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Abstract. Due to the fact that it is prohibitively expensive to com-
pletely annotate visual relationships, i.e., the (obj1, rel, obj2) triplets,
relationship models are inevitably biased to object classes of limited pair-
wise patterns, leading to poor generalization to rare or unseen object
combinations. Therefore, we are interested in learning object-agnostic vi-
sual features for more generalizable relationship models. By “agnostic”,
we mean that the feature is less likely biased to the classes of paired ob-
jects. To alleviate the bias, we propose a novel Shuffle-Then-Assemble
pre-training strategy. First, we discard all the triplet relationship an-
notations in an image, leaving two unpaired object domains without
obj1-obj2 alignment. Then, our feature learning is to recover possible
obj1-obj2 pairs. In particular, we design a cycle of residual transfor-
mations between the two domains, to capture shared but not object-
specific visual patterns. Extensive experiments on two visual relationship
benchmarks show that by using our pre-trained features, naive relation-
ship models can be consistently improved and even outperform other
state-of-the-art relationship models. Code has been made available at:
https://github.com/yangxuntu/vrd.

1 Introduction

Thanks to the maturity of mid-level vision solutions such as object classification
and detection [19,41,15], we are more ambitious to pursue higher-level vision-
language tasks such as image captioning [13,14,5,31], visual Q&A [22,27,18], and
visual chatbot [7]. Unfortunately, we gradually realize that many of the state-
of-the-art systems merely capture training set bias while not the underlying
reasoning [49,22,65]. Recently, a promising way is to use visual compositions
such as scene graph [23,53] and relationship context [21,62] for explainable visual
reasoning. Therefore, visual relationship detection (VRD) [60,61,28,57] — the
task of predicting elementary triplets such as “person ride bike” and “car park
on road” in an image — is becoming an indispensable building block connecting
vision with language.

Despite the relatively preliminary stage of VRD compared to object detec-
tion, a major challenge of VRD is the high cost of annotating the (obj1, rel, obj2)
triplets as shown in Fig. 1 (a). Unlike labeling objects in images, labeling visual

https://github.com/yangxuntu/vrd
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Fig. 1: (a) The triplet annotations of visual relationships in an image. (b) The
key idea of the proposed Shuffle-Then-Assemble strategy is to discard the
paired annotation of any relationship and leave two unpaired object domains.
(c) Comparisons between the original feature maps obtained from base CNN
(middle) and the object-agnostic ones (bottom) obtained by our pre-training
(averaged over all the channels). We can see that our feature maps focus more
on the overlapped regions of objects.

relationships is prohibitively expensive as it requires combinatorial checks of
the three entries. Therefore, the relationships in existing VRD datasets [32,26]
are long-tailed, and the resultant relationship models are inevitably biased to
the dominant obj1-obj2 combinations. For example, as reported in pioneering
works [60,32], the recognition rate of unseen triplet compositions is significantly
lower than the seen ones. This deficiency clearly limits the VRD potential in
compositional reasoning. Though it can be alleviated by exploiting external
knowledge such as language priors [32] and large-scale weak supervision [61],
we still lack a principled solution in the visual modeling perspective.

Unsupervised feature learning (or pre-training) is arguably the most popular
remedy for training deep models with small data [64,36,10,39,11,47]. Therefore,
we are inspired to learn object-agnostic convolutional feature maps that are less
likely biased to certain obj1-obj2 combinations. Such features should be highly
responsive to object parts1 involved in a relationship. A plausible way is to
append additional conv-layers to the original base CNN (e.g., VGG16 [44] or
ResNet-150 [19]) to remove the object-sensitive responses inherited from image
classification pre-training dataset (e.g., ImageNet [8]). For example, as shown in
Fig. 1 (c), compared with the base CNN’s feature map, the object-agnostic one
ignores object patterns but focuses on the shared patterns of interacted objects.
Therefore, we raise a question: how to learn the object-agnostic feature maps
without additional relationship labeling cost?

