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Abstract. Modeling structured relationships between people in a scene is an im-

portant step toward visual understanding. We present a Hierarchical Relational

Network that computes relational representations of people, given graph struc-

tures describing potential interactions. Each relational layer is fed individual per-

son representations and a potential relationship graph. Relational representations

of each person are created based on their connections in this particular graph. We

demonstrate the efficacy of this model by applying it in both supervised and un-

supervised learning paradigms. First, given a video sequence of people doing a

collective activity, the relational scene representation is utilized for multi-person

activity recognition. Second, we propose a Relational Autoencoder model for un-

supervised learning of features for action and scene retrieval. Finally, a Denoising

Autoencoder variant is presented to infer missing people in the scene from their

context. Empirical results demonstrate that this approach learns relational fea-

ture representations that can effectively discriminate person and group activity

classes.

1 Introduction

Human activity recognition is a challenging computer vision problem and has received

a lot of attention from the research community. Challenges include factors such as the

variability within action classes, background clutter, and similarity between different

action classes. Group activity recognition arises in the context of multi-person scenes,

including in video surveillance, sports analytics, and video search and retrieval. A par-

ticular challenge of group activity recognition is the fact that inferring labels for a scene

requires contextual reasoning about the people in the scene and their relations. In this

paper we develop a novel deep network layer for learning representations for capturing

these relations.

Fig. 1 provides a schematic of our relational layer and Fig. 2 highlights the process-

ing of a single person inside the layer. Initially, each person in a scene can be repre-

sented by a feature, e.g. derived from a standard CNN. We amalgamate these individual

representations via stacking multiple relational layers – deep network layers that com-

bine information from a set of (neighbouring) person representations. These layers are

utilized in a hierarchy, refining representations for each individual person based on suc-

cessive integration of information from other people present in the scene.

Recent deep learning approaches [9, 20, 25] for group activity recognition use a 2-

stage processing pipeline where first each person is represented using a large feature
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Fig. 1: A single relational layer. The layer can process an arbitrary sized set of people

from a scene, and produces new representations for these people that capture their re-

lationships. The input to the layer is a set of K people and a graph Gℓ encoding their

relations. In the relational layer, a shared neural network (F ℓ) maps each pair of person

representations to a new representation that also encodes relationships between them.

These are aggregated over all edges emanating from a person node via summation. This

process results in a new, relational representation for each of the K people. By stack-

ing multiple relational layers, each with its own relationship graph Gℓ, we can encode

hierarchical relationships for each person and learn a scene representation suitable for

group activity recognition or retrieval.

vector (e.g., fc7 features). Then, the person representations are pooled together to con-

struct the final features for the scene. The typical scene pooling is max / average /

attentional pooling over people, which reduces dimensionality, but loses information.

First, all spatial and relational information is dropped. Second, features about individual

people, which actually define actions, are lost. Finally, although such a scene represen-

tation is optimized for group activity recognition, it cannot be used for analysis tasks

based on individual actions.

Our models utilize a similar 2-stage processing framework, but work on solving

these drawbacks in an efficient and effective manner. Given initial feature representa-

tions for each person and a relationship graph, we present a relational layer that jointly

computes a compact representation for each person that encodes inter-person relations.

By stacking multiple relational layers, this hierarchical relational network learns a com-

pact relational representation per person.

Our contributions can be summarized as follows:

– A relational layer that jointly infers relational representations for each person based

on a relationship graph. The layer can operate on a variable sized set of people in

a scene. Given features for K people, the layer maps the given K feature vectors

to K new ones, capturing relations and preserving correspondence between each

feature vector and each person.

– A relational scene representation. By stacking multiple relational layers, each with

its own relationship graph, we build a scene representation encoding hierarchical



Hierarchical Relational Networks for Group Activity Recognition and Retrieval 3

relationship representations. This representation is suitable for scenes of multiple

related objects, such as in multi-person activity recognition.

– A novel autoencoder architecture that stacks multiple relational layers to jointly

encode/decode each person’s features based on relationship graphs. In unsupervised

domains where no action labels are available, such representations can be used

for scene retrieval based on nearest neighbour matching. A denoising autoencoder

variant is also presented that infers missing people.

– Demonstrating the utility of these modules for (supervised) group activity recogni-

tion and (unsupervised) action/scene retrieval. We will publicly release our code1

Fig. 2: Relatinal unit for processing one person inside a relational layer. The feature

vector for a person (red) is combined with each of its neighbours’. Resultant vectors are

summed to create a new feature vector for the person (dark red).

