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Abstract. A major obstacle in teaching machines to understand videos is the

lack of training data, as creating temporal annotations for long videos requires

a huge amount of human effort. To this end, we introduce a new large-scale

baseball video dataset called the BBDB, which is produced semi-automatically

by using play-by-play texts available online. The BBDB contains 4200 hours

of baseball game videos with 400k temporally annotated activity segments. The

new dataset has several major challenging factors compared to other datasets:

1) the dataset contains a large number of visually similar segments with dif-

ferent labels. 2) It can be used for many video understanding tasks including

video recognition, localization, text-video alignment, video highlight generation,

and data imbalance problem. To observe the potential of the BBDB, we con-

ducted extensive experiments by running many different types of video under-

standing algorithms on our new dataset. The database is available at https:

//sites.google.com/site/eccv2018bbdb/

Keywords: Video Understanding · Large-Scale Video Dataset · Action Recog-

nition · Temporal Localization

1 Introduction

As from the old saying “Seeing is believing,” paintings, photos, and videos are all pro-

duced to deliver what humans see. The ultimate goal of computer vision is to make

machines to understand those visual media, and due to the rapid progress in the deep

learning technology, we have now reached a point where we can teach a machine to

understand a single image fairly well.

Among the visual media, videos are the most comprehensive media that most re-

sembles how we as humans perceive the visual world. However, making machines to

understand videos is still very challenging due to the additional temporal dimension.

Videos include varying length of events and separating between different classes of

similar actions require better understanding of the motion. For example, classifying
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Fig. 1. (left) Understanding baseball videos: (a), (b), and (c) show a few samples from homerun,

infield hit, and foul sequence, respectively. It is simply not enough to recognize a few frames or

a discrete set of actions like hitting or running, to fully understand a baseball game or in general

any video. (right) Semantic class hierarchy based on the baseball rule.

between walking and swimming may be relatively easy as the classification can rely

solely on the visual features. For such a problem, just one single image may be enough

to carry out the classification task. However, separating between similar activities like

walking and running requires good motion features on top of the visual features. In ad-

dition, inferring the temporal progression of an event is another factor that needs to be

accounted in video recognition. By looking at a man running, a system cannot easily

determine whether it will end up with a vault or a long jump.

The goal of this paper is to introduce a new large-scale video database to promote

the research in video understanding. Many video datasets have been introduced al-

ready [34,21,28,14,3,52,24,33,26,42,25,22,15,37,1,16,41,7]. However, most of the ex-

isting databases fall short when trying to learn the minute difference between similar

actions. The class labels in the existing database are quite distinct such as vacuuming

floor, cleaning toilet, and cleaning windows. While they provide good data to learn good

visual and motion features for video analysis, we are more interested in providing data

with much more similarity.

Thus we present a new large-scale video dataset called the BBDB (stands for Base-

ball Database). BBDB contains 4,200+ hours (more than 500 million frames) of base-

ball game videos with 400k+ temporally annotated activity segments. The temporal

boundaries have been annotated by making use of the play-by-play texts available on-

line with minimal human validation, reducing the huge amount of human labor neces-

sary for the labeling process. We categorize the actions in baseball games into 30 classes

that include strike pitch, ball pitch, single/double/triple hits, homerun, etc (Fig. 1). What

sets our database apart from the previous datasets is the visual and the motion sim-

ilarities between the classes. A strike pitch and a ball pitch are visually similar and

differentiating between the two can be difficult even for humans.

Our dataset can be used to solve other interesting problems in computer vision in

addition to video recognition and localization. Class-imbalance is inherently imposed in

our dataset; e.g. home-run is rare compared to strike and ball. Learning with imbalanced

class sizes is a very important problem in machine learning that have yet been looked at

in depth. Our dataset provides a natural opportunity to tackle this imbalance problem.
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We have also collected corresponding highlights for each game in the dataset. This

could be used for video highlight generation research.

2 Related Work

Database. Numerous video databases have been introduced to boost up the capability

of video understanding models. Datasets for the action recognition [42,25,22,15] have

been widely used, but those benchmarks provide temporally trimmed video around the

action, limiting the practical use for various video understanding tasks.

