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Abstract. This paper presents a Quadtree Convolutional Neural Net-
work (QCNN) for efficiently learning from image datasets representing
sparse data such as handwriting, pen strokes, freehand sketches, etc. In-
stead of storing the sparse sketches in regular dense tensors, our method
decomposes and represents the image as a linear quadtree that is only re-
fined in the non-empty portions of the image. The actual image data cor-
responding to non-zero pixels is stored in the finest nodes of the quadtree.
Convolution and pooling operations are restricted to the sparse pixels,
leading to better efficiency in computation time as well as memory usage.
Specifically, the computational and memory costs in QCNN grow linearly
in the number of non-zero pixels, as opposed to traditional CNNs where
the costs are quadratic in the number of pixels. This enables QCNN to
learn from sparse images much faster and process high resolution images
without the memory constraints faced by traditional CNNs. We study
QCNN on four sparse image datasets for sketch classification and sim-
plification tasks. The results show that QCNN can obtain comparable
accuracy with large reduction in computational and memory costs.
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1 Introduction

Convolutional neural networks (CNNs) are a powerful and popular method for
various tasks involving the analysis of images, videos and three-dimensional ob-
jects. Most of the real world image data such as natural photographs or vol-
umetric meshes can be represented as dense tensors, and indeed, conventional
CNNs were originally proposed to optimally learn features from such data by
local weight connections and parameter sharing. On the other hand, it is ob-
served that some datasets are sparse in nature. For example, images representing
freeform 2D sketches and handwriting only consist of a set of one-dimensional
lines occupying a sparse subset of the 2D image plane, while point clouds or
triangle meshes are only defined in a small subset of the 3D space. Unfortu-
nately, most of the traditional CNN architectures, particularly for images, are
unable to exploit the sparsity of such data, and learning from such datasets is
unnecessarily inefficient in both training time and memory consumption. This is
particularly of concern with the rise of deep networks that are being increasingly
employed to various high resolution sparse images in applications such as sketch
simplification [1], as well as to resource-scarce mobile or embedded devices.
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In the case of 3D data, convolutional neural networks were originally designed
by voxelizing the mesh into dense 3D tensors [2]. Due to memory and compu-
tational constraints, however, this approach does not scale to high resolutions.
To alleviate this, recent works such as OctNets [3], O-CNN [4], and OGN [5]
decompose the 3D meshes hierarchically into octrees and adapt CNN operations
to consider the special octree structure.

Inspired by such 3D works, we present in this paper a quadtree convolutional
neural network (QCNN) for efficiently learning from sparse 2D image datasets.
While those 3D networks were designed to deal with 3D shapes represented
by meshes or point clouds, we target general sparse images which usually have
more arbitrary structure or topology. This will enable the developed method to
have wide applications, especially on mobile devices where the computing power
and memory are limited. Our main idea is to decompose sparse images into
quadtrees, store the non-zero image pixels in the finest nodes, and design special
data representation that takes the features of CPU and GPU into consideration.
The computation effort will be concentrated on the areas of interest, which
avoids the storage of empty pixels that do not provide meaningful information
and thus reduces the memory consumption. We start with the finest level of
the quadtree and perform convolutions on these nodes to compute the features,
followed by pooling which downsamples the features and propagates them to the
next coarser quadtree level. This operation can be stacked multiple times before
finally obtaining the network output with respect to some predefined target and
loss function.

Our approach has several advantages in terms of efficiency. First, since we
only store non-zero pixels of the image in the bottom most level of the sparse
quadtree, the storage and computational requirements are linear in the number
of non-zero pixels and completely independent of image resolution. Second, it is
well known that modern CPUs and GPUs are highly efficient in processing data
that are contiguous in memory. Hence we use a linear quadtree representation
where each level of the quadtree is stored as a linear 1D array by indexing the
quadtree nodes with space-filling z-order curves. Third, we adapt CNN opera-
tions in the quadtree by considering the special data representation. Convolution
that requires neighborhood access for each quadtree node in the same depth is
achieved via an efficient look-up table based scheme using the Moser-de Bruijn
sequence, and pooling is as simple as assigning the maximum/average of ev-
ery four children nodes to their parent nodes. We demonstrate the efficiency
of QCNN in terms of computational effort on several sparse image datasets for
classification and sketch simplification.

