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Abstract. Urban zoning enables various applications in land use analysis and

urban planning. As cities evolve, it is important to constantly update the zoning

maps of cities to reflect urban pattern changes. This paper proposes a method

for automatic urban zoning using higher-order Markov random fields (HO-MRF)

built on multi-view imagery data including street-view photos and top-view satel-

lite images. In the proposed HO-MRF, top-view satellite data is segmented via a

multi-scale deep convolutional neural network (MS-CNN) and used in lower-

order potentials. Street-view data with geo-tagged information is augmented in

higher-order potentials. Various feature types for classifying street-view images

were also investigated in our work. We evaluated the proposed method on a num-

ber of famous metropolises and provided in-depth analysis on technical issues.

Keywords: Urban zoning, street-view images, satellite images, higher-order Markov

random fields

1 Introduction

Urban zoning is a common practice adopted by many developed countries for urban

planning [1]. The primary purpose of urban zoning is to segregate an urban area into

distinct zones with regard to the use of spaces (e.g., residential, commercial, industrial),

while specifying the height and bulk of structures, the lot dimensions, and open space

requirements [2]. Urban planners, administrators, and policy makers rely on urban zon-

ing maps to analyze, predict, and plan for urban development.

Conventional urban zoning approaches [2] require tremendous manual efforts; hence,

they are time-consuming, prone to error, and non-scalable. Routine processes in updat-

ing a zoning map typically require several months of intensive labor work. Therefore, an

automatic approach for urban zoning is highly favorable and deserves in-depth studies.

Existing efforts (e.g., [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],

[16]) have been classifying land use and land cover using remotely sensed data (i.e.,

satellite and aerial images). Several methods (e.g., [3], [9], [10], [11]) applied image

segmentation techniques on aerial images. However, manually segmenting those im-

ages is laborious and challenging: human efforts are needed for visually interpreting
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every pixel from single or multiple band(s). Hence, automatic semantic segmentation

techniques (e.g., [4], [5], [6], [7], [8], [14], [16]) have also been proposed.

Thanks to the rise of social networking services (e.g., Flickr, Facebook), an enor-

mous amount of street-view photos with geo-tagged information are publicly shared.

This sort of data carry detailed semantic information about different places and thus

could help to interpret zoning information. In this paper, we explore the use of street-

view photos and satellite images for automatic urban zoning. Specifically, we propose

an urban zoning method using multi-source data including top-view satellite images and

street-view photos. This multi-source data is fused into a higher order Markov random

fields (HO-MRF) model. In the model, a multi-scale deep convolutional neural network

(MS-CNN) is built to segment the top-view data and used in lower-order potentials

while the street-view photos are classified and added in higher-order potentials. We con-

ducted extensive experiments to investigate various aspects of our proposed solution. In

particular, we investigated different features and classifiers that could be used for clas-

sifying street-view photos. We compared the use of multi-source vs single-source data.

We also compared our proposed HO-MRF model with conventional MRF and our deep

neural network with existing network architectures.

It is important to note that urban zoning conceptually differs from land cover or

land use despite their correlation. Land cover refers to the observed physical cover on

the earth surface. Land use refers to the activities people undertake on a certain type

of land cover to change or maintain it, or to produce [17]. Urban zoning, on the other

hand, refers to segregating an urban area into distinct zones by the use of buildings and

spaces within a zone. It provides a convenient mean to visualize patterns of social and

economic developments.

The remainder of the paper is organized as follows. Section 2 reviews the related

work. Our proposed method is presented in Section 3. Datasets and experiments are

described in section 4. Section 5 concludes the paper and provides remarks.

2 Related Work

2.1 Land use and Land cover Classification

Early works (e.g., [18], [19]) have successfully applied satellite sensor technology for

monitoring agricultural land use, which motivate recent attempts on applying similar

technologies for analyzing land use and land cover. Barnsley and Barr [20] proposed

to extract land use information using land cover classification from multi-spectral im-

ages captured by a satellite sensor. However, the degree of sensitivity between land use

patterns and the accuracy of initial land cover classification is yet to be determined.

Brown et al. [3] analyzed the relationship between land use and land cover from a

spatial-temporal perspective using a Markov transition probability model. Porway et al.