Sports-1M [21] and YouTube-8M [1] introduce untrimmed video datasets, provid-

ing more complete data for realistic video understanding. KTH [34], THUMOS’15 [14],

ActivityNet [3], and Charades [37] provide untrimmed videos with temporal locations,

but most classes are visually distinct so that inferring an action class may depend on

a few frames rather than understanding the whole sequence. Also, [14,3] contain only

a small number of action instances per video; 1.1 and 1.41 annotations on average, re-

spectively. MultiTHUMOS [52] is an extended version of THUMOS with the goal of

providing multi-labeled annotation. While the dataset includes fine-grained classes such

as basketball dunk, dribble, and guard, the number of videos of those classes is 420 on

average, which still falls short of training a deep neural network for understanding vi-

sually similar classes. Relevant datasets [33,26] capturing fine-grained human actions

exist, but those datasets consist of relatively short videos. Meanwhile, [16,41,7] provide

useful benchmarks for the video summarization tasks. These datasets ask annotators to

score units of video clips depending on annotators’ criteria of importance. The labeling

process requires many annotators per video, resulting in small size dataset.

Our large-scale video dataset BBDB provides more than 4,200 hours of videos. Out

of 30 activity classes in our dataset, 23 classes have more than 1000 video clips and

the other 7 classes also have more than 400 clips on average. Furthermore, an average

length of the untrimmed videos in our dataset is 3.6 hours, making our benchmark more

challenging as the models have to understand longer sequence of events. Each video is

accompanied by its corresponding highlight video, and therefore our database can be

used for the video summarization or highlight generation as well. Finally, our dataset is

collected through a semi-automatic process with minimal human effort, so it is easy to

scale up the size of the dataset.

Action Recognition. Before the deep learning era, handcrafted motion features like the

improved dense trajectories [48] were widely used to extract appearance and motion

features. One popular approach to learn spatio-temporal representation is to exploit 3D

convolution. In the early stage, [45,20,46] applied simple 3D convolution network on

action recognition. Recently, deeper 3D ConvNets [4,32,47,17] are proposed showing

the state-of-the-art performance by inflating the well-known 2D networks (e.g. ResNet)

into 3D. Another branch of video representation learning is the two-stream method [39]

consisting of two complementary networks, appearance and motion network. Variations

of the two-stream [12,10,11] were also introduced, exploring various ways of fusing

the two streams. Aforementioned methods leverage only a fixed length of frames and a

video level representation is obtained by computing the average score of segments. To

model long-term temporal information, [9,29,44] employed RNN on top of the CNN
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and more sophisticated schemes such as TSN [50] have been proposed to watch the

entire video during training.

Handling Imbalanced Dataset. Real data are imbalanced by nature. We see people

walking all the time but rarely see a person back-flipping. Being able to deal with this

problem of imbalance in the number of data per class is an important problem in ma-

chine learning [18], but it has yet been explored extensively. Classic approaches include

heuristic sampling or adjusting cost functions to reflect the frequency of classes [5,23].

One could also use the focal loss [27] that has been proposed recently, which adjusts

the cross entropy loss based on whether a class is well classified or not.

Temporal Action Localization. Temporal action localization is the problem of ex-

tracting target video segments in untrimmed videos. The basic approach for this prob-

lem [13,49] is to divide clips by a sliding window, extract features from the clips, and

pass it to a classifier. Various deep learning based solutions [54,53,36] have also been

introduced to solve this problem. The precision of the temporal action localization task

is still low compared to other tasks. It has been pointed out that the main reason for the

lack of precision is the lack of data, due to the difficulty of annotating the dataset [54].

Text-Video Alignment. Collecting dense annotations of action is costly and time-

consuming. Several approaches were proposed to learn temporal localization in a weakly

supervised manner. The goal is to label each frame with the corresponding action label,

given only the sequence of actions without exact time stamps. An extended CTC frame-

work [19] was proposed to evaluate all the possible alignments, enforced to be consis-

tent with inter-frame visual similarities. Another approach [2] formulated the problem

as a convex relaxation on discriminative clustering under ordering constraints.