2 Related Work

2.1 Hierarchical Data Representation

The quadtree [6] and octree [7] are hierarchical representations of 2D and 3D
spatial data, respectively, and generalizations of the binary tree. They have been
extensively used in various graphics and image processing applications such as
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collision detection, ray tracing, and level-of-details [8–10]. It is common to im-
plement quadtrees and octrees using pointers. However, for representing data hi-
erarchically for CNN training purposes, this is infeasible since CPUs and GPUs
are efficient in processing contiguous array data. Linear quadtrees or octrees [11],
where 2D/3D node indices in each level of the tree are converted to 1D indices
using space-filling curves, are more relevant to our application.

2.2 Sparse Convolutional Neural Networks

Using sparsity can result in higher resolution inputs to be processed efficiently.
However, there are only a few network architectures that exploit sparsity. Ini-
tially, CNNs were employed to process 3D data by voxelizing the meshes into 3D
dense volumetric tensors [2]. Since this representation has a high computation
and memory cost, the input resolution had to be restricted to around 303. Gra-
ham proposed a sparse version of the CNN for 2D image [12] and 3D voxel [13]
data that only performs convolutions on non-zero sites and their neighbors within
the receptive field of the kernel. Nevertheless, the approach becomes inefficient
when a large number of convolution layers are placed in between the pooling
layers since the feature map dilates after each convolution. The feature dilation
problem was recently handled by Graham and Maaten [14] by restricting convo-
lutions only on the non-zero sites. Their works require additional book-keeping
for indexing the non-zero pixels for each layer’s output, as well as efficient hash
table implementations.

Quadtree/octree structures on the other hand can be computed in one shot
and clearly define the structure of the data beforehand, independently of the
convolution or pooling parameters in the network. Additionally, they can be lin-
early represented as a simple contiguous array, thanks to their regular structure.
Moreover, simply conforming the feature maps to the quadtree/octree structure
is sufficient to significantly prevent feature dilation. To support high resolution
3D data, Riegler et al. [15] combined octree and a grid structure, and limited
CNN operations to the interior volume of 3D shapes. While this is efficient com-
pared to using dense voxels, storing the interior volume of 3D surface data is
still wasteful. Wang et al. [4] only considered the surface voxels of the 3D data in
the octree representation and drastically improved memory and computational
costs in performing CNN operations. Similar to octrees, our work introduces the
quadtree structure for efficiently learning from sparse image data.

3 Quadtree Convolution Neural Network

3.1 Motivation

Consider a general scenario where a dense n-dimensional tensor used to represent
some input that is to be fed into a convolutional neural network. This tensor
could represent grayscale images (n = 2), color images (n = 3), voxels from 3D
points clouds or surfaces (n = 3), etc. Sparsity arises in an n-dimensional tensor
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whenever it is used to represent a lower-dimensional (< n) manifold. Examples
include a set of freehand pen strokes that are 1-manifolds in 2D grayscale images
and triangle meshes that are 2-manifolds stored in 3D volumes. Even if the
object of interest only occupies a small portion of the space it resides in, the
storage costs of a representing such objects with a dense tensor grows in the
order of n with increasing resolution, as does the computational cost of applying
convolutions to extract feature maps. For example, in this paper where we mainly
consider sparse grayscale image data (n = 2), an N×N image requires a storage
cost of N2, and convolving M ×M kernels to compute C feature maps requires
M2N2C multiply-accumulate (MACC) operations (assuming unit stride), both
of which are of quadratic complexity in the total number of pixels.