2 Related Work

We develop methods for multi-person activity recognition and retrieval by learning re-

lational features. Below, we review related work in these areas.

Multi-person activity recognition: Recent deep learning approaches to multi-person

activity recognition include Ibrahim et al. [9], which presents a 2-stage deep model. Per-

son actions are modeled using a long short-term memory (LSTM) temporal layer. Scene

dynamics are captured by adding a max-pooling layer which is fed to a higher-level

LSTM. Ramanathan et al. [20] formulate an attention model to highlight key players in

a scene, resulting in a weighted summation of person feature representations. Bagautdi-

nov et al. [1] propose a joint model of action localization and group activity recognition.

A multi-person object detection approach finds people and extracts their feature repre-

sentations, which are linked based on Euclidean distance and fed to temporal recurrent

1 https://github.com/mostafa-saad/hierarchical-relational-network
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network. Shu et al. [25] extend this pipeline with an energy layer and confidence mea-

sure to consider reliability and numerical stability of the inference. Our work follows

these 2-stage processing pipelines, but introduces a new relational layer that can learn

compact relational representations for each person.

Image retrieval: Content-based retrieval for structured scenes is an active research

area [23, 19, 28, 14]. Siddiquie et al. [26] extract multi-attributes and their correlations

from a text query. Lan et al. [16] introduce queries that specify the objects that should be

present in the scene, and their spatial relations (e.g., “car on the road”). Kim et al. [12]

retrieve video clips that emphasize the progression of the text query. Johnson et al. [11]

consider scene graph queries (objects and relationships). Xu et al. [29] generate scene

graphs via a message passing neural network. In the realm of multi-person activity

recognition, hard-coded representations of spatial relations have been developed previ-

ously [2, 15]. We show how our relational layers can be used in structured scene image

retrieval, by matching frames of similar visual structure of people and their actions.

Relational networks: Recent work with deep networks includes capturing object

relationships through aggregating with every-pair-relation models. Santoro et al. [24]

introduce a relational network module that infers relationships between image objects.

A multi-layer perceptron (MLP) learns the relationship of two objects, the scene is rep-

resented as summation of all object pairs. In a similar manner, Guttenberg et al. [8] use

an MLP to learn a permutation-equivariant representation of a group of objects based

on the relationship of every pair of objects. Inspired by these simple relation networks,

we introduce our hierarchical relational network to build a compact relational scene

representation, while preserving the correspondence between the feature representation

and each person.

3 Proposed Approach

This paper introduces a Hierarchical Relational Network that builds a compact rela-

tional representation per person. Recent approaches [9, 20, 8] represent people in a

scene then directly (max/average) pool all the representations into a single scene repre-

sentation. This final representation has some drawbacks such as dropping relationships

between people and destroying the individual person features. We tackle these chal-

lenges through a relational layer that jointly creates K person representations for the K

people in a scene. By stacking multiple relational layers, we compactly encode hierar-

chical relationship representations. In the next subsections, we elaborate on the details

of the Relational Network, then show its applications in supervised classification and

unsupervised retrieval settings.

3.1 Hierarchical Relational Network

Our relational network for multi-person activity recognition processes a single video

frame at a time. An input video frame has K initial person feature vectors (e.g., per-

son detections with features extracted by a CNN) associated with multiple potential

relationship graphs (e.g., based on spatial Euclidean distance thresholds). A single rela-

tional layer is fed with both K feature vectors and a relationship graph, and maps them

to K new relational representations.



Hierarchical Relational Networks for Group Activity Recognition and Retrieval 5

The building block for our model is a relational unit that processes an individual

person in the scene. Each person’s feature vector is mapped to a new representation by

aggregating information from each neighbouring person in the relationship graph. This

is accomplished via a network that processes the person combined with each neighbour,

followed by aggregation. This relational unit is depicted Fig. 2.

Within one relational layer, every person in the scene is processed using this unit.

This results in new feature representations for each person in the scene, capturing their

individual features as well as those from his/her neighbours.

By stacking multiple layers, each with its own graph and relational unit parameters,

we learn hierarchical relationship representations for the people. Pooling of the final

person representations is used to construct the scene representation. An overview of

our relational network for multi-person activity recognition in a single frame is shown

in Fig. 3.