In this paper, we propose a novel Shuffle-Then-Assemble feature learning
strategy. As shown in Fig. 1 (b), “shuffle” is to discard the original one-to-
one paired object alignments, and thus no explicit obj1-obj2 class information
is used; “assemble” is to pose the relationship modeling into an unsupervised

1 The parts can be at the pixel-level as well as the receptive field-level.
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pair recover problem by transferring Region-of-Interest (ROI) features between
the two unpaired domains. Our intuitive motivation is two-fold: 1) if the ROI
features extracted from the resultant feature maps still encode object-specific
information, features are not likely to be transferred between the two domains
of heterogeneous objects; 2) the unsupervised fashion encourages the exploration
of many more possible relationships which are usually missing in annotation. As
shown in Fig. 1 (a), some simple spatial relationships such as “chair beside bag”
are missing, and equivalent relationships are usually ignored, i.e., “chair under
person” is missing as “person sit on chair” is labeled. Inspired by the recent
advances in unsupervised domain transfer methods [66,24,20,56], we design a
cycle of transformations to establish the transfer between the two domains: either
transfer direction maps an RoI from domain A (or B) to B (or A), and then an
adversarial network is used to confuse the mapping with RoIs in B (or A). In
particular, we use a residual structure for the transformation network, where
the identity mapping encourages the feature map to capture shared but not
object-specific visual patterns and the residual allows feature transformation.

We demonstrate the effectiveness of the proposed Shuffle-Then-Assemble

strategy on two benchmarks: VRD [32] and VG [26]. We observe consistent im-
provement of using our pre-trained features against various ablative baselines and
other state-of-the-art methods. For example, compared to feature maps without
pre-training, we can boost the Recall@100 of supervised, weakly supervised, and
zero-shot relationship prediction by absolute 4.74%, 4.42%, 4.04%, respectively
on VRD, and 4.41%, 4.2%, 5.81%, respectively on VG.

2 Related Work

Visual Relationships. Modeling the object interactions such as verbs [16,3],
actions [17,40,54], and visual phrases [55,1,43,9] has been extensively studied in
literature. In particular, our relationship model used in this paper follows the
recent progress on modeling generic visual relationships, i.e., the (obj1, rel, obj2)
triplets detected in images [32,60]. State-of-the-art relationship models fall into
two lines of efforts: 1) message passing between the two object features [57,28,52],
and 2) exploitation of subject-object statistics such as language priors [32,29,67]
and dataset bias [59,63,6]. However, they are still limited in the inherent issue of
insufficient training triplets due to combinatorial annotation complexity, leading
the resultant relationship model to be brittle to rare or unseen compositions.
Though weakly-supervised methods [61,38,50] can reduce the labeling cost, its
performance is still far from practical use compared to supervised models. Unlike
previous methods, in this paper, we propose to resolve this challenge in pairwise
modeling of relationship, that is, given two regions, we want to improve the
predicate classification without additional object information and extra supervi-
sion. We believe that the improvement can boost most of the above relationship
models by replacing their pairwise modeling counterparts with our method.
Unsupervised Feature Learning. By exploiting large-scale unlabeled data,
unsupervised feature learning methods [2] learn more generalizable intermediate
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Fig. 2: The overview of the proposed Shuffle-Then-Assemble pre-training strat-
egy (red arrow) and relationship detection model (blue arrow). The goal at
the pre-training stage is to learn the Object-Agnostic (OA) conv-layers using
Shuffle-Then-Assemble objective. Then, the traditional supervised training for
the relation model can be considered as the fine-tuning stage using the desired
OA feature map.

data representation for solving some other machine learning tasks. Our mo-
tivation for visual relationship feature learning follows the common practice:
feature transfer in today’s computer vision [58], which fine-tunes a base net-
work which has been pre-trained on other datasets and tasks. Different from
the popular auto-encoder fashion [64,11], our strategy is more similar to the
recent works on self-supervised training, where the learning objective is to dis-
cover the inherent data compositions such as predicting the context of image
patches [10,36,37,33,34,45]. In particular, we propose to discover the alignment
of RoI pairs and pose this discovery into the task of unsupervised domain trans-
fer using adversarial learning [66,24,20,56]. Inspired by them, we use a cycle of
transformations to remove the trivial alignment caused by mode collapse and
thus build non-trivial connections between the paired RoIs.