By representing the image as a quadtree which is only subdivided when non-
zero pixels exist in a quadrant, the non-zero pixels (without the loss of generality)
in the input image correspond to the nodes in the finest quadtree level. Hence,
the storage requirement of the image data is roughly Nnz denoting the number of
non-zero pixels (where Nnz ≪ N2). If we restrict the convolutions to these non-
zero pixels, then we need M2NnzC MACC operations. This process is of linear
complexity in the number of pixels stored in the quadtree level and independent
of the image resolution N .

There are several advantages of using a quadtree to hierarchically represent
the image data for convolutional neural networks. First, the quadtree can be
efficiently computed once for each image, and its structure then remains fixed
throughout the forward and backward passes and requires no further bookkeep-
ing. Its structure defines the locations of the non-zero pixels hierarchically and
the nodes that are non-empty in each level. Convolutions are performed on the
pixels that correspond to the nodes in the bottommost level of the quadtree,
resulting in feature maps that fit in the same level. By simply restricting com-
putations to the sparse quadtree nodes, we can ensure that feature maps do not
dilate in the deeper layers of the network even when repeated convolution layers
are stacked, hence retaining the sparse nature of the input. Second, since the
quadtree structure is by definition hierarchical, downsampling and upsampling
features can be performed easily and efficiently. Pooling downsamples the fea-
ture map such that it can be stored in the previous level of the quadtree, and is
carried out by assigning the maximum or average of the children nodes at the
current level into their parent node in the previous coarser level. Upsampling
can be performed similarly by traversing the quadtree in the opposite direction.

3.2 Representing Images as Linear Quadtrees

We use a linear quadtree to decompose the input image, where nodes at each
level are stored in a contiguous array for convenient and efficient processing in
both CPU and GPU, as opposed to a pointer based quadtree. An image of di-
mension 2ℓ×2ℓ can be decomposed into an ℓ-level quadtree. Each of the nodes at
level l ∈ [1, . . . , ℓ] can be represented as a list of 1D indices. A common strategy
to linearize indices is the interleaved bit representation. For example, given a 2D
index, say (x = 4, y = 5) of a quadtree node from level 3, which is (1002, 1012) in
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binary, the linear quadtree index is given by interleaving each of the binary digits
corresponding to y and x alternatively, yielding 1100102 = 50. This linearization
has two advantages: First, it is locality preserving as opposed to row-column
indexing and ensures higher cache hits when looking up neighbors during CNN
operations since they are mapped to nearby locations in 1D. Second, this index-
ing maps every four quadtree nodes sequentially in 1D memory, which leads to
easy and efficient implementations of downsampling/upsampling operations.
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Fig. 1: Z-order indexing: 2D quadtree nodes (level l = 3 in this example) are
linearized into a 1D array using Z-order curves as shown by the index values
in circles. The 1D indices along the topmost row (colored red) are a Moser-de
Bruijn sequence (0, 40, 41, 40 + 41, . . .), and those along the leftmost column are
simply the same sequence scaled by 2.

Note that the interleaved coordinate representation is a space filling z-order
curve of order l which maps 2D coordinates to 1D indices. One can observe from
the z-order curves that their path follows a regular sequence. The top row high-
lighted in red in Fig. 1, is a Moser-de Bruijn sequence in which each number is a
sum of unique powers of 4. The left column is the same sequence scaled by 2. We
generate a 1D lookup table for the sequence in the top row t : Z≥ → Z≥ defined
as: t(0) = 0, and t(i) = (t(i − 1) + 0xaaaaaaab) & 0x55555555, assuming that
the quadtree node indices are represented with 32-bit unsigned integers. From
this, the z-order index can be obtained as z(x, y) = t(x) |(t(y) << 1), where |

and << are the bitwise or and left shift operators, respectively. For example,
z(4, 2) = t(4) |(t(2) << 1) = 16 |(4 << 1) = 24. This lookup table is always gener-
ated of size 2ℓ, which denotes the width or height of the quadtree in the maximum
depth, and reused for all the computations including those in the coarser levels.