[12], [13] proposed a hierarchical and contextual model for aerial image understanding.

Lienou et al. [15] annotated satellite images using semantic concepts related to land use.

The annotation task combined the classification of image patches and the integration of

the spatial information between these patches. Rozenstein and Karnieli [4] introduced

Geographical Information Systems (GIS) to facilitate land use classification based on
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hybrid supervised and unsupervised learning on remote sensing data. Hu and Wang

[14] used a decision tree with remote-sensing data to classify urban land use classes.

Banerjee et al. [7] applied cluster ensemble techniques to support self-training-based,

unsupervised land cover classification on satellite images, to overcome the challenge

of limited information in data distribution. Luus et al. [16] introduced multi-view deep

learning to the field of land use classification.

There are also recent works on applying semantic segmentation techniques to land

use and land cover classification. For example, Frohlich et al. [6] used iterative context

forests to classify land cover from satellite images by considering contextual informa-

tion. Volpi and Ferrari [9] segmented satellite images using conditional random fields.

Albert et al. [11] proposed a method for the simultaneous classification of land cover

and land use, taking the consideration of spatial context.

2.2 Urban Understanding from Street-View Photos

The abundance of street-view photos provides new opportunities for computer vision

research on understanding urban areas. For example, previous works have demonstrated

using such data for city identification [21], [22], geo-informative social attributes pre-

diction [23] and urban perception [24], [25]. Recently, Dubey et al. quantified the per-

ception of urban environment at the global scale by training a convolutional neural

architecture on a new crowd-sourced dataset [26].

An early attempt was made by Leung and Newsam [27] on using street-view photos

for classifying land use and land cover. To measure social development, they formulated

the problem as supervised binary classification. Oba et al. [28] proposed text features in

addition to visual features to improve land cover classification. Frey et al. [29] applied

unsupervised learning to automatically characterize large geographical regions into lo-

cation types.

2.3 Correlation between Top-View and Street-View Imagery Data

Recently the correlation between top-view and street-view imagery data has been ex-

ploited for scene understanding. For example, Lin et al. [30] proposed to learn features

using deep networks for cross-view image matching. In this work, the geo-location of

a street-view query image on an aerial image is determined via feature matching. In

[31], Máttyus et al. proposed an automatic road segmentation method for vehicles us-

ing both aerial and ground-view imagery data. Specifically, ground-view images of a

road are captured using a stereo camera built in vehicles and paired with aerial imagery

obtained from GPS to reasoning the road surface and perform road segmentation. In

[32], functions of buildings were classified using both ground-level and overhead im-

ages. Convolutional neural networks (CNNs) were used to learn visual features at both

ground and overhead levels. The ground-level feature map for an input overhead im-

age was then constructed by applying kernel regression on the ground-level features

extracted by the CNNs on ground-level images.
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Fig. 1: Our approach infers a reliable urban zoning map from top-view satellite images

and street-view photos.

3 Proposed Method

3.1 Higher-order Markov Random Fields

The problem of urban zoning can be described as follows. Given a satellite image S
covering an urban area U and a set of randomly downloaded street-view photos G =
{gi} located within U and associated with geo-tagged information, the problem is to

infer possible zoning maps of U at metropolis-level. Fig. 1 illustrates the proposed

urban zoning system.

We formulate the problem of urban zoning as segmenting the satellite image S into

a number of regions, called zones, and identifying the zone types of the regions. The

zone type of each region is determined by the visual information extracted from the

pixels of that region and the associated street-view photos.

According to the definition of the uses of urban buildings and spaces [2], we cat-

egorize urban zones into 4 types: Residential, Commercial, Industrial, and Others in

this paper. This categorization ensures the generality of the problem. Let Z be the set

of zone types. |Z| = 4 in our case. Fig. 2 shows some examples of street-view photos

under different zone types.

Technically, the problem stated above can be regarded as semantic segmentation of

the satellite image S. Following this idea, we propose a higher-order Markov random

fields (HO-MRF) model to solve the problem. In our HO-MRF model, unary terms are

computed from visual features extracted on the satellite image S via a deep convolu-

tional neural network. The relationships between the satellite image S and its associated

street-view photos G are encoded in higher order potentials and augmented to the HO-

MRF model. Fig. 3 summarizes the workflow of this solution.