3 Method

Fig. 2 illustrates the overview of using Shuffle-Then-Assemble to enhance the
relationship model. The goal of the feature learning process is to pre-train the
Object-Agnostic (OA) conv-layers, which result in the desired OA feature map
for better relationship modeling. We will first introduce the widely-used rela-
tionship modeling framework and its limitations, and then detail how to use the
proposed feature learning method to overcome them.

3.1 Visual Relationship Model

The input of the visual relationship model is an image with a pair of object
bounding boxes, and the output is an “obj1-rel-obj2” triplet, where “obj1” and
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“obj2” are the object classes of the two bounding boxes, and “rel” is the rela-
tionship class. In this paper, we adopt the common practice as in [32,60] that
we do not directly model the triplet composition as a whole [43,6], which re-
quires O(C2R) complexity for C object and R relationship classes; instead, we
model objects and relationships separately to reduce the complexity down to
O(C+R). Therefore, without loss of generality, we refer to a relationship model
as an R-way classifier.

Suppose xi and xj are the RoI features of any pair of object bounding boxes
(i, j) (e.g., the red and blue cubes in Fig. 2 by RoI pooling [12]), the r-th rela-
tionship score is obtained by a softmax classifier whose input is a simple con-
catenation of the two features:

S(i, j, r; θ) =
exp

(
wT

r MLP([xi,xj ])
)

R∑

t=1

exp
(
wT

t MLP([xi,xj ])
)
, (1)

where wt ∈ θ is the parameter of the classifier and the configuration of MLP (·)
is detailed in Fig. 2. Note that although Eq. (1) is a naive model and there
are fruitful ways of combining xi and xj in the literature, such as appending
independent MLPs for each RoI [60], the union RoI [28], and even the fusion
with textual features [21], our feature learning can be seamlessly incorporated
into any of them. We will leave the evaluations of applying these tweaks for
future work.

The relationship model can be trained by minimizing the cross-entropy loss
of Eq. (1), summing over all the relationship pairs. However, due to the lim-
ited annotation of the relationship triplets, relationship models trained on these
extremely long-tailed annotations are inevitably biased to the dominant ob-
ject classes. One may wonder why it is object-biased as Eq. (1) does not use
any object class information at all? The reason resides in the base CNN fea-
ture map. Almost all state-of-the-art visual recognition systems deploy the base
CNN [46,44,19] pre-trained on ImageNet [8] or ImageNet+MSCOCO [30], where
the training task is object recognition. Therefore, the resultant feature map for
extracting RoI will naturally favor the sensitivity to object classes — each RoI
feature encodes the discriminative information of the object inside the RoI (cf.
the original feature map of Fig 2), and leads the parameters in Eq. (1) over-fitted
to specific object patterns. For example, if most of the triplets of “stand on” is
“person stand on street”, then the “stand on” classifier will mistakenly consider
the joint pattern “person” and “street” into “stand on”, and fails in cases of
“person stand on chair” or “dog stand on street”.

3.2 Shuffle-Then-Assemble Feature Learning

To alleviate the bias, we detail our proposed Shuffle-then-Assemble strategy
to pre-train the Object-Agnostic (OA) conv-layers for obtaining the OA feature
map. As discussed above, the bias is mainly due to the dominant object pairs
in training data, therefore, our key idea is to discard the original one-to-one
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Fig. 3: (a) The overview of unsupervised domain transfer for
Shuffle-Then-Assemble. It contains a cycle of transformations F : A 7→ B and
G: B 7→ A, and a pair of discriminators DA and DB to measure the quality
of the transfer. (b) Qualitative transfer results. The directed arrow indicates
the nearest-neighbor RoI in the target domain to the RoI from the source
domain. (c) The residual architecture of the transformation network. (d) The
architecture of the discriminator.

pairwise annotations, i.e., “shuffle”, leaving two unaligned domains of RoIs for
“obj1” and “obj2”, and then we attempt to recover the one-to-one alignment,
i.e., “assemble”, by unsupervised domain transfer. Note that this pre-training
strategy does not require additional cost of supervision. As shown in Fig. 3 (b),
we manage to align potential relationships without any one-to-one supervision,
e.g., obj1 may relate to obj6 with respect to “sit” and obj3 may relate to obj2
with respect to “hold”.