3 Baseball Database

The goal of our Baseball Database (BBDB) is to provide a challenging benchmark for

higher level understanding of videos. Previous datasets have focused on literal human

actions such as running, and jumping. Only a few datasets have elaborate labels on

videos; e.g. dense detailed labels [52,37], or dense caption [24]. When a sports game

is analyzed with a visual recognition system trained on those simple actions, retrieved

sequences of human actions will not be comprehensive enough to understand the game.

This is because a sports game is a series of events, which can only be explained by a

combination of action, sequential, and semantic information.

Constructing a large video dataset is challenging, especially when tasks require an-

notated temporal boundaries. Labeling videos involves tremendous amount of human

effort, such that automating such process is one of the goals of an action detection

algorithm. Labels of BBDB are collected in a semi-automatic manner making use of

the play-by-play broadcasts available online. With this strategy, we could dramatically

reduce human labor and create precise temporal annotations.

Among different video domains, baseball has a number of advantages over others.

First, baseball has less anomalies due to its clear-cut rules and abundant statistics. This

is why the play-by-play texts from the broadcasters can be utilized to generate precise

segment locations. The rules are also crucial in the validation step, to analyze whether a

system correctly understood the events and the underlying rules; e.g. strike-out can only
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Fig. 2. Illustration of how BBDB has been collected. Left-top scroll is an example of play-by-

play texts. ① From the texts, extract date and time of every pitch in a sorted order. In the video,

manually find the first pitching moment. ② Using the obtained gap, align the first pitch of the

video with the first pitch of the ordered text times. ③ Since text time and video time are aligned,

all pitch times can be transferred from text time to video time. ④ The temporal boundaries are

set with the pitch times and predetermined length of each action.

come after two strike counts. Second, thousands of new games are played every year,

so the database can be easily expanded over time with minimal costs. Finally, baseball,

as one of the most popular sports, has a lot of practical applications as well as high

demand for automatic analysis tools.

3.1 Database Collection

Nowadays, full videos of baseball games can be found in online video archives, accom-

panied by play-by-play texts. Those text broadcasts (Fig. 2) include broad information

about each game like the participating teams and players, and most importantly, every

game activities and time stamps of pitches. With the provided pitch times, which are in

absolute time with date, we can semi-automatically align the game video with the texts

by just manually calculating the relative difference between the first pitch in the video

and the text broadcast. Then, action segments can be extracted from videos based on

pitch times and predetermined length of each action.

To make sure that the labels collected with our method are correct, we incorporate a

review process for each game by checking the correctness of last few segments and their

labels. If the gap is consistent throughout the game, the last segment will have correct

boundaries. This is why annotators only need to check a few of last segments in each

game. If there exists an inconsistency on the label (time annotation) of the last segment,

the whole game is discarded in our database to ensure that none of the incorrect labels

get included in the dataset.

To evaluate the semi-automatic labeling, we compared the semi-automatically la-

beled data with human annotation on 20 games. The details are explained in Section 4.

On average, annotating 3 hours of video takes around 4 hours while our semi-automatic

method takes about 5 minutes per game. This is because of the difficulty in temporally

annotating untrimmed videos; after observing an event, an annotator has to seek back
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Table 1. Comparison with other recognition, temporal localization (detection), and summariza-

tion video datasets. Our BBDB has peculiarities dedicated for new challenges of video analytics.

† denotes the number of temporally annotated instances, available only for databases with de-

tection tasks. ‡Database with large #instances/#videos ratio can be used as sequential alignment

database, since text-video alignment is trained without temporal boundary annotations. Values

are referenced from each dataset or [24] otherwise.

