1.440 1.815 / 1.901

lamp 8.400 / 9.722 6.001 / 7.755 5.698 / 7.331 2.347 / 2.212 2.635 / 4.459 1.944 / 2.089

speaker 2.652 / 4.335 2.577 / 4.302 2.487 / 4.203 3.215 / 2.788 2.371 / 1.706 2.165 / 2.121

rifle 4.798 / 2.996 4.307 / 2.546 4.193 / 2.447 1.316 / 1.358 1.289 / 1.510 1.029 / 1.028

sofa 2.725 / 3.628 2.371 / 3.252 2.306 / 3.196 2.592 / 2.784 1.917 / 1.423 1.768 / 1.756

table 3.118 / 4.208 2.268 / 3.277 2.128 / 3.134 1.874 / 2.229 1.689 / 1.620 1.570 / 1.405

telephone 2.202 / 3.314 1.969 / 2.834 1.874 / 2.734 1.516 / 1.989 1.939 / 1.198 1.346 / 1.332

watercraft 3.592 / 4.007 3.299 / 3.698 3.210 / 3.614 1.715 / 1.877 1.813 / 1.550 1.394 / 1.490

mean 3.345 / 4.102 2.702 / 3.465 2.588 / 3.342 1.982 / 2.146 1.846 / 1.701 1.559 / 1.529

Table 2: Single-image shape inference results. The training data consists of 13 categories of

shapes provided by [9]. The numbers shown are [pred→GT / GT→pred] errors, scaled by 100.

The mean is computed across all 13 categories. Our MRTNet produces 4K points for each shape.

Fully Connected Single Res. MRTNet

1.824 / 2.297 1.708 / 1.831 1.559 / 1.529

Table 3: Ablation studies for the image to shape decoder. The numbers shown are [pred→GT

/ GT→pred] errors, scaled by 100. The values are the mean computed across all 13 categories.

Our single resolution baseline is akin to KDNet except it doesn’t condition the con-

volutions on the splitting axes. It results in 1.3% less classification accuracy compared

to KDNet (1K pts). This suggests that conditioning on the splitting axes during convo-

lutions improves the accuracy. However, this comes at the cost of extra book keeping

and at least three times more parameters. MRTNet achieves greater benefits with lesser

overhead. Similar to the KDNet, our methods also benefit from data augmentation and

can be used with both kd-trees and rp-trees.

4.2 Single-image shape inference

We compare our single-image shape inference results with volumetric [9], view-based [26]

and point-based [12] approaches using the evaluation metric by [26]. Given a source

point cloud x and a target point cloud y, we compute the average euclidean distance

from each point in x to its closest in y. We refer to this as pred!GT (prediction to

groundtruth) error. It indicates how dissimilar the predicted shape is from the ground-

truth. The GT!pred error is computed similarly by swapping x and y, and it measures

coverage (i.e. how complete the ground-truth surface was covered by the prediction).

For the voxel based model [9], we used the same procedure as [26], where point clouds

are formed by creating one point in the center of each surface voxel. Surface voxels

are extracted by subtracting the prediction by its eroded version and rescale them such

that the tightest 3D bounding boxes of the prediction and the ground-truth CAD models

have the same volume.
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Fig. 4: Shapes generated by 1) the fully connected baseline; 2) the single-resolution baseline;

and 3) MRTNet. Colors in the first row indicate the index of a point in the output point list.
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Fig. 5: Qualitative results for single-image shape inference. From top to bottom: input images,

ground truth 3D shapes, results of MRTNet, Fan et al. [12], and Choy et al. [9].

Table 2 shows our results. Our solution outperforms competing methods in 12 out

of 13 categories on the pred!GT error, and in 6 categories on GT!pred error. Note

that we are consistently better than the point-based methods such as [12] in both met-

rics; and we are consistently better than [26] in the pred!GT metric. Furthermore, our

method wins by a considerable margin in terms of the mean per category on both met-

rics. It is important to highlight that the multi-view based method [26] produces tens

of thousands of points and many of them are not in the right positions, which penal-

izes their pred!GT metric, but that helps to improve their GT!pred. Moreover, as

mentioned in [26], their method has difficulties capturing thin structures (e.g. lamps)

whereas ours is able to capture them relatively well. For example, our GT!pred error

for the lamp category (which contains many thin geometric structures) is more than

two times smaller than the error by [26], indicating that MRTNet is more successful at

capturing thin structures in the shapes.
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Fig. 6: Shapes generated by applying MRTNet on Inernet photos of furnitures and toys. MRTNet

is trained on the 13 categories of ShapeNet database (Table 2) . Note how the network is capable

of generating detailed shapes from real photos, even though it is trained only on rendered images

using simple shading models. For each output shape we show two different views.