The unsupervised domain transfer method used in Shuffle-Then-Assemble

follows recent progress on adversarial domain transfer [66,24,20,56,4]. Notewor-
thy, the motivation of using adversarial domain transfer emphasizes more on the
unsupervised alignments but NOT the feature transfer as in traditional domain
transfer applications such as [48], where the domain transfer is used to close the
gap between conveniently available synthetic data and real data. Here, our idea
is more similar to [39] which discovers alignments between images that are very
visually different such as “spotted bags” and “spotted shoes”, or “frontal faces”
and “frontal cars”.

As illustrated in Fig 3 (a), we want to guide the pre-training of the OA conv-
layers by learning mapping functions between domain A and B, where each of
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them consists of RoI features, a ∈ A and b ∈ B, extracted from the tentative OA
feature map. For the purpose of domain transfer, we have a cycle of two map-
pings: F : A 7→ B and G: B 7→ A, to discover the underlying relationship between
A and B. Recall that there is one-to-one supervision between the two domains,
we adopt the adversarial objective Ladv such that the mapped features {F (a)}
and {G(b)} are indistinguishable from B and A, respectively; in particular, the
indistinguishability is measured by two discriminators DA and DB :

Ladv(A,B;φ, F,G,DA, DB) =

Ea[logDA(a)] + Eb[logDB(b)] +

minimize by F and G
︷ ︸︸ ︷

Eb[log(1−DA(G(b))] + Ea[log(1−DB(F (a))]
︸ ︷︷ ︸

maximize by DA and DB

,

(2)

where φ is the OA conv-layers that generate A and B, DA is a binary classifier
that tries to classify DA(a) 7→ 1 and DA(F (b)) 7→ 0, and DB is defined simi-
larly. In this adversarial way, we will eventually obtain F and G that discover
the hidden alignment between the two domains, i.e., indistinguishable by the
discriminators.

To encourage more explorations of the potential relationship alignments be-
tween the RoIs in the two domains, e.g., avoid from mapping many RoIs in A
to only one RoI in B with respect to a trivial spatial relationship such as “on”
and “by”, we further impose the “cycle-consistent” loss to be minimized by G
and F :

Lcycle(A,B;φ, F,G) = Ea[‖a−G(b)‖1] + Eb[‖b− F (a)‖1]. (3)

The loss penalizes two different RoIs, e.g., a and a′, mapped to the same RoI b
as it is hard to satisfy a ≈ G(b) and a′ ≈ G(b) simultaneously.

By putting Eq. (2) and Eq. (3) together, the full objective for pre-training
the OA conv-layers is:

φ∗ = argmin
φ

min
F,G

max
DA,DB

Ladv(A,B;φ, F,G,DA, DB) + λLcycle(A,B;φ, F,G),

(4)
where λ > 0 is a trade-off hyper-parameter. Then, we can use φ∗ to obtain xi and
xj , and fine-tune a better relationship model θ using existing triplet supervision
as in Eq. (1). Next, we will introduce the proposed implementation of F and G.

3.3 Implementation Details

Network Architecture. For base CNN, we adopt Faster RCNN (VGG16) [42],
which takes short width to be 600 and outputs the original 1/16 × 1/16 × 512
feature map. As shown in Fig 2, our OA conv-layer has 1 filter of the size 1× 1,
stride 1, followed by a Leaky Relu [51]. The transformation network is detailed
in Fig 3 (c). Each transformation contains two blocks of residual network. The
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motivation of applying the residual structure is two-fold. 1) The shortcut en-
courages to find shared regions of two RoIs, since the shared RoI features will
pass directly via the shortcut. This makes the optimization not only more light-
weighted, but also easier to find the intrinsic inter-related visual patterns as
relationships. 2) If any object-specific information is still encoded in the RoI
feature, the shortcut will make it harder to achieve the final domain transfer as
domain A and B usually contain diverse objects. The discriminator network is
detailed in Fig 3 (d), which is composed by two fully-connected layers followed
by Leaky Relu. It takes a 50,176-d (two 7× 7× 512 RoI feature) vectorized RoI
feature as input and outputs a sigmoidal scalar between 0 and 1.
Training. At the feature pre-training stage, to collect sufficient RoIs in each
domain, we augment the number of original bounding boxes by additional ones
with IoU larger than 0.7, extracted by using the Region Proposal Network [42].
For each original bounding boxes, 10 RoIs are sampled. To stabilize the adver-
sarial training in Eq. (4), we adopt three practices: 1) We apply least-square
GAN [35] to replace the negative log likelihood by a least square loss. 2) The
optimizer for training DA and DB is set to SGD and the optimizer for G, F and
φ is set to Adam [25]. The initial learning rate is set to 1e-4 for both optimizers.
2) DA and DB are trained three times more compared with G, F and φ. The
trade-off λ in Eq. (4) is set to 10. Every mini-batch is one image with randomly
selected 128 triplets. The epochs for training these networks are set to 20 on
VRD dataset and set to 5 on VG dataset.