Fig. 3: Our relational network for group activity recognition for a single video frame.

Given K people and their initial feature vectors, these vectors are fed to 3 stacked

relational layers (of output sizes per person: 512, 256, 128). Each relational layer is

associated with a graph Gℓ (disjoint cliques in this example: layer 1 has 4 cliques, each

of size 3; layer 3 is a complete graph). The shared MLP F ℓ of each layer computes

the representation of 2 neighbouring players. Pooling of the output K feature vectors is

used for group activity classification.

Formally, given a video frame, the ith person representation P ℓ
i in the ℓth relational

layer is computed as follows:

P 0

i = CNN(Ii) (1)

P ℓ
i =

∑

j∈Eℓ

i

F ℓ(P ℓ−1

i ⊕ P ℓ−1

j ; θℓ) (2)
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where P 0

i is the initial ith person representation derived from a CNN on cropped image

Ii, E
ℓ
i is the set of relationship edges from the ith person in the graph Gℓ used for the

ℓth layer, and ⊕ is the concatenation operator. P ℓ
i ∈ R

Nℓ where Nℓ is the output size

per-person for the ℓth layer.

The function F ℓ is a shared MLP for the ℓth network layer with parameters θℓ (end-

to-end differentiable model). The MLP has input size 2Nℓ−1 and output size Nℓ. Given

two concatenated vectors, F ℓ maps them to a new vector capturing the given pair’s

content and relationship.

The relational layer feeds each edge in Gℓ through its own shared MLP to compute

the K new representations. Equation 2 computes a relationship representation between

the ith person and his/her neighbours. This network structure and the use of layer-wise

shared parameters results in relationship representations per layer – treating each pair of

people within one network layer equivalently. This results in efficient parameter reuse

while letting the representation be driven by the graph structure at each layer. Impor-

tantly, this representation can also be used with any number of people K, including

situations where K can vary per time step due to occlusions or false positive detections.

By stacking multiple compressive relational layers, each with its own graph, we can

construct reduced dimension person features from one layer to another until a desired

compact relational representation has been formed. The final scene representation S is

the pooling of person representations from the last relational layer output and defined

as:

S = PL
1
▽PL

2
▽ . . .▽PL

k (3)

where PL
i is the ith person output representation of last relational layer L and ▽ is a

pooling operator (such as vector concatenation or element-wise max pooling).

3.2 Supervised Learning: Group Activities

The activity of a group of people is a function of the persons’ actions. We can utilize our

model to represent each scene and learn its parameters in a supervised fashion. We uti-

lize an Imagenet pre-trained VGG network [27] to represent each single person bound-

ing box. The whole network is fine-tuned using action-labeled bounding boxes. Once

trained, each person bounding box can be represented with the last layer in VGG19

(4096-d fc7 features).

Given the bounding boxes of the people in the scene in a video sequence, we recog-

nize the overall multi-person activity. Each bounding box at the tth frame is modeled

and represented with an initial feature vector as explained above and fed to the relational

network. The relational layer jointly maps the representations to ones that encode the

relationship representation of a person based on connections to other people. To cap-

ture the temporal dynamics of the video scene, the output of the final relational layer

is pooled to the tth scene representation St and fed to an LSTM layer with a softmax

output for group activity classification. Fig. 3 illustrates this model for a single frame.

3.3 Unsupervised Learning: Action Retrieval

Detailed annotation of individual person bounding boxes in video is a time-consuming

process [7]. As an alternative, one could utilize unsupervised autoencoder mechanisms
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to learn feature representations for people in scenes. These representations could po-

tentially be general-purpose: allowing comparison of person features based on relations

and context for single-person action retrieval, and retrieval of scenes of similarly struc-

tured sets of actions.

Recent efforts in object recognition [18, 6] and temporal sequence learning [21, 17]

aimed to learn effective feature representations in unsupervised encoding frameworks.

In a similar vein, we propose unsupervised autoencoders that learn relational represen-

tations for all people in the scene.

Our relational layer is well-suited to this task since it: 1) encodes person relation-

ships, 2) preserves action features for individual people, and 3) has compact size, ef-

ficient for retrieval. In other words, our scene representation is both efficient (com-

pact size) and effective (relationship-based). Further, the model has the same parameter

count as a simple autoencoder of a single person, as each layer has a shared network.