The HO-MRF model is constructed as follows. The input satellite image S is rep-

resented as a lattice of pixels. Each pixel pi ∈ S is considered as a node and its label

is denoted as li taking value in Z. Akin to fully connected MRFs [33], each pixel is

connected to all other pixels.
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Fig. 2: Examples of street-view photos from New York, San Francisco, and Boston.

The zoning problem is equivalent to finding the best configurationL = (l1, l2, ..., l|S|)
for |S| pixels of the satellite image S. In particular, we minimize the energy function,

L∗ = argmin
L∈L|S|

[

∑

i∈S

ψi(li) +
∑

(i,j),i<j

ψi,j(li, lj) +
∑

i∈S

ϕ(li, G) +
∑

g∈G

ϕ(g)

]

, (1)

The unary potential ψi(li) in (1) is defined as,

ψi(li = z) ∝ − logC(S,pi|li = z), (2)

where C is the classification scores of assigning the zone type of pixel pi (i.e., li) to z
based on the input satellite image S. The computation of C will be presented in details

in Section 3.2.

The pairwise potential ψij(li, lj) is defined as a mixture of Gaussians of the location

and color information of image pixels on S. In particular,

ψij(li, lj) = µij

[

exp

(

−
|pi − pj |

2

2α2
−
|ci − cj |

2

2β2

)

+ exp

(

−
|pi − pj |

2

2γ2

)]

(3)

where ci/cj is the color vector at pixel pi/pj and pi is the location vector (i.e., x- and

y-coordinate) of pi, µij is the Pott label compatibility function [33], e.g.,

µij =

{

−1, if li = lj

1, otherwise.
(4)

In the HO-MRF model, we introduce higher-order potentials (e.g., ϕ(g)) capturing

the relationships between S and G. The term ϕ(li, G) encodes the zone consistency
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Fig. 3: The workflow of our approach. From left to right: Input data (1st column), Satel-

lite image pixel classification and street-view photo classification (2nd column), zoning

using HO-MRF (3rd column), output (4th column).

between a point pi on S and its nearest street-view photo in G. Note that since every

street-view photo is associated with a geo-location, the distance between a pixel pi ∈ S
to a street-view photo can be determined. In particular, we define,

ϕ(li, G) ∝ min
g∈G,f(g)=li

{

− log

[

1

d(pi, g)

]}

, (5)

where f(g) is a function returning the zone type of g and is described in Section 3.3;

d(pi, g) is the spatial distance between pi and g. Intuitively, ϕ(li, G) is inverse to the

distance from pi to its closest street-view photo whose zone type is li. In other words,

the zone type of pi would be more biased by its nearest street-view photo.

Note that ϕ(li, G) needs to be computed for every pi. To save the computational

cost, the Distance Transform proposed in [34] is applied on grids formed by the loca-

tions of street-view photos G. In particular, the zone type of each street-view photo is

first obtained (see Section 3.3). For every zone type z ∈ Z, a Distance Transform Dz is

applied on the street-view photos that have been classified as zone type z. The potential

ϕ(li, G) can then be rewritten as,

ϕ(li, G) ∝ − log
1

Dli(pi)
, (6)

where Dli(pi) is the value of the Distance Transform Dli at location pi.

The term ϕ(g) represents the zone consistency of pixels in a local image region (on

S), at which the street-view photo g could be captured. Specifically, given g, its geo-

location on S can be obtained and, at this geo-location, a local image region R(g) of

size W ×W is extracted. In our implementation, W is set to 46, which is also the size

of image patches used in classifying pixels on the satellite image S (see Section 3.2).