At the fine-tune stage for training relationship classifier, the short width
of image is still set to 600. Every mini-batch is one image with 128 randomly
selected triplets. The optimizer is Adam with initial learning rate set to 1e-5 in
all the experiments. The epochs are set to 50 and 30 on VRD dataset and VG
dataset, respectively.

4 Experiments

We evaluated our Shuffle-Then-Assemble method by performing visual re-
lationship prediction on two benchmark datasets. We conducted experiments
under extensive settings: supervised, weakly-supervised, and zero-shot, each of
which has various ablative baselines and state-of-the-art methods. We also visu-
alized qualitative object-agnostic features maps compared against others.

4.1 Datasets and Metrics

We used two publicly available datasets: VRD (Visual Relationships Dataset[32])
and VG (Visual Genome V1.2 dataset [26]).
VRD dataset. It contains 5,000 images with 100 object categories and 70
relationships. In total, VRD contains 37,993 relationship triplet annotations with
6,672 unique triplets and 24.25 relationship per object category. We followed the
same train/test split as in [32], i.e., 4,000 training images and 1,000 test images,
where 1,877 triplets are only in the test set for zero-shot evaluations.
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Fig. 4: We evaluate relationship prediction task using four different experiment
settings: supervised, supervised (Det), weakly-supervised and zero-shot. “?” de-
notes the relationship to be predicted. It is noteworthy that the object category
is not know under all the experiment settings, and we only use visual features
to predict the relationship between object pairs.

VG dataset. We used the pruned version provided by Zhang[60] since the origi-
nal one is very noisy. As a result, VG contains 99,658 images with 200 object cate-
gories and 100 predicates, 1,174,692 relation annotations with 19,237 unique rela-
tions and 57 predicates per object category. We followed the same 73,801/25,857
train/test split. And this dataset contains 2,098 relationships which never occur
in the training set, which can be used for zero-shot evaluations.

Metrics. As conventions [32,60], we used Recall@50 (R@50) and Recall@100
(R@100) as evaluation metrics. R@K computes the fraction of times a true
relationship is predicted in the top K confident relation predictions in an image.

4.2 Settings

In our experiments, we only focused on the relationship prediction task, i.e.,
classifying any two object regions into relationship classes. The reasons are two-
fold. First, relationship prediction plays the core role in relationship detection, a
more comprehensive task that also needs to detect the two objects. Second, we
can exclude the influence of object detection performance, as the improvement
of object detection can improve the relationship detection scores [60]. To offer
a testbed for application domains of relationship prediction, we designed the
following 4 settings according to different pairwise modeling fashions:

Supervised. This setting is the standard supervised relationship prediction.
As shown in Fig 4 (a), for training, all the objects are provided with ground
truth boxes and the relationship between objects are given; for testing, a pair of
objects with bounding boxes are given and their relationship is to be predicted.
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Original Image Base Base + OA STA
(a): Relationship ''Stand On''

Original Image Base Base + OA STA
(b): Relationship ''Ride''

Fig. 5: Qualitative feature maps of two relationships on VRD dataset. For each
one, three kinds of feature maps are visualized by averaging over the 512 chan-
nels. We can see that by using the proposed Shuffle-Then-Assemble (STA),
the RoI features are less likely biased to the objects and more focused on the
regions of interaction of the two objects. Moreover, the observation is consistent
with diverse relationship appearances.

Supervised (Det). The above setting assumes a perfect object bounding
box detector at testing. However, as shown in Fig 4 (b), a more practical setting
is to use detected object bounding boxes using off-the-shelf object detectors. We
used Faster RCNN [42] to detect around 100 objects in an image.