For the encoder, given K feature vectors for the people in the scene, we stack mul-

tiple relational layers of decreasing size that encode features to a final compact repre-

sentation. The decoder is the inverse of these layers. That is, we again stack multiple

relational layers of increasing size that decode a compressed feature vector to its origi-

nal CNN representation. Each relational layer jointly maps a person representation from

a given input size to a required output size considering graph connections. An Euclidean

loss is computed between the initial K feature vectors and the corresponding decoded

ones. An overview of the autoencoder model is shown in Fig. 4.

The reconstruction loss L of the input scene and its reconstructed one is given by:

L(Scnn, S
′
cnn) =

K∑

i=1

‖P 0

i − PL
i ‖2 (4)

where P 0

i and P ℓ
i are similar to Eq. 2 (but for a singel frame), Scnn is the concatenation

of the K initial feature vectors P 0

i , and S′
cnn is the reconstructed output of our network

extracted from the last layer L. This novel autoencoder preserves features for individual

people, so can be used for both scene and action retrieval.

Denoising Relational Autoencoder: What if some persons are missing in the scene

(e.g., due to person detector failures, fast camera movement, or low image quality)?

Denoising the input K feature vectors by dropping the whole vector for some of the

persons allows our relational autoencoder to construct person representations from in-

complete scenes. That is, our model infers the missing people from their context. To

implement this, the input layer is followed by a dropout layer that drops a complete

vector (not just subset of features) with probability P [22].

Retrieval: Given a single frame of K people, suppose we wish to search a video

database for a matching frame with similar action structure. Note, the purpose is not re-

trieving a scene with the same overall activity, but a similar structured scene of actions.

The pooled representation style, such as in [9], fits with group activity classification,

but not with scene retrieval based on the matching of the actual actions due to losing

person features for sake of a global scene representation. On the contrary, our represen-

tation for the scene preserves the individual person actions explicitly in a compact sized

feature.
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For the retrieval mechanism, we use a simple K-Nearest-Neighbour technique with

a brute-force algorithm for comparison. To avoid comparison with each possible per-

mutation, people are ordered based on the top corner (x, y) of a person’s bounding box

(on x first, and on y if tied). Euclidean distance is used to compare feature vectors.

Fig. 4: Our relational autoencoder model. The relationship graph for this volleyball

scene is 2 disjoint cliques, one for each team and fixed for all layers. K input person

feature vectors, each of length 4096, are fed to a 4-layer relational autoencoder (sizes

256-128-256-4096 ) to learn a compact representation of size 128 per person.

4 Experiments

To demonstrate the power of our relational network, we evaluate it for two tasks: group

activity recognition and action scene retrieval. The results are evaluated on the recent

Volleyball Dataset [9]. The dataset consists of 4830 short clips gathered from 55 volley-

ball games, with 3493 training clips and 1337 for testing. Each clip is classified to one

of 8 scene activity labels. Only the middle frame of each clip is fully annotated with the

players’ bounding boxes and their action labels (out of 9 actions). Clips of 10 frames

(centered around the annotated middle frame) are used for the activity recognition task

and the middle frame is used for the action scene retrieval task.

Our relational layer accepts free-form graph relationships. For volleyball, one suit-

able style is graphs of disjoint cliques based on person spatial locations. For example, in

volleyball games there might be 3 potential graphs: I) All players are in 1 clique (1C),

represents all pairwise relationships; II) each team can be a clique (2C); III) each team

can be composed of 2 cliques, a total of 4 cliques (4C). We base our experiments on

these clique-based groupings.

For the final scene pooling, instead of just max-pooling all persons, we use a slight

variant [10] that reduces confusions between actions of the two team. Specifically,
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we max-pool each team individually, then concatenate the two representations. This is

the default pooling strategy unless otherwise mentioned. In addition, due to the final

person features’ compact size, we could also do all-persons concatenation pooling. The

concatenation pooling is neither effective nor efficient in other recent approaches [9]

[25] due to the large dimensionality of the final person representation.

4.1 Group Activity Recognition

We refer to our activity recognition model as RCRG: Relational Compact Representa-

tion for Group activity recognition. RCRG is a 2-stage processing model and its input is

clips of 10 timesteps, centered around the middle annotated frame. In the first stage, we

fine-tune an ImageNet-pretrained VGG19 network using the annotated person bound-

ing boxes (not a temporal model). This trained network is then used to represent each

person bounding box using the penultimate network layer (fc7, 4096-d features). The

person action recognition accuracy from the VGG19 model is 81%. In the second stage,

K person representations are fed to our hierarchical relational network (associated with

a relationship graph per layer) as in Fig. 3.