3.3 Quadtree CNN Operations

Data structure To facilitate CNN operations such as convolution and pool-
ing on the quadtree, we employ a custom data structure that is different from
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Fig. 2: Data structure for representing the image as a linear quadtree to support
CNN operations. Left: quadtree generated for a U-shape image (numbers repre-
sent z-order indices), where gray nodes contain non-zero pixels in their bounds,
while white nodes contain only zero pixels. Gray nodes are subdivided in the
next level. Middle: Index array contains the corresponding z-order indices; offset
array contains a monotonic sequence starting from 1 for gray nodes, white nodes
are set to 0. Right: Data array holding the feature maps in each quadtree level.

commonly employed tensors in convolutional neural networks. This is necessary
since unlike traditional grayscale images which store pixel data in a single 2D
array, the linear quadtree stores quadtree node indices with non-zero pixels as a
hierarchy of 1D arrays, and the pixel values themselves as a single 1D array cor-
responding to the deepest quadtree level. Moreover, since we only subdivide the
non-empty quadtree nodes, we store an additional array, similar to O-CNN [4],
to record the parent-child relationship (see Fig. 2):

Index array I: stores the z-order indices of all the nodes in the quadtree level-
wise. We denote by Il[i] the index of a node i at level l. It is mainly used
to lookup the indices of non-zero pixels and restrict convolutions on these
nodes to extract features efficiently.

Offset array O: stores a monotonic sequence of integers starting from 1 to mark
nodes that are to be subdivided (i.e., gray nodes in Fig. 2). If a node i is not
subdivided (white nodes in Fig. 2), then its corresponding value is set to 0.
The offset array is of same size as the index array, i.e., one value for each
node, and we denote by Ol[i] the offset of a node i at level l.

We use Ol for pooling features from children nodes at level l + 1 to parent
nodes at level l and upsampling features from parent nodes at level l to
children nodes at level l + 1. For example, O2[5] = 3 means that the 3rd set
of quadruples (nodes 20–23 in I3) in level 3, are the children of node 5 in
I2 in level 2. The index and offset arrays are generated once from the input
image, and remain fixed afterwards throughout training/testing.
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(a) (b) (c)

Fig. 3: Illustration of CNN operations on quadtrees. (a) Convolutions are re-
stricted on the sparse quadtree nodes, and produce feature maps that fit in the
same quadtree level. (b) Pooling downsamples the feature maps such that it fits
in the previous quadtree level. (c) Upsampling resizes the feature map such that
it fits in the next quadtree level.

Data array D: contains the feature maps at each level of the quadtree and
is initially only available for the deepest quadtree level ℓ after performing
convolution. It contains the values corresponding to the nodes indexed by
Iℓ in an array of dimensions d × e where d in the number of channels, and
e is the number of stored quadtree nodes. The data array corresponding
to other quadtree levels are eventually generated by the pooling operation
which downsamples the feature maps.

Minibatch representation When using dense tensors, minibatches are created
by concatenating a set of images along one of the axes; this operation requires
all axes in the tensor which are smaller than the minibatch axis to agree in
dimensions. Since quadtree structures vary among different images, we update
the index arrays Il of each of the B quadtrees in a minibatch by adding 4lb, where
b ∈ [0 .. B − 1]. We then concatenate them together level-wise to form a single
larger quadtree representing the entire batch. From this, individual quadtrees can
be identified by computing b = ⌊(Il[i] / 4l)⌋, while the local indices are given
by (Il[i] mod 4l). Similarly, the offset arrays Ol of each quadtree are updated to
form a monotonic sequence throughout the batch and concatenated level-wise.