Weakly-Supervised. Compared to Supervised setting, we discard the one-
to-one paired object annotation with respect to a relationship. As shown in Fig 4
(c), at training, given objects with boxes, we do not know which object relates to
which one. Therefore, we used an average-pooling image-level relationship loss:

Lweak = −
N∑

i=1

N∑

j=1

R∑

r=1

[yijr logS(i, j, r) + (1− yijr) log(1− S(i, j, r))]; (5)
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Fig. 6: Performances (R@100%) of relation classification of the four relation types
using the different methods in the supervised setting.

where N is the number of objects, yijr is 1 if the object pair (i, j) has the r-
th relationship, and S(i, j, r) is the relationship score in Eq. (1). Note that the
testing stage of this setting is the same as that of Supervised setting.

Zero-Shot. This setting is the same as Supervised setting except that at
testing we want to predict object pairs whose triplet combination is unseen dur-
ing training. As shown in Fig 4 (d), though object sheep, road, and relationship
on are individually seen at training, but the composition “sheep on road” is
novel to test.
Comparing Methods. We compared the proposed Shuffle-Then-Assemble

(STA) pre-training strategy with the following ablative baselines:
Base. We directly use RoI features which extracted from the base CNN for

relationship prediction task.
Base+OA. We do not pre-train OA conv-layers φ (in Eq. (2)) by Shuffle-

Then-Assemble strategy and directly fine-tune φ and MLP (·) (in Eq. (1)) by
minimizing the cross-entropy loss of Eq. (1).

STA w/o FT. After pre-training φ by Shuffle-Then-Assemble strategy,
the parameters of φ (in Eq. (2)) are fixed. When training the network by mini-
mizing Eq. (1), only parameters of MLP (·) (in Eq. (1)) are updated.

STA w/o Res. The transformation network in Fig 3 is not a residual net-
work. And the other settings are the same with STA.

We also compared with state-of-the-art visual relationship prediction meth-
ods such as VTransE [60], Lu’s-V [32], Lu’s-VLK [32], and Peyre’s-A [38].
Note that except for Lu’s-VLK which is a multimodal model, all the methods
compared here are visual models.

4.3 Results and Analysis

Table 1, 2 show the performance of compared methods on two datasets of differ-
ent experiment settings. As we can see, the proposed STA has the best perfor-
mances compared with the other baselines and state-of-the-art on both datasets.
For example, compared to the Base+OA, the proposed STA can boost the Re-
call@100 of supervised, weakly supervised, and zero-shot relationship prediction
by absolute 4.75%, 4.42%, 4.04%, respectively on VRD, and 4.41%, 4.2%, 5.81%,
respectively on VG.
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Table 1: The performances (Recall@K%) of compared methods on two datasets
under Supervised setting and Supervised (Det) setting.

Dataset VRD VG VRD(Det) VG(Det)

Metric R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100

Base 39.25 39.25 52.48 52.61 37.83 37.83 50.12 50.31

Base+OA 43.29 43.29 58.35 58.53 40.78 40.78 57.03 57.31

STA w/o FT 44.30 44.30 58.14 58.32 41.12 41.12 56.88 57.02

STA w/o Res 46.83 46.83 62.08 62.32 44.85 44.85 61.12 61.30

STA 48.03 48.03 62.71 62.94 45.65 45.65 61.27 61.51

Lu’s-V [32] 7.11 7.11 − − − − − −

Lu’s-VLK [32] 47.87 47.87 − − − − − −

VTransE [60] 44.76 44.76 62.63 62.87 − − − −

Peyre’s-A[38] 46.30 46.30 − − − − − −

Table 2: The performances (Recall@K%) of compared methods on two datasets
under Weakly Supervised setting (WS) and Zero-Shot setting(ZS).