Ablation studies. In order to quantify the effectiveness of the multiresolution decoder,

we compared our method with two different baselines: a fully connected decoder and a

single-resolution decoder. The fully connected decoder consists of 3 linear layers with

4096 hidden neurons, each layer followed by batch normalization and ReLU activation

units. On top of that, we add a final layer that outputs 4096⇥ 3 values corresponding to

the final point cloud, followed by a hyperbolic tangent activation function. The single

resolution decoder follows the same architecture of the MRT decoder but replacing

multiresolution convolutions with single-scale 1D convolutions. Results are shown in

Table 3. Note that both baselines are quite competitive. The single-resolution decoder

is comparable to the result of [26], while the fully connected one achieves similar mean

errors to [12]. Still, they fall noticeably behind MRTNet.

In Figure 4 we visualize the structures of the output point clouds generated by the

three methods. The point clouds generated by MRTNet present strong spatial coher-

ence: points that are spatially nearby in 3D are also likely to be nearby in the 1D list.

This coherence is present to some degree in the single-resolution outputs (note the dark

blue points in the chair’s arms), but is almost completely absent in the results by the

fully connected decoder. This is expected, since fully connected layers do not leverage

the spatial correlation of their inputs. Operating at multiple scales enables MRTNet to
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Fig. 7: Qualitative comparisons of MR-VAE with a single-resolution baseline model. Results

are generated by randomly sampling the encoding z. MR-VAE is able to preserve shape details

much better than the baseline model, and produces less noisy outputs.

Fig. 8: Test set shapes reconstructed by MR-VAE trained on all categories of ShapeNet (using

80%/20% training/test split). MR-VAE is able to reconstruct high-quality diverse shapes.

enforce a stronger spatial coherence, allowing it to more efficiently synthesize detailed

point clouds with coherent geometric structures.

Qualitative results. In Figure 5 we present qualitative results of our method and com-

parisons to two prior works. The input images have 3 color channels and dimensions

224 ⇥ 224. In Figure 6 we show results of our method applied on photographs down-

loaded from the Internet. To apply our method, we manually removed the background

from the photos using [1], which generally took less than half a minute per photo. As

seen from the results, MRTNet is able to capture the structure and interesting geometric

details of the objects (e.g. wheels of the office chairs), even though the input images are

considerably different from the rendered ones used in training.

4.3 Unsupervised Learning of Point Clouds

For unsupervised learning of point clouds, we train our MR-VAE using the ShapeNet

dataset [6]. By default we compute N = 4K points for each shape using Poisson Disk

sampling [3] to evenly disperse the points. Each point set is then spatially sorted using

a kd-tree. Here we use the vanilla kd-tree where the splitting axes alternate between

x, y, z at each level of the tree. The spatially sorted points are used as input to train

the MR-VAE network (Section 3). Similar to before, we also train a baseline model

that follows the same network but replacing multiresolution convolutions with single-

scale 1D convolutions in both encoder and decoder. As Figure 7 shows, the shapes

generated by the MR-VAE trained on chairs are of considerably higher quality than

those generated by the baseline model.

We also performed multiple-category shape generation by training MR-VAE on

80% of the objects from ShapeNet dataset. The remaining models belong to our test
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Fig. 9: Point correspondences among different shapes generated by MR-VAE. We picked three

index ranges (indicated by three colors) from one example chair, and then color coded points in

every shape that fall into these three ranges. The images clearly show that the network learned to

generate shapes with consistent point ordering.

Fig. 10: Shape interpolation results. For each example, we obtain the encodings z of the starting

shape and ending shape, then linearly interpolate the encodings and use the decoder to generate

output shapes from the interpolated z. Results show plausible interpolated shapes.

split. Reconstructions of objects in the test split are included in Figure 8. Even when

trained with a greater variety of shapes, the MR-VAE is able to reconstruct high qual-

ity shapes from its embedding. This demonstrates that MR-VAE is suitable for various

inference tasks such as shape completion or point cloud reconstructions.