We then construct a probability distribution Pg(lk) over the labels lk ∈ L conditioned
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(a) Input satellite image (b) Initial labels (c) Output zoning map

Fig. 4: Zoning of New York City. Initial label of each pixel is determined by the zone

type of its nearest street-view photo.

on pixels k inside R(g). The cost ϕ(g) is then computed from the entropy of Pg(lk) as,

ϕ(g) ∝ −
∑

lk∈L|pk∈R(g)

Pg(lk) logPg(lk) (7)

The optimization problem in (1) can be solved using the variational mean field

method [35], [36]. In particular, (1) is equivalent to finding a maximum of a poste-

riori (MAP) p(L|S = {pi}). In variational mean field, this can be approximated by a

variational distributionQwhich is fully factorized, i.e.Q(L) =
∏

iQi(li). The solution

of (1) is finally achieved by iteratively updating Qi(li) as follows,

Qi(li = z)←
1

Zi

exp

[

− ψi(li = z)−
∑

z′∈Z

∑

j 6=i

Qj(lj = z′)ψij(li, lj)

− ϕ(li = z,G)−
∑

g∈G

∑

{lj |pj∈R(g),li=z}

Q(R(g)− pi)ϕ(g)

]

(8)

where R(g) is an image patch on S that is centered at the location of g, Q is the vari-

ational distribution of the higher order terms [37], R(g) − pi is the set of pixels in

R(g) except pi, and Zi is the partition function. We compute the higher order term
∑

{lj |pj∈R(g),li=z} Q(R(g)− pi)ϕ(g) as,

∑

{lj |pj∈R(g),li=z}

Q(R(g)− pi)ϕ(g) =

−
∑

lk∈L|pk∈R(g)

Pg(lk) logPg(lk)

[

∏

pm∈R(g),
m 6=i

Qm(lm = z)

]

−
∑

lk∈L|pk∈R(g)

Pg(lk) logPg(lk)

[

1−
∏

pm∈R(g),
m 6=i

Qm(lm = z)

]

(9)
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In our implementation, the label of each pixel on the satellite image S was ini-

tialized by the label of its nearest street-view photo. Fig. 4 shows an example of zone

segmentation of New York city.

3.2 Classifying Satellite Image Pixels

Fig. 5: MS-CNN for classifying satellite image pixels.

This section describes the classification of the zone type of pixels pi on the satellite

image S, i.e., estimation of C(S,pi|li) in (2). Like the work by Farabet et al. [38], our

network receives input the YUV image of S. A pyramid including three scales (S0 = S,

S1 = 1
2S, S2 = 1

2S
1) is then created. For each pixel pi, three local image patches I0i ,

I1i , and I2i of size 46× 46-pixels centered at pi on S0, S1, and S2 are extracted.

A multi-scale convolutional neural network (MS-CNN) is then constructed to learn

the appearance features and classify local image patches at various scales. Utilizing the

multi-scale approach would enable learning scale-invariant features. In addition, multi-

scale regions at a pixel would allow the incorporation of context information and thus

could be useful for the classification. In the MS-CNN, for each scale, a 5-layer sub-CNN

is formed with the interchange of convolutional and max-pooling layers. For example,

the 1st and 3rd layers are obtained from the banks of 16 7× 7 filters, of which 10 filters

connect to the Y channel and the other 6 filters connect to the U and V channels. The

2nd and 4th are results of 16 and 64 2×2 max-pooling operations respectively. The 5th

layer is formed by 256 7× 7 filters. The outputs of all sub-CNNs are then concatenated

to a layer fed to a 2 fully connected layer structure for classification. The first layer of

this fully connected network includes 1024 nodes and the second layer contains 4 nodes

corresponding to 4 different zone types. Fig. 5 illustrates the MS-CNN. In the network,

softmax is used as the activation function for the last layer of the sub-CNNs and the last

layer of the fully connected network, and tanh is used for all other layers.

The MS-CNN is trained via optimizing a cross-entropy loss and using stochastic

gradient descent method. The batch size is set to 100 and the learning rate is set to
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10−3. We found that these settings achieved the best performance. Since the training

data may be biased, the loss function is weighted relatively to the proportion of the

class labels in the training dataset. In addition, all sub-CNNs share the same parame-

ters including weight and bias. As indicated by Farabet et al. [38], imposing complete

weight sharing across scales is a natural way of forcing the network to learn scale-

invariant features, and at the same time, to reduce the chances of over-fitting. Given the

MS-CNN, C(S,pi|li = z) is computed as classification score of pixel pi to the zone

type z, i.e., the response of the MS-CNN at the zone type z.