Dataset #instances†/#videos Avg.Len. Untrimmed Detection Sequence‡ Summary

UCF101 [42] /13k 7s - - - -

HMDB51 [25] /7k 3s - - - -

Sth-Sth-V2 [15] /220k 4s - - - -

Kinetics [22] /306k 10s - - - -

SumMe [16] /25 240s - - - X

TvSum [41] /50 150s - - - X

VSUMM [7] /100 180s - - - X

Hollywood2 [28] /4k 20s X - - -

Sports-1M [21] /1.1M 300s X - - -

Youtube-8M [1] /8.3M 230s X - - -

KTH [34] 2.4k/600 20s X X - -

THUMOS’15 [14] 23.1k/21k 4s X X △ -

MultiTHUMOS [52] 39k/400 270s X X △ -

ActivityNet [3] 28k/20k 180s X X △ -

Charades [37] 67k/9.8k 30s X X X -

MPII cooking [33] 5.6k/44 600s X X X -

TUM Breakfast [26] 11k/2k 140s X X X -

BBDB (ours) 405k/1k 13,000s X X X X

to find the starting or ending point of the event. Repeating this process causes the label-

ing to take more time than the video’s duration. However, our collection method only

requires to find a gap, and to easily validate by observing a few last segments.

3.2 Properties

The BBDB is a challenging dataset for two key properties: 1) the dataset contains a

large number of visually similar segments with different labels, that have evidently

distinguishable differences. In baseball, strike and ball are basically the same pitch-

ing action. However, the last position of the ball, referee’s movement, and on-screen

graphics are distinctive cues. To solve this problem, a system must be more than just

a action-category classifier, by taking more temporal information and semantics into

account. 2) The number of segment instances for each class is imbalanced. Since thou-

sands of baseball games are used for the dataset, this imbalance is naturally imposed

and statistically meaningful.

Videos. The initial version of BBDB contains 1,172 full baseball game videos. It is split

into three sets; training set with 703 videos, validation set with 234 videos, and test set
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with 235 videos. In total, the dataset contains 4,254 hours of baseball. Each video is

either 480p or 720p, and it is mostly in 30 fps, with a few 60 fps videos. Game duration

ranges from 120 minutes to 350 minutes.

Highlights. Beside full game videos, we have also collected highlight videos that cor-

responds to each game in the dataset. Automatic generation of sports highlight is easier

to evaluate compared to highlights of general user created videos, since sports high-

light has less ambiguity about ‘what is important’ criteria. Even though those highlights

are still cherry-picked by human experts, rare events like homerun or double-play are

definitely more important than the others. BBDB can also serve as a good highlight

database, providing a challenge of creating highlights not only through visual under-

standing but also by understanding storylines.

Annotations. The BBDB contains 404,964 annotated segments over 30 baseball activi-

ties. This is 345 activity instances per video on average. Labeled classes are not written

as discrete human actions, but as baseball activities e.g. strike, ball, and homerun. De-

rived annotations comprise lexicon of labels. The lexicon has a tree structure to help

semantically subdivide labels into groups (Fig. 1). The structure can be utilized to deal

with disproportion of the number of instances per action class, as well as the visual

similarity between two or more activities over the temporal domain.

Comparisons. For a brief comparison with other datasets, refer to Table 1. The BBDB

has unparallel number of temporally annotated segments, with long full game videos.

This enables the dataset to be used not only for temporal localization tasks (‘Detection’

in the table), but also for the text-video alignment. The alignment task does not use

the temporal boundaries of the segments but the order of segments. So higher #instances
#videos

ratio gives more sequential information useful for the alignment task. Additionally, the

BBDB has incomparable number of videos to be used for summarization or highlight

generation task compared to other video summarization datasets.

Currently, we utilize a set of words as labels to evaluate the dataset. Those labels can

be easily extended to sophisticated captions by making use of rich information in the

play-by-play texts. The texts even contain information about rosters, number of inning,

whether a player is on the first base or not, and so on. Ultimately, automatic commentary

system can be established with those captions.

4 Database Evaluation

To validate our semi-automatically collected dataset, we evaluated the dataset against

manually annotated videos. We randomly selected 20 baseball games in the dataset,

and manually annotated about 7,000 temporal boundaries (7k is already comparable to

other localization datasets).