Having defined the data structure, we now discuss the adaptation of various
CNN operations from images to quadtrees.

Convolution The convolution is the most important and expensive operation
in convolutional neural networks. We implement convolutions on the quadtree as
a single matrix multiplication[16] which can be carried out by highly optimized
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matrix multiplication libraries on the CPU and GPU. The coefficients of the
filters are arranged row-wise in a c× df2 matrix, and the pixels in the receptive
field around each of the e quadtree nodes Din

l [·, ·] in each input channel are ar-
ranged column-wise in a df2×e matrix, where d is the number of input channels,
c is the number of output channels, f is the filter size, and e is the number of
quadtree nodes in level l:

Dout
l :=











w0
0 w0

1 w0
2 · · ·

w1
0 w1

1 w1
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...
...

...
...
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0 wc−1

1 wc−1
2 · · ·


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


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












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... · · ·

...
Din

l [0, 0] Din
l [0, 1] · · · Din

l [d− 1, 0]
...

...
...

...
Din

l [1, 0] Din
l [1, 1] · · · Din

l [d− 1, 1]
...

...
...

...



















Here, the superscript in w∗
∗ runs from [0 .. c− 1] indexing the number of filters,

while the subscript runs from [0 .. df2 − 1]. This is different from traditional
CNNs in two ways: first, only the non-zero quadtree nodes participate in con-
volutions, and second, the neighborhood lookup is different since the quadtree
nodes are linearized into a 1D array in z-order. In detail, a node at index z
in 1D can be deinterleaved once to obtain the 2D index (x, y). From this, it is
straightforward to compute the neighbors using the lookup table t(·) proposed in
Section 3.2 in constant time. If the neighbor index is present in the index array
Il, then its pixel value from Dl is assigned to the corresponding coefficient in the
matrix above; otherwise it is set to 0 assuming a black background. Additionally,
since the quadtree structure is fixed for each input sample, we can precompute
the neighbors once and reuse them for convolutional operations throughout the
network for even better efficiency.

We begin applying the convolution operation on the data Dℓ stored in the
finest quadtree nodes at level ℓ to obtain c output feature maps (see Fig. 3a)
which fit in the same quadtree level if a unit stride is used. It is not possible to
use arbitrary strides in QCNN since the output would then not conform to the
quadtree structure. However, strides which are powers of 2 can be supported—
for example, convolving the input data which resides at level l with a stride 2s,
where s ∈ [0 .. l), will result in an output that will fit in level l− s. We only use
unit stride in all our experiments and leave downsampling to the pooling layers.

Pooling A common and important operation in convolutional neural networks
is pooling, used to downsample the feature maps and aggregate information as
we go deeper into the network. As demonstrated by Stringenberg et al. [17],
pooling can be achieved by convolving with non-unit strides without any loss of
accuracy. However, since the pooling operation is generally more efficient than
convolutions, we implement it as follows. Pooling in QCNNs are particularly
simple—we only need to assign the maximum (or average) of the 4 children
nodes in level l + 1 to their corresponding parent node at level l, see Fig. 3b.
This is easy to implement since the quadtree nodes are linearized in z-order, and
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all 4 children nodes corresponding to a parent are stored in succession:

Dl[i] := pool({Dl+1[4(Ol[i]− 1) + j]}), j ∈ [0 .. 3]

where the pool(·) function computes the maximum or average of the set.

Upsampling Another common operation in convolutional neural networks is
upsampling the feature maps, which can be used for visualization [18] or as part
of autoencoder-like, or U-shaped network architectures [19] where features are
concisely encoded using pooling and decoded using deconvolution, unpooling
or upsampling. In this work, we implement upsampling by resizing the feature
maps to a higher resolution, which is followed by a learnable convolution layer.
Upsampling in QCNN is performed by traversing the quadtree in the opposite
direction compared to pooling, i.e., we assign the value of the parent node in
level l − 1 to all 4 children in level l:

Dl[4(Ol−1[i]− 1) + j] := Dl−1[i], j ∈ [0 .. 3]

which roughly corresponds to nearest neighbor interpolation, see Fig. 3c.
With these fundamental operations defined on the quadtree, it is straightfor-

ward to compose them to design commonly used CNN architectures.