3.3 Classifying Street-View Photos

Recall that in (5), the HO-MRF requires a function f(g) that returns the zone type of a

street-view photo g. Intuitively, if the geo-location of each photo could be paired with

the corresponding zone type, we would have a reasonable zoning map. To recognize

street-view photos, features need to be determined. Well-known features such as GIST

[39], HOG [40], local binary patterns (LBP) [41] have been proposed in the literature.

However, those features are handcrafted and thus require the specific knowledge in par-

ticular fields. Recently, deep neural networks have been used for automatically learning

features and training classifiers [42].

Inspired by the relevance of the information conveyed by deep networks for scene

recognition, we choose the Places-CNN, a CNN trained on Places Database [43]. Places-

CNN is able to recognize 205 object types and scenes from daily taken photos. We

note that the object types and scenes of interest in the Places-CNN (e.g., buildings,

skyscrapers, warehouses) are semantically close to the basic concepts of urban zoning

(e.g., commercial, industrial). In our implementation, a street-view photo g is passed to

the Places-CNN and the output is a vector x(g) = {x(g)1, ..., x(g)205}, representing

how probably the photo g contains 205 types of objects and scenes.

Given the features, different classifiers could be used. However, different types of

features make different impacts on the performance of a classifier. In practice, exten-

sive experiments are often conducted for classifier selection. In this paper, we consider

Random Forests (RF) [44] as the classifier for a number of reasons. First, RF is known

for its capability of effectively exploiting and integrating multiple classifiers, where

each classifier has its own favor on particular feature types and label classes. Second,

as proven in our experimental results, compared with other classifiers, RF based on the

features generated by the Places-CNN works well on our problem.

Our RF classifier f includes multiple weak classifiers [45]. The predicted label of f
given an input photo g is a weighted majority vote of the predictions made by individual

classifiers. Specifically, let h1, ..., hM be M weak classifiers. The predicted label of a

photo g is denoted as f(g) and can be computed as,

f(g) = argmax
z∈Z

( M
∑

k=1

wkI(hk(x(g)) = z)

)

, (10)

where x(g) is the 205-dimensional feature vector extracted using the Places-CNN, I(·)
is the indicator function, and wk is the weight of the k-th weak classifier hk.
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Table 1: Numbers of street-view photos.
Residential Commercial Industrial Others Total

New York 59,906 77,193 25,109 56,570 218,778

San Francisco 49,543 46,454 11,553 41,140 148,690

Boston 32,412 37,588 10,179 42,682 122,861

Table 2: Proportion of zones in ground-truth zoning maps.
Residential Commercial Industrial Others

New York 64.21% 4.90% 14.15% 16.74%

San Francisco 53.82% 8.88% 6.49% 30.81%

Boston 40.91% 12.07% 3.42% 43.60%

4 Experiments

4.1 Dataset

Our experiments were conducted on the map data of three metropolises: New York,

San Francisco and Boston.

Satellite Data. Satellite images are our top-view imagery data that could be obtained

without expensive devices or professional expertise. We downloaded the satellite image

tiles for each city by its corresponding geographical boundary from the National Map

service operated by U.S. Geology Survey [46].

Street-View Data. Popular social network services provide public access to many of

their street-view photos and associated geo-tagged information. We collected 490, 329
photos of the three metropolises from Flickr and Panoramio. Specifically, we queried

the URLs of outdoor photos by calling the APIs of Flickr and Panoramio within the

geographical boundary (the minimum bounding box) of each city. Photos within each

city were downloaded after their coordinates were verified by GIS. Table 1 summarizes

the number of street-view photos used for each metropolis. Fig. 6 shows the distribution

of street-view photos in New York.

Urban Zoning Maps. We collected urban zoning maps from the websites of local gov-

ernments, which were stored in the standard GIS format, SHAPEFILE [47]. The zone

types include: Residential, Commercial, Industrial and Others. The mentioned maps

served as the ground-truth for evaluations. Table 2 shows the percentage of each type

of zones in the ground truth zoning maps.