Results of the comparison between the semi-automatic and the manual labels are

shown in Table 2. For IoU threshold ≤ 0.5, the semi-automatic label shows very accu-

rate results. While the accuracy drops for thresholds over 0.5, it is still quite accurate

considering that the state-of-the-art methods do not reach even 30 on these measures.

In addition, a high IoU threshold is a very strict measure that is sensitive to fine differ-

ence in boundaries. On the class strike, for example, the semi-automatic labeling makes

a segment between one second before starting pitch and one second after the catcher
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Table 2. Precision of semi-automatic labeling against human labeling on the BBDB. IoU thresh-

old ranges from 0.3 to 0.7.

IoU threshold 0.3 0.4 0.5 0.6 0.7

BBDB 98.8 97.0 93.5 75.6 60.1

throws back to catcher. However, human annotators have their own standard for mak-

ing segments, e.g. between right after starting pitch and right before the catcher throws

back. These minor differences in the boundaries do not affect the ultimate goal of our

vision task, since all of them are visually correct. Note that labeling the data with many

annotators will inherently have difference as exact start and finish time can be differ-

ent from person to person. Compared to manual labeling, the semi-automatic labels

will have more consistency. Therefore, we conclude that the semi-automatic labeling is

accurate enough with its own standard for making boundaries.

5 Video Understanding Algorithms

We evaluate several video understanding methods using our dataset. We first explain

the methods in this section.

5.1 Action Recognition

IDT+FV. Dense trajectories [48] features include local descriptors like histogram of ori-

ented gradients (HOG), optical flow (HOF), and motion boundary histogram (MBH).

Albeit computationally expensive, Fisher vector [31] encoding of those descriptors has

been used for video classification, and showed better results compared to their contem-

porary bag-of-words features. We used HOG, HOF, MBH descriptors and followed the

configuration of feature encoding in [48]. Due to storage limitation and feasibility, all

videos are set to 3 fps and frames are resized with fixed height of 240 pixels, while

width is resized maintaining aspect ratio. The extracted IDT from training set is about

17TB even after resizing and reducing fps. Then, we trained 1-vs-rest SVM classifiers

over Fisher vectors of all annotated segments of the training set. The classifiers are

trained with Stochastic Gradient Descent (SGD) since the training data is over 10TB

and cannot fit into memory.

Single Frame. We utilize the 16-layer VGG model [40] to see how a single frame

based video classification and frame-level detection works. This network is originally

trained on ImageNet [8] for image classification, so it provides comparisons with other

systems that takes temporal changes into account. We fine-tuned the model on frames

from training set segments over 30 classes.

Optical Flow Stacking. In action recognition, a flow of movement can be an important

cue. This method only utilizes the optical flow information so that we can see how

motion impacts the classification performance. First, we extract optical flows from clips

for every 5 frame and normalize it to [0,255], which allows storing the optical flow as
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an image. Then, the optical flow network is trained on a stack of 10 optical flow frames.

We utilize ResNet-50 model to train motion stream network.

Two-Stream. Appearance and movement are complementary. Two-stream method uti-

lizes both appearance and optical flow, so we can see how well two information bring

together a synergy. The network designs for extracting the spatial and the temporal fea-

tures are the same as Single frame and Optical flow stacking. For aggregating the results

of the two networks, we average the softmax output and obtain the final result.

CNN+GRU. One of the useful tool to utilize the temporal information is recurrent neu-

ral network (RNN). In action recognition task, combinations of CNN and RNN [9] are

widely used. We used 5 CNN layers to extract spatial features for each frame, and those

features are fed into a RNN layer to make temporal features. We select the gated recur-

rent unit (GRU) [6] for its efficiency. The extracted temporal features are used as the

input to a fully-connected layer and the softmax layer for the classification.

C3D. C3D is a 3D convolution network architecture in the early stage of 3D ConvNet.