4 Experiments

We demonstrate the efficiency and versatility of our QCNN by conducting ex-
periments on sparse image datasets for supervised classification and sketch sim-
plification. We study the performance as well as training behavior of QCNNs
compared to CNNs and show that QCNNs are well-behaved and converge to
results achieved with traditional CNNs with much less computation time and
memory. Our implementation is in C++ and CUDA (built upon the Caffe [20]
framework), and runs on an NVIDIA GTX 1080 GPU with 8GB memory.

For brevity, in the following we denote a convolution unit by Cl(c) which is
composed of: (1) a quadtree convolutional layer with 3×3 filters that accepts data
Din

l from a quadtree of level l as input and outputs c feature maps Dout
l fitting

in the same level, (2) a batch normalization layer that normalizes the minibatch
using the mean and standard deviation computed from elements in Dout

l , and (3)
a rectified linear unit activation function [21]: ReLU(x) = max(0, x). We denote
by Pl a quadtree max pooling layer that downsamples the feature maps from
level l to l− 1 and by Ul a quadtree upsampling layer that resizes feature maps
from level l to l + 1.

After completing all the quadtree convolutional and pooling operations in the
network, we apply a quadtree padding operation denoted as “pad”, to convert
the sparse quadtree based feature maps into dense ones by zero padding the
empty quadtree nodes and reshaping the quadtree minibatch of size B with d
channels into a 4D dense tensor of dimensions B × d× 2l × 2l. This is necessary
to align the features computed for different images before feeding them to the
fully-connected layers, since their quadtree structures are different.
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4.1 Classification

We train traditional CNNs and our quadtree CNNs with similar network archi-
tectures on four sparse image datasets. Note that this experiment is mainly to
study the behaviour of QCNN compared to traditional CNN and is not tuned
to obtain the best accuracy.

MNIST is a popular dataset of numeric digits [0–9] consisting of grayscale images
of size 28 × 28 that are split into 60, 000 training and 10, 000 test images. We
zero pad each image to 32× 32, and decompose them into quadtrees of level 5.
The network structure is defined as:

input → C5(32) → C5(32) → P5 → C4(64) → C4(64) → P4 → pad → FC(1024)

→ ReLU → Dropout(0.5) → FC(K) → σ,

where C∗, P∗ are the quadtree based convolutional units and pooling operations,
respectively, defined earlier, pad is the quadtree padding operation to align fea-
tures from different inputs, Dropout [22] with a rate of 0.5 is used to prevent
overfitting, FC(n) is a fully-connected layer with an n-element vector as output,
and σ is the softmax function that normalizes each element in its input into
the range [0, 1] such that the result is a discrete probability distribution, defined
as σ(xj) =

exp xj∑
n
k=1

exp xk
, j ∈ [1 .. n], and K corresponds to the total number of

classes in the dataset (10 in this case).

EMNIST Balanced [23] extends the classic MNIST dataset with more samples
including alphabets, and contains 112, 800 training and 18, 800 test images of
size 28× 28. The 26 upper and lower case alphabets ([A–Z], [a–z]), and 10 digits
([0–9]) are combined into a total of K = 47 balanced classes. We zero pad the
images as before and decompose them into quadtrees of level 5. We train them
on a network that is defined exactly as in the previous case.

CASIA-HWDB1.1 [24] is a huge database of more than a million handwritten
Chinese character sample images representing 3, 866 classes. We experiment with
a 200-class subset of the dataset comprising 48, 020 training and 11, 947 test
images. Since the images are of varying dimensions, we rescale them into 64×64,
and decompose them into quadtrees of level 6. The network that we use for
training is:

input → C6(64) → P6 → C5(128) → P5 → C4(256) → P4 → C3(512) → P3

→ pad → FC(1024) → Dropout(0.5) → FC(200) → σ.