4.2 Classifying Street-View Photos

We first evaluated street-view photo classification. In this experiment, we investigated

different feature types and classifiers that are well-known for scene classification. Specif-

ically, for features, we evaluated the GIST [39], HOG [40], and Places-CNN [43].
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Fig. 6: The plot map of street-view photos

in New York city. Each photo is marked

with a color corresponding to its zone type.

For classifiers, we compared RBF-

kernel SVM, k-nearest neighbors, and

RF. We found that RBF-kernel SVM sig-

nificantly outperformed linear SVM. For

the k-nearest neighbors, we set k to 10

which gave the best performance on this

technique. To measure the similarity be-

tween samples, we used the Euclidean

distance. For the RF, 15 trees were used.

All the classifiers were evaluated using 3-

fold cross validation.

Table 3 summarizes the results of this

experiment. As shown, in most cases,

the combination of Places-CNN with RF

achieves the best performance. It is also

worthwhile to notice that compared with

handcrafted features, the features learned

by the Places-CNN often gain higher

classification accuracy and achieve the

best overall performance irrespective of the classifiers.

We also evaluated the use of neural network for street-view photo classification.

Specifically, we directly connected the outputs of Places-CNN to a fully connected

neural network (with one hidden layer and 4 outputs corresponding to 4 zone types).

The results of this experiment are reported in Table 4. As shown in both Table 3 and

Table 4, applying RF on-top of Places-CNN achieves the best overall performance.

Table 3: Accuracy of street-view photo classification.
Random Forest SVM with RBF kernel k-Nearest Neighbors

Places-CNN GIST HOG Places-CNN GIST HOG Places-CNN GIST HOG

New York

Residential 79.04% 70.56% 71.75% 71.32% 64.12% 65.33% 65.21% 60.59% 61.44%

Commercial 81.65% 65.19% 69.22% 73.74% 62.90% 64.78% 67.31% 57.57% 62.16%

Industrial 71.75% 66.21% 72.80% 68.46% 54.31% 62.10% 61.43% 57.53% 54.12%

Others 81.26% 67.78% 69.13% 72.97% 68.49% 66.31% 67.06% 61.53% 58.73%

Overall 79.76% 67.51% 70.35% 72.33% 62.32% 65.07% 66.05% 59.47% 60.20%

San Francisco

Residential 78.19% 69.25% 70.67% 74.19% 67.39% 68.11% 73.33% 65.38% 67.14%

Commercial 82.55% 72.54% 72.34% 71.52% 68.10% 67.55% 65.71% 60.44% 59.76%

Industrial 70.88% 65.81% 70.96% 73.73% 63.54% 68.91% 64.32% 63.92% 65.88%

Others 86.18% 80.55% 83.48% 76.26% 74.62% 76.39% 69.09% 66.79% 68.42%

Overall 81.19% 73.13% 74.76% 73.89% 69.31% 70.29% 69.07% 64.11% 65.10%

Boston

Residential 79.88% 69.18% 71.57% 75.08% 64.11% 70.02% 72.57% 66.53% 67.82%

Commercial 82.25% 71.20% 70.88% 70.26% 68.29% 69.23% 68.45% 65.78% 65.93%

Industrial 86.45% 70.09% 69.47% 74.31% 67.54% 65.33% 69.13% 66.91% 65.02%

Others 82.39% 72.34% 73.59% 77.29% 69.51% 74.87% 73.29% 67.52% 70.19%

Overall 82.08% 70.96% 71.77% 74.01% 67.58% 70.22% 71.21% 66.60% 67.67%
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Table 4: Accuracy of street-view photo classification using Places-CNN and fully con-

nected neural network.
Residential Commercial Industrial Others Overall

New York 79.97% 44.22% 27.89% 66.11% 60.89%

San Francisco 74.01% 45.69% 24.84% 78.43% 68.13%

Boston 58.24% 25.82% 9.41% 80.95% 65.38%

4.3 Zoning

Since zoning is formulated as semantic segmentation of satellite images, its perfor-

mance can be evaluated via the segmentation accuracy, i.e., the accuracy of classifying

of satellite image pixels using the proposed MS-CNN. In our implementation, the MS-

CNN was trained/tested in 3-fold cross fashion (i.e. two cities were used for training

while the other was used for testing). To increase the data for training/testing the MS-

CNN, for each city, 6 satellite images were created, 5 of which were obtained by rotating

the original one by a multiple of 60◦. Each created satellite image was also scaled (with

3 different scales) and densely scanned by a 46×46-pixel window. The process resulted

in 1,265,572 satellite image windows at each scale. The performance of zoning across

cities is reported in Table 5 (the last column). Zoning results are presented in Fig. 7.