Table 1: Volleyball Dataset: Left table is for versions of our model using single frame

(last row shows state-of-the-art using a single frame). Right table is for 10-timesteps

input clips performance of our best models versus state-of-the-art.

Method Accuracy

B1-NoRelations 85.1

RCRG-1R-1C 86.5

RCRG-1R-1C-!tuned 75.4

RCRG-2R-11C 86.1

RCRG-2R-21C 87.2

RCRG-3R-421C 86.4

RCRG-2R-11C-conc 88.3

RCRG-2R-21C-conc 86.7

RCRG-3R-421C-conc 87.3

Bagautdinov et al. [1]-single 83.8

Method Accuracy

Bagautdinov et al. [1] 90.6

RCRG-2R-11C-conc 89.5

RCRG-2R-21C 89.4

Shu et al. [25] 83.3

Ibrahim et al. [10] 81.9

Baselines: We perform ablation studies with the following non-temporal (single frame)

variants of our model to help us understand the performance of the model. The default

pooling strategy is max-pooling unless -conc postfix is used to indicate concatenation

pooling.

1. B1-NoRelations: In the first stage, the ImageNet-pretrained VGG19 network is

fined tuned and a person is represented with fc7, 4096-d features. In the second

stage, each person is connected to a shared dense layer of 128 features, then the

person representations (each of length 128 features) are pooled, then fed to a soft-

max layer for group activity classification. This variant compresses person repre-

sentations and represents the scene without inferring relationship representations.
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2. RCRG-1R-1C: Same as previous variant, but the shared dense layer is replaced

with a single relational layer (1R), all people in 1 clique (1C), i.e. all-pairs rela-

tionships. The layer maps each person from input size 4096 to 128 features jointly

considering the given relationships.

3. RCRG-1R-1C-!tuned: Same as previous variant, but ImageNet-pretrained VGG19

without fine-tuning.

4. RCRG-2R-11C: Close to the RCRG-1R-1C variant, but uses 2 relational layers

(2R) of sizes 256 and 128. The graphs of these 2 layers are 1 clique (11C) of all

people. This variant and the next ones explore stacking layers with different graph

structures.

5. RCRG-2R-21C: Same as the previous model, but the first layer has 2 cliques,

one per team. The second layer is all-pairs relations (1C). RCRG-2R-21C-conc

replaces the max pool strategy with concatenation pooling.

6. RCRG-3R-421C: Close to the previous model, but 3 relational layers (of sizes

512, 256 and 128) with clique sizes of the layers set to (4, 2, 1). The first layer has

4 cliques, with each team divided into 2 cliques. This model is in Fig. 3.

Implementation Details: We utilize the available dataset annotations for implementa-

tion. We follow Ibrahim et al. [9] to compute 10-frame tracklets of each person across

the video sequence [3].

For training all the models and baselines, the same training protocols are followed

using a Tesla K40C GPU (12 GB RAM) and Lasagne Framework [5]. Stochastic gra-

dient descent is used train the model for 200 epochs and initial learning rate 10−4 with

ADAM [13] optimizer, with fixed hyper-parameters β1 = 0.9, β2 = 0.999, ǫ = 10−8.

We fine-tune the whole pre-trained VGG19 network [27] using batch-size 64 (small due

to memory limits). For the relational model, a batch size of 250 is used. The input layer

in our relational model is followed by a 50% dropout layer. Two-layer MLP networks

are used of sizes Nℓ. The first layer uses a linear activation function (f(x) = x) and the

second uses ReLU non-linearities. Note, the models are end-to-end differentiable, but

due to memory limits we implement it in a 2-stage style, similar to recent approaches.

In testing, only one shared person network is loaded and used by the K players to

extract their features. The time complexity of a relational layer depends on the summa-

tion of the nodes degrees in the layer’s graph. In other words, for each directed edge,

the MLP of a layer is evaluated.

To determine graph cliques, we follow a simple approach [10]. People are ordered

based on the upper left corner (x, y) of their bounding box (on x first, and on y if tied).