TU-Berlin Sketch Dataset [25] contains 20, 000 images of freehand sketches
drawn by non-experts, with 80 images in each of the K = 250 classes, in raster
and vector formats. We split the dataset into 18, 000 training and 2000 test im-
ages, and resize each image into dimension 128 × 128. We then decompose the
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Fig. 4: Comparison of mean test accuracy (computed from 5 runs) of QCNN and
traditional CNN classifiers progressively during training on various datasets.

images into quadtrees of level 7. The network for training is defined as:

input → C7(32) → C7(32) → C7(32) → P7 → C6(64) → C6(64) → P6

→ C5(128) → P5 → C4(256) → P4 → C3(512) → P3 → C2(1024)

→ pad → Dropout(0.5) → FC(250) → σ.

All these datasets are particularly suitable for our QCNN since the images
are sparse in nature. We use the standard cross entropy loss for classification
and use stochastic gradient descent for optimizing the first three networks with
a learning rate 0.05, decayed by a factor of 10 after every 10 epochs, for 20
epochs, and ADADELTA optimization method [26] for the last network for 50
epochs (which provided better results compared to SGD). Weights are initialized
using Glorot et al.’s technique [27], and regularized by a decay factor of 5×10−4,
while biases are initialized to zero. We do not perform any data augmentation
for simplicity.

The computational statistics of the classification experiments are summarized
in Table 1. We compare our QCNN results with those obtained by a traditional
CNN with the same network architecture, initial weights, and hyperparameters.
It can be seen that QCNNs are highly efficient in terms of computational effort
(represented in column 3 as the number of multiply-accumulate operations in
the convolutional layers) while yielding similar test accuracies (column 2). In
practice, we observed that deeper networks train faster, for example, the TU-
Berlin QCNN took one-third the training time compared to traditional CNN.
To study the behaviour of QCNN throughout the training phase, we plot the
learning curves in Fig. 4 comparing the test accuracy after each epoch of training.
It is apparent that QCNNs closely follow CNNs in terms of accuracy on all the
datasets throughout the training phase, while being computationally efficient.
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Table 1: Computational statistics for classification comparing QCNNs and CNNs
based on mean accuracy and standard deviation at the end of training from 5
runs, and average multiply-accumulate operations per sample (during forward
pass) in the convolutional layers.

Dataset Non-zero Accuracy (%) #MACC (×106)

pixels (%) CNN QCNN CNN QCNN

MNIST 32.82 99.48(±0.03) 99.39(±0.02) 18.36 6.1
EMNIST Balanced 44.15 89.53(±0.09) 88.89(±0.18) 18.36 9.03
CASIA-HWDB1.1 19.06 97.44(±0.12) 97.36(±0.08) 229.34 136.7

TU-Berlin 4.53 61.13(±2.04) 62.44(±1.16) 837.53 257.07

4.2 Sketch Simplification

We next study QCNN for the task of sketch simplification [1]. This application
is again suitable for our method since relatively high resolution sparse images
are trained on deep convolutional neural networks.

We adapt the TU-Berlin sketch dataset for this experiment by synthesizing
an inverse dataset consisting of sketchy rough line drawings. We utilize the SVG
version of TU-Berlin dataset where each file represents a clean sketch drawing
as a collection of paths in Bézier form. We duplicate each path 3 times and
apply random affine transformations where the rotation angle and translation
are drawn from Gaussian distributions with zero mean and standard deviations
of 1.5◦ and 2, respectively. We repeat this for all SVG files in the dataset and
rasterize them while setting the stroke width of the paths to 1px.