Table 5 also compares the use of single data source, e.g. satellite data only or street-

view photos only, with multi-source data (i.e., our proposed method). Note that the

solely use of satellite data is equivalent to the 1-st term in our energy formulation in

(1). When only street-view photos are used, the zone type of each pixel on the satellite

image is decided by the zone type of its closest street-view photo (i.e., only the 3-rd

term in (1) is used).

Table 5: Zoning performance.

Satellite Street-view Conventional HO-MRF

pixels photos MRF

New York 66.70% 60.50% 66.87% 70.33%

San Francisco 64.68% 61.63% 62.99% 71.80%

Boston 51.33% 48.08% 47.95% 57.09%

Table 6: Comparison of different networks in

classifying satellite image pixels.

New York San Francisco Boston

Volpi and Tuia[10] 20.50% 10.10% 22.50%

Our MS-CNN 66.70% 64.68% 51.33%

Recall that we propose the HO-

MRF to perform zone segmentation

in which a deep neural network is

used to obtain low-level MRF seg-

mentation and street-view photos are

augmented via higher order poten-

tials (see (1)). Therefore, we com-

pare the HO-MRF with the conven-

tional MRF (i.e., using only the first

two terms in (1)). As shown in Ta-

ble 5, the use of satellite data out-

performed that of street-view photos

and our proposed HO-MRF with the

combination of both the data sources

achieved the best performance on all

the cities. Specifically, the combina-

tion of both sources improved up to 10.17% and 7.12% compared with the single use of

top-view data or street-view data respectively. The HO-MRF boosted up 8.76% com-

pared with conventional MRF.

We also compared our deep network (i.e., MS-CNN) used to compute the unary

terms in (1) with the network recently proposed by Volpi and Tuia [10]. Since the
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method in [10] requires the digital surface model for each satellite image, that is un-

available in our data, we adapted the network in [10] by changing its input and output

layers to meet with our data while maintaining other layers and settings (e.g. activation

functions) same. The adapted network was then re-trained and tested on the same data

with our network. As shown in Table 6, our network significantly outperformed the one

proposed in [10].

4.4 Discussion

We have found that larger improvement with the HO-MRF was obtained on Boston

and San Francisco compared to only using satellite imagery as opposed to New York

probably because New York contains more industrial regions (e.g., as shown in Table 2

industrial takes 14.15% in New York, compared with 6.49% and 3.42% in San Francisco

and Boston). However, as shown in Table 3, industrial street-view photos are recognized

with lower accuracy compared with other zone types.

Experimental results (e.g., Fig. 7) also show our method fails to segment tiny/thin

regions. This is because those regions occupy small portions in local image windows

and thus are biased by nearby larger regions. We have also found that the method may

fail at regions with less street-view images captured. Note that street-view photos are

captured sparsely and non-uniformly (see Fig. 6). We believe that, 3D data such as dig-

ital surface models, digital elevation models (if available or achievable approximately)

would be useful to resolve these issues.

5 Conclusion

We proposed a higher-order Markov random fields model for urban zoning based on

multi-view imagery data including top-view satellite and street-view images. We also

developed a multi-scale deep convolutional neural network used for classifying satellite

image pixels. By integrating different sources of imagery data, our approach can achieve

urban zoning automatically, and hence overcome the scalability bottleneck faced by the

conventional practice of creating zoning maps manually. We investigated various imple-

mentation strategies including feature types, classification models, deep architectures,

and conducted extensive experiments and comparisons to verify our approach.
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(a) New York

(b) San Francisco

(c) Boston

Fig. 7: Zoning results. For each city, the ground-truth is shown on the left and the zoning

map result is shown on the right.
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