Cliques are generated by sweeping this ordered list. For example, to divide 12 people

to 4 cliques of equal size, each 3 consecutive people are grouped as a clique. More

sophisticated grouping (e.g., color/motion clustering) or gating functions [4] would be

potential extensions.

Results: Tables 1 compare the classification performance of our compact representa-

tion with the baselines and the state-of-the-art approaches.
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Discussion: Our non-temporal models’ performance is superior to state-of-the-art cor-

responding models and outperform compact baselines. Note even without temporal in-

formation this model is superior to 2 recent temporal models (In right Table 1). It seems

from the results that stacking 2 layers is enough in this domain: in a volleyball scene

inter-person relationships are strong. Max-pooling is effective at a scene level. Likely,

this is due to the domain; a few players are the key actors, and max-pooling can keep

the right features.

4.2 Experiments for Action and Scene Retrieval

We evaluate our retrieval model trained using unsupervised learning, termed RAER

(Relational AutoEncoder for Retrieval). Our main model is shown in Fig. 4. It consists

of 4 relational layers (256-128-256-4096 sizes) and it assumes the graph is 2 cliques

(one per team) in all layers. We denote this structure by RAER-4L-2222C. This means,

each team is compressed jointly, but all people per layer use the same shared relational

MLP. Once the network is trained, each person is represented with 128 features from

the compressed layer and used for scene and person retrieval.

Performance Measure: We consider two volleyball dataset frames as a correct

match if the IoU (intersection over union) of the distributions of actions of the two

frames is ≥ 0.5). For example, if the person actions of frame 1 are 7 people standing and

5 moving, and frame 2 are 4 standing, 6 moving, and 2 jumping then IoU =
4 + 5 + 0

7 + 6 + 2
=

0.6, hence a match.

Baselines: We compare with the following single-frame baseline models. One naive

way to implement such a retrieval system is to learn a person action autoencoder, with

its input and output a single person feature vector. Then concatenating the persons in

the scene can be used for scene match. However, such direct reduction ignores all rela-

tionships in the scene ending with a weak scene representation. Another possibility is a

direct concatenation of original persons feature vectors (e.g., 4096). Such a large scene

representation may work in some domains, however, this large scene dimensionality is

problematic.

1. B1-Compact128: Autoencoder with input/output of a single person feature vector

of length 4096 from the fc7 layer of a pre-trained VGG19 network. The 4096-d

vector is fed to network layers of sizes 256, 128, 256, 4096. The middle layer (128

features) is used as a compressed representation of the person. This network is

structured similar to our model and of same compact person size (128 features) for

fair comparison.

2. B2-VGG19: No autoencoder. Each single person is represented directly with a

feature vector of length 4096 from the fc7 layer of a pretrained VGG19 network.

Note that this baseline uses a much larger dimensionality (4096 vs. 128 features

per person) and is especially problematic for representing scenes of many people.

Implementation Details: The same settings are used as Sec. 4.1 except the following.

We trained these models without person action labels for 150 epochs and initial learning
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rate 10−4. The MLP in the last relational layer ends with sigmoid non-linearities instead

of ReLU. For person modeling, the ImageNet-pretrained VGG19 network is used as-is,

without fine-tuning. The same setup is used for the Denoising Autoencoder, but with

initial learning rate 10−3.

Results: In this section we list our results for the retrieval tasks. We present the scene

retrieval results, followed by single person retrieval. Then we discuss the performance

of the models.

Table 2 compares the scene retrieval performance of our relational autoencoder with

the baselines. We compute the Hit@K measure for K ∈ {1, 2, . . . , 5}. Specifically,

given a query frame, the frame is encoded using the autoencoder model and the closest

K matches in the database are retrieved. Recall, two frames are a match if the IoU

of their actions ≥ threshold (0.5). Mean average precision is also reported: mean of

the average precision values for each image query where Euclidean distance is used as

the confidence indicator. The training and testing sets are the ground truth annotated

scenes in the Volleyball Dataset. Results indicate how this novel architecture is capable

of capturing the context and encoding it within each person. Surprisingly, our model

even beats the uncompressed VGG19, though VGG should be much stronger due to its

size and sparsity.

Table 2: Scene retrieval compared to baselines.