C3D consists of 8 convolution of 3 x 3 x 3 kernels, 5 max-pooling, and 2 fully-connected

layers. Its input is 16 sequential frames so that the model directly learns spatio-temporal

representations within 16 frames. We train C3D from scratch not from the pre-trained

weights on Sport-1M, since all the clips point to ‘Baseball’ class at the very first stage

leading the network to stay in a local minima.

I3D. I3D was first introduced in [4]. Unlike previous 3D ConvNets, I3D inflates not

only 2D kernels into 3D, but also the 2D weight values pre-trained on ImageNet into

3D. Specifically, each t × k × k 3D kernel is initialized by pre-trained k × k weights

repeating t times along the time dimension and rescaling by 1/t. We follow the 3D

network architecture used in [51].

5.2 Handling Class Imbalance

To address the class imbalance in our dataset (Fig. 5), we ran experiments with five

methods. All following experiments is based on the CNN+GRU model in 5.1, with

variations in data selection, class structure, and the loss function.

Naïve Training. As the baseline of this experiment, we kept the dataset untouched and

trained using CNN+GRU model.

Oversampling. Due to the highly imbalanced distribution among classes, we first ran-

domly pick a class, and then retrieve a video in that class. This allows the model to learn

each video class with equal chance. We set this method as our default setting, applying

to all the action recognition experiments except Naïve training mentioned above.

Hierarchical Classification. We can hierarchically divide 30 classes as shown in Fig. 1.

The distribution of the subsets are relatively balanced compared to that of the whole set.

Following the hierarchy of the dataset, we trained the first level 3-class classifier, the

batting-level 4-class classifier, and the last subset classifier.

Class Weight Adjustment. When a distribution among the classes is known, an addi-

tional weight can be imposed to loss values. Following [43], we tried setting a weight

for each class according to the ratio of total number of samples and the number of

samples from the class.

Focal Loss [27]. To prevent the cross entropy being overwhelmed [27] by severe class

imbalance, we tried another approach by adding the focal loss balancing factor so the
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network focuses more on poorly classified examples:

FL = −

c∑

i=1

(1− pi)
γyi log(pi) (1)

where c, i denotes the number of classes and class indices respectively, yi ∈ {0, 1}
specifies the ground-truth class, and pi denotes class prediction probabilities. The pa-

rameter γ controls the rate at which well-classified examples are down-weighted.

5.3 Temporal Localization

A temporal localization task is to predict the start and end points of events as well as

the corresponding class of each event. There are various designs of methods to localize

segments. One way is to first propose candidate segments and then to classify those

segments. The main drawback of this approach is losing the preciseness on the temporal

domain. Another method is to evaluate every frame before grouping neighboring frames

with high predicted probabilities. In this case, grouping can be exceedingly heuristic

and maintaining temporal information around each frame becomes the main challenge.

We use Single frame model trained in Section 5.1 to evaluate the temporal local-

ization task. We also evaluate using Convolutional-De-Convolutional (CDC) filter [35].

Most of settings are the same as [35], but without using pre-trained weights from Sports-

1M dataset [21] for the same reason as C3D in Section 5.1. Using those two models,

every frame in full game videos in the test set is fed into the models to produce class

probabilities. Then, we use the sliding window approach [30] with window sizes of 5,

6, · · · , 15, and 16 seconds, sliding with a stride of 1/3 second over the predicted proba-

bilities. The detected windows are non-maximum suppressed based on each window’s

maximum class probability, to remove any overlapping detection. All videos are set to

3 fps before evaluation for equal comparison.

5.4 Text-Video Alignment

In this task, we apply the method of ordering constrained discriminative clustering

(OCDC) [2] on our dataset. The method uses the idea of discriminative clustering with

an order of actions as the constraint. OCDC solves alignment problem by jointly learn-

ing a classifier per each action. A loss function for discriminative clustering is a square

loss function and we use a linear classifier to make the objective function quadratic. This

allows us to apply a convex relaxation of our problem using Frank-Wolf Algorithm. We

use HOF descriptor encoded by Fisher vector as frame-level representation.

6 Experimental Results

6.1 Action Recognition

In this section, we evaluate the action recognition methods with our BBDB dataset.