Point ordering in the generated shapes. A useful way to analyze shape generation is

to see if the generated points have any consistent ordering across different shapes. This

is an interesting question because as described previously, our MR-VAE is trained using

Chamfer Distance, a metric that’s invariant to permutations of points. While the input

to the network is all spatially sorted, the output is not restricted to any particular order

and can in theory assume any arbitrary order. In practice, similar to the image-to-shape

model, we observe that there is a consistent ordering of points in the generated shapes,

as shown in Figure 9. Specifically, we picked three index ranges from one example

chair, one at the top, one on the side, and one close to the bottom, then we color coded

points in each shape that fall into these three index ranges. In the figure we can see

clearly that they fall into approximately corresponding regions on each chair shape.

Shape interpolation. Another common test is shape interpolation: pick two encodings

(either randomly sampled, or generated by the encoder for two input shapes), linearly

interpolate them and use the decoder to generate the output shape. Figure 10 shows two

sets of interpolation results of chairs from the ShapeNet dataset.

Unsupervised classification. A typical way of assessing the quality of representations

learned in a unsupervised setting is to use them as features for classification. To do

so, we take the MR-VAE model trained with all ShapeNet objects, and use its features

to classify ModelNet40 [44] objects. Our classifier is a single linear layer, where the

input is a set of features gathered from the first three layers of the MR-VAE encoder.

The features are constructed this way: we apply a pooling operation of size 128, 64

and 32 respectively on these three layers; then at each layer upsample the two smaller

resolutions of features to the higher resolution such that all three resolutions have the
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same size. Finally, we concatenate all those features and pass them through a linear

layer to get the final classification. It is important to notice that we did not perform any

fine-tuning: the only learned parameters are those from the single linear layer. We used

an Adam optimizer with learning rate 10−3 and β = 0.9. The learning rate is decayed

by dividing it by 2 every 5 epochs. Using this approach, we obtained an accuracy of

86.34% on the ModelNet40 classification benchmark, as shown in Table 1(c). This

result is considerably higher compared to similar features extracted from unsupervised

learning in other autoencoders. This shows that the representations learned by our MR-

VAE is more effective at capturing and linearizing the latent space of training shapes.

4.4 Discussions

Robustness to transformations. Kd-trees are naturally invariant to point jittering as

long as it’s small enough so as to not alter the shape topology. Our approach is in-

variant to translations and uniform scaling as the models are re-centered at the origin

and resized to fit in the unit cube. On the other hand, kd-trees are not invariant to rota-

tions. This can be mitigated by using practices like pooling over different rotations (e.g.

MVCNN) or branches that perform pose prediction and transformation (e.g. PointNet).

However, we notice that simply having unaligned training data was enough to account

for rotations in the classification task, and the ModelNet40 dataset contains plenty of

unaligned shapes. Moreover, since the KDNet [24] also employs a kd-tree spatial data

structure, the discussions there about transformations also apply to our method.

Computation time. Building a kd-tree of N points takes O(N logN) time, where

N = 210 for 1K points. While PointNet does not require this step, it’s also more

than 2.0% worse in the classification task. The time to run a forward pass for classi-

fication is as follows: PointNet takes 25.3ms, while MRTNet takes 8.0ms on a TITAN

GTX1080, both with batch size of 8. Kd-tree building is also much faster than rendering

a shape multiple times like in MVCNN [39] or voxelizing it [33]. Using 16 different

test-time augmentations does not have significant impact in computational time, as the

16 versions are classified in the same batch. This number of test-time augmentations is

comparable to other approaches, e.g. 10 in [24], 80 in [39], and 12 in [42] and [40].

5 Conclusion

In conclusion, we introduced multiresolution tree networks (MRTNet) for point cloud

processing. They are flexible and can be used for shape classification, generation, and

inference tasks. Our key idea is to represent a shape as a set of locality-preserving

1D ordered list of points at multiple resolutions, allowing efficient 1D convolution and

pooling operations. The representation improves information flow across scales, en-

abling the network to perform coarse-to-fine analysis, leading to faster convergence

during training and higher quality for shape generation.
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