Method Hit@1 Hit@2 Hit@3 Hit@4 Hit@5 mAP

B1-Compact128 49.4 68.7 80.4 87.7 91.4 35.4

B2-VGG19 55.0 73.9 82.7 87.5 91.5 36.4

RAER-4L-2222C 57.4 76.7 85.3 90.4 93.3 36.8

In Table 3, we explore variants of our scene retrieval model. Specifically, we try 2

models with only 2 relational layers (128, 4096): One of these models uses 1 clique in

all layers (RAER-2L-11C, all pair relationships) and the second uses 2 cliques (RAER-

2L-22C, all pairs within a team). The complex version (RAER-4L-4224C) is 2 layers

as our main model, but layer cliques are (4, 2, 2, 4). This means the decoder has to learn

how to decode such hierarchical information.

Table 3: Scene retrieval compared to model variants.

Method Hit@1 Hit@2 Hit@3 Hit@4 Hit@5 mAP

RAER-2L-11C 56.8 74.9 84.5 89.8 92.6 36.8

RAER-2L-22C 56.9 75.6 84.9 90.0 93.3 36.7

RAER-4L-4224C 55.8 76.1 84.0 88.9 92.7 36.6

RAER-4L-2222C 57.4 76.7 85.3 90.4 93.3 36.8

In Table 4, we show the results for the Denoising Autoencoder when a person might

be missing with probability 0.5 in the test data.

Table 5 compares the person retrieval performance of using the same relational au-

toencoder model with the baselines. The training and testing sets are the ground truth

bounding boxes of annotated actions in the Volleyball Dataset. Note that the Volleyball

dataset consists of 9 action labels, with standing class representing ≈70% of the action
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Table 4: Scene Retrieval using Denoising Autoencoder (-D) with 50% possible drop for

people in test data for models and baselines. Our model is robust; the No Autoencoder

model performance drops significantly.

Method Hit@1 Hit@2 Hit@3 Hit@4 Hit@5 mAP

B1-Compact128-D 38.1 58.8 70.5 78.2 84.7 34.6

B2-VGG19-D 34.0 51.1 62.2 70.0 76.0 34.9

RAER-4L-2222C-D 43.0 65.0 78.7 85.8 90.7 35.2

labels, so a retrieval system that keeps retrieving standing samples will score high re-

sults. To avoid that, the standing class is removed from both the training and test sets

in the person retrieval task. After training the model, we extract the compressed per-

son representations for each person action and build a retrieval model for them. Results

indicate that our compact person representation works well and beats the alternative

compression baseline.

Table 5: Person Retrieval on Volleyball Dataset: Hit@K results of our method and base-

lines. Last column is mean average precision of query results. Our model outperforms

the normal autoencoder model, and is competitive with a 32x larger sparse representa-

tion.

Method Hit@1 Hit@2 Hit@3 Hit@4 Hit@5 mAP

B1-Compact128-P 37.7 54.7 64.6 71.7 76.4 22.8

B2-VGG19-P 47.3 63.2 72.1 77.4 81.2 25.4

RAER-2L-11C-P 45.5 62.2 70.9 76.1 80.1 25.8

RAER-4L-2222C-P 42.6 58.3 68.3 73.7 77.8 25.2

Discussion: The high Hit@K results indicate that the autoencoder approach works

well for this task. From the scene and action retrieval results, we notice that our rela-

tional autoencoder outperforms the normal autoencoder model of the same structure and

compression size due to encoding/decoding of person relationships. Of particular note,

the autoencdoer outperforms high-dimensional VGG features for scene retrieval. We

hypothesize that this is due to the ability of the relational layers to capture contextual

information among people in the scene. Fig 5 visualizes scene retrieval results.

5 Conclusion

We proposed a hierarchical relational network for learning feature representations. The

network can be used in both supervised and unsupervised learning paradigms. We uti-

lized this network for group activity recognition, based on the final compact scene layer.

We also showed how the relational layer can be the main building block in novel au-

toencoder models that jointly encode/decode each person’s feature representation using

a shared memory. Results in both tasks demonstrate the effectiveness of the relational

network. The relationship graph associated with each layer allows explicit relationship

consideration that can be applied to other visual understanding tasks.
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(p) (q) (r)

Fig. 5: Visualizations of scene retrieval using our relational autoencoder. Each 2 rows

are a query: Query image first (blue box), followed by the closest 5 retrievals. Green

Framed boxes are correct matches. The last query is for Right team winpoint event,

and its results are 3 consecutive Right team winpoint events followed by 2 Left team

winpoint events.
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