Each clipped segments in the test set is evaluated to produce prediction probabilities, or
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Table 3. Evaluations of technical approaches applied to BBDB. l denotes the maximum sequence

length of GRU, and Jac stands for Jaccard measure.

Method mAP Input # frames

Action Recognition (Oversampling) Training Testing

IDT + FV [48] 23.6 1 rgb 25 rgb

Single frame [40] 35.0 1 rgb 25 rgb

Optical flow stacking [39] 36.9 10 flow 250 flow

Two-stream [39] 42.3 1 rgb, 10 flow 25 rgb, 250 flow

C3D [46] 40.2 16 rgb 160 rgb

I3D [4] 44.2 32 rgb 320 rgb

CNN+GRU [9] (l = 64) 36.2 ≤ 64 rgb ≤ 64 rgb

CNN+GRU (l = 128) 52.8 ≤ 128 rgb ≤ 128 rgb

CNN+GRU (l = 256) 62.8 ≤ 256 rgb ≤ 256rgb

Handling Imbalance (l = 256)

CNN+GRU (Naïve) 67.0

CNN+GRU (Oversampling) 62.8

CNN+GRU (Hierarchical) 50.4

CNN+GRU+FL [27] (γ = 2) 61.6

CNN+GRU (Weight Adjustment) 55.3

Per-frame Labeling Training Testing

Single frame 9.25 1 rgb 1 rgb

CDC [35] 23.3 32 rgb 32rgb

Text-Video Alignment Jac

OCDC [2] 7.0

confidence scores in the case of the SVM classifier. All clips are sorted with the scores

to compute the average precision (AP), then the APs are averaged with the number of

classes to compute mean AP (mAP). Table 3 shows mAP of each method.

Exploiting both the appearance and the motion information shows better perfor-

mance than using only one of them. C3D shows slightly lower performance compared

to the Two-stream network, but I3D outperforms Two-stream, which reveals the im-

portance of network depth, initialization method, and temporal resolution. CNN+GRU

with maximum sequence length of l = 256 shows a large performance improvement

compared to other methods.

Our experimental results are different from other works, where it has been shown

that Two-stream or a 3D Convolution based networks usually work better than the

CNN+GRU. We believe this is due to the difference in the nature of the dataset. Due

to the visual similarity among the classes in our dataset, the classifier should take fine-

grained features, e.g. trajectory of the ball, runner’s direction, or referee’s actions. CNN-

based models take a limited number of frames as input during training, which is too

short to express longer sequences. However, the RNN structure takes the whole frames
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Fig. 3. Saliency on the class foul with corresponding video frame: saliency of CNN+GRU trained

(a) without masking, (b) with on-screen socreboard masking. 48th and 208th frame are the most

responsible moments for the foul clip with and without masking, respectively (marked as dots on

the line graphs).

of the segment as input, so it is able to consider the fine-grained motion information

better. In the same context, GRUs with shorter sequence length of l = 64, 128 show

worse performances.

We also observed the relationship among the classes (Fig. 6). Ball and strike classes

are the most confusing part, even though those classes have a lot of training examples.

It shows that distinguishing a ball from a strike is challenging. There are more classes

that are easily confused, but most extreme cases include tag out, error, and bunt out/hit

classes. In a baseball game, these situations may occur simultaneously with other situ-

ations leading to the confusion.

6.2 Saliency Analysis

As an attempt to understand what the neural net is looking at when recognizing actions,

we provide further analysis through the saliency map [38]. Instead of computing the

saliency map in the spatial domain as is done in [38], we extend the idea to the temporal

domain to see where and when the network focuses to recognize actions.

A saliency result for CNN+GRU is shown in Fig. 3(a). From the results, it is clear

that the network is relying heavily on the scoreboard to make a decision. So the network

learned to cheat as the easiest and the most accurate way to classify a strike or a ball

event is to actually look at the scoreboard rather than the motions.