Next, we decompose all the rough sketches into quadtrees and represent the
corresponding clean sketches using the same quadtree structure so that both are
directly comparable during training. We define an encoding-decoding QCNN
similar to Simo-Serra et al. [1]:

sketchy → Cℓ(48) → Cℓ(48) → Pℓ → Cℓ−1(128) → Cℓ−1(128) → Pℓ−1

→ Cℓ−2(256) → Cℓ−2(256) → Cℓ−2(256) → Pℓ−2 → Cℓ−3(256)

→ Cℓ−3(512) → Cℓ−3(1024) → Cℓ−3(1024) → Cℓ−3(1024) → Cℓ−3(1024)

→ Cℓ−3(512) → Cℓ−3(256) → Uℓ−3 → Cℓ−2(256) → Cℓ−2(256)

→ Cℓ−2(128) → Uℓ−2 → Cℓ−1(128) → Cℓ−1(128) → Cℓ−1(48)

→ Uℓ−1 → Cℓ(48) → Cℓ(24) → conv(1) → sigmoid → clean image

We introduce skip connections between the input of each pooling layer to the
output of each corresponding upsampling layer in the same level to speed up the
convergence. Note that we did not tune the network architecture or dataset to
obtain best results, but rather study the performance and training behaviour.
We train the network for 20 epochs with the mean-squared error loss between the
rough and clean sketch data stored in the quadtrees using the ADADELTA [26]
optimization method. As before, we also train a traditional CNN similarly for
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Fig. 5: Sketch simplification results obtained with traditional CNN and QCNN
trained using the same network architecture.

this task to compare the results as well as computational and memory usage.
As shown in Fig. 5, QCNN can obtain comparable simplified sketches, while
greatly reducing computation and memory use, see Table 2. Training QCNN in
our setup took only around one-fourth the time compared to CNN. We used
images of dimension 256×256 (ℓ = 8) for this experiment. However, since sketch
simplification typically involves high-resolution images leading to extended train-
ing time, we also compute and provide the computation and memory usage for
higher resolutions to illustrate the drastically increasing complexity, see second
and third rows in Table 2.

To study the learning behaviour of QCNN, we visualize the evolution of the
learning process by retrieving the weights of the models throughout the training
phase and visualizing the simplified results, as shown in Fig. 6. It is apparent that
the learning behaviour of QCNN is stable and quite similar to traditional CNN
for this task which involves a deep network, while being highly computation and
memory efficient.

5 Conclusion

We have presented a quadtree convolutional neural network (QCNN) that can
efficiently learn from sparse image datasets. Thanks to the quadtree-based rep-
resentation that decomposes the image only in the presence of non-zero pixels,
storing and computing feature maps is of linear complexity in the number of
non-zero pixels and independent of image resolution. QCNNs are applicable
in a wide range of applications involving sparse images. Particularly, we have
demonstrated the use of QCNNs on sparse image classification and sketch sim-
plification, where similar classification and simplification results are obtained but
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Fig. 6: Visualization of learning process for sketch simplification evolving
throughout training.

Table 2: Computational statistics for sketch simplification comparing QCNNs
and CNNs based on average multiply-accumulate operations and memory usage
per sample (forward pass) in convolutional layers.

Resolution #MACC(×108) Memory (MB)

CNN QCNN CNN QCNN

256× 256 724.76 137.54 127.14 13.5
512× 512 2899.05 349.28 508.56 35.35

1024× 1024 11596.21 917.14 2034.24 97.9

with much lower computational complexity and memory cost, compared to tra-
ditional convolutional neural networks. This feature makes QCNN very suitable
for applications on mobile devices whose computing power is limited.

In future, we wish to study QCNNs with other network architectures in more
detail such as residual networks [28], to learn from extremely large datasets such
as Google Quickdraw [29]. We are also interested in extending our approach to
recurrent architectures to learn from sparse image sequences and improve the
learning speed of adversarial networks for training on sketch-like datasets [30].
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