To prevent the network from cheating, we trained the network with the scoreboard

masked out. A saliency results with the scoreboard masked is shown in Fig. 3(b). After

masking, the network focuses more on the motions to recognize actions. With the score

board masked out, the accuracy for recognizing the ball event went down from 0.908 to
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Fig. 4. APs (left axis) of classes computed with imbalance handling approaches; Naïve, Over-

sampling, Hierarchical classification, and Focal loss. Bars indicate the number of segments for

each class (right axis). Points connected with dashed lines show AP for each class, and the dashed

lines are drawn for illustration to easily seek between points. Focal loss has achieved better per-

formance than oversampling in small-quantity classes, by improving 3.9% on average over 19

classes. However, it lost significant performance over 3 large-quantity classes by 29.2%.

0.719, and the strike event from 0.720 to 0.394. For the events on which the scoreboard

does not provide additional information, the accuracy was similar with the masking.

6.3 Handling Class Imbalance

For handling the class imbalance, APs for every class are shown in Fig. 4 since mAPs in

Table 3 can be misleading when understanding and comparing the imbalance handling

methods. Oversampling failed to address the imbalance, getting worse AP in every class

compared to the naïvely trained network. The gap was bigger in classes with very large

and small number of samples like strike, and passed-ball. We suppose this is because

the severe imbalance between classes gave the network less chance to learn the visual

similarities between difficult classes like ball and strike.

Hierarchical classification showed the worst results among imbalance handling ap-

proaches. The irreversible property of the hierarchical structure mainly affected the

performance. For instance, if hit by pitch is classified into runner or batting category, it

loses any chance of being detected as hit by pitch. The results also present that the top

classifiers could not distinguish the semantic differences of the topmost categories.

The network trained with the focal loss is based on the default oversampling tech-

nique, and it showed improvements throughout most of classes with less samples. Im-

provement was 3.9% on average, over 19 classes with less samples. However, the focal

loss actually failed to discriminate visually similar classes like ball, strike, and swing-

and-miss; losing 29.2% on average over 3 classes with large number of samples. We

can infer the focusing factor (1 − pi)
γ kept the network from learning difficult classes

by cutting down the loss. We also tried different γ values of 0.5, 1, 2, and 5 but they

showed little differences.

Class weight adjustment shows the second worst performance. This is expected

since setting weight according to the number of classes is a more pre-hoc way of tuning

loss values, compared to focal loss that balances the loss while training.
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Fig. 5. Distribution of 30 classes in BBDB.

Table 4. Temporal localization mAP on BBDB.

IoU threshold ranges from 0.3 to 0.7.

IoU threshold 0.3 0.4 0.5 0.6 0.7

Single frame 9.96 7.86 3.44 2.48 1.62

CDC [35] 26.1 22.2 11.3 9.54 6.07
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Fig. 6. Confusion matrix for CNN+GRU result.

Ball and strike classes are confused each other.

Tag out, error, bunt out/hit and those not having

enough train data do not work correctly.

6.4 Temporal Localization

Table 4 shows temporal activity localization mAP. The proposed temporal boundary is

counted as true, when the boundary’s Intersection-over-Union (IoU) with ground truth

is bigger than the threshold. Compared with the Single frame model, the CDC shows

better performance both in per-frame labeling (Table 3) and temporal localization tasks.

6.5 Text-Video Alignment

We apply OCDC on parts of the test set to show the expandability of BBDB on Text-

Video Alignment. It is meaningful only on benchmarks where the number of instances

per videos is large. Since representations of one simple video is too large, we divide

fullgames by the end of the innings. Even with the shortened videos, OCDC results in

7.0 by Jaccard measure, which is a relatively low accuracy over the result on a subset

of Hollywood2 dataset [2], which is around 45.

7 Conclusion

We have introduced our very large-scale BBDB with annotation made with minimal

human labor. BBDB can be applied to video understanding tasks like action recognition,

temporal action localization, text-video alignment, video highlight generation, and data

imbalance problem. BBDB has a great deal of visual and motion similarity between the

classes, and the class distribution follows natural statistics. We plan to develop novel

video understanding algorithms using our BBDB and extend it to other video domains.
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