Dataset VRD(WS) VG(WS) VRD(ZS) VG(ZS)

Metric R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100

Base 29.36 29.36 45.78 46.01 14.10 14.10 11.04 11.04

Base+OA 31.47 31.47 47.46 47.72 16.53 16.53 13.09 13.09

STA w/o FT 32.84 32.84 47.23 47.39 18.24 18.24 13.72 13.72

STA w/o Res 35.10 35.10 50.89 51.13 19.01 19.01 18.03 18.03

STA 35.89 35.89 51.73 51.92 20.57 20.57 18.90 18.90

Peyre’s A[38] 34.03 34.03 − − 16.10 16.10 − −

Comparing the results of Base+OA with Base, we can see that by adding
OA conv-layers, the performance is improved. This observation is basically as
expected since the number of parameters have been increased and thus the rep-
resentation ability of the whole network is improved. By comparing the perfor-
mance of STA w/o FT with Base+OA, we can find that, even OA conv-layers are
not fine-tuned, the features which are pre-trained by Shuffle-Then-Assemble

still have comparable performance with the Base+OA. And when the pre-trained
OA conv-layers are further fine-tuned (STA w/o Res, STA), the performances
will have a considerable boost. Such observations show that the success of the
proposed method is not only due to the added small network (OA conv-layers),
but also thanks to the proposed Shuffle-Then-Assemble pre-training strategy.

Fig. 6 shows the R@100 of relationship prediction of the four relation types
which are comparative, preposition, verb and spatial. From this, we can see that
the proposed STA has the best performance in each relationship type on both
datasets.

Analysis of feature maps. Fig. 5 shows six qualitative examples of feature
maps generated by three different strategies. By comparing the STA’s feature
maps with Base and Base+OA, we can find that STA’s feature maps focus
more on the overlap regions between subjects and objects. For example, in the
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Table 3: Computed overlap ratios (%) of two kinds of feature maps
Dataset OA Base CNN Dataset OA Base CNN

VRD 50.27 42.45 VG 48.50 41.32

second row, STA’s feature maps put more attention on people’s feet, which would
provide cues for predicting the right relationship “stand on”.

The ratio: (
∑

i∈Rover
f(i))/(

∑

i∈Rjoint
f(i)), in Table 3, is used to measure

how our model can focus on the overlapped region. In this formula, f(·) is the
normalized joint feature map of subject and object region , Rover and Rjoint

mean the overlapped region and the joint region of that feature map respectively.
We compare the ratios computed by OA feature and Base CNN feature on
both VRD and VG datasets. From the results we can see that the proposed
Shuffle-Then-Assemble pre-training strategy can help the relationship model
captures more attention on the shared regions between subject and object.

Analysis of Zero-Shot Setting. From table 2, we can see that the proposed
STA has the best performance on both datasets compared with other baselines
and one state-of-the-art. This result can further validate the effectiveness of the
proposed Shuffle-Then-Assemble pre-training strategy. From the qualitative
examples in Fig. 7, we can demonstrate that the reason why STA achieves better
performance is due to the learned OA feature maps.

Analysis of object-biased relationships. Fig. 8 shows the accuracy of
each relationship, listed in an ascending, left-right order according to their biases
to specific subject-object configuration by NR(r)/NC(r), where NC(r) is the
number of configurations and NR(r) is the number of training samples of the
r-th relationship. Notice that smaller bias indicates more flexible configurations
(e.g., “touch”) and vice versa (e.g., “wear”). We can find that for relationships
which are less biased to specific configurations (left and middle parts), our STA
is better as it focuses on object-agnostic features.

Failure mode. Our model will fail when one relationship depends heavily
on specific object combinations. For example, for some relationship listed in the
right part of Fig. 8 (like the relationship “read”, the subjects and objects are
usually “person” and “book”), our model will not defeat the baseline. Under this
condition, the object categories will be useful for predicting relationship. Note
that such failure can be easily recovered by rules mined from dataset statistics.

5 Conclusions

We proposed a novel Shuffle-Then-Assemble visual relationship feature learn-
ing strategy for improving visual relationship models. The key idea is to discard
the original one-to-one paired object alignments, and then try to recover them
in an unsupervised pair discovery fashion by using a cycle-consistent adversar-
ial domain transfer method. In this way, the object class information in object
pairs is excluded and hence the resultant feature map is less likely biased to
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Base+OA
With Wrong Prediction

STA
With Right Prediction 

Ground Truth

Dog-On-Sofa

Dog-On-Sofa

Dog-Beside-Sofa

Snowboard-Hold-Helmet

Snowboard-Wear-Helmet

Snowboard-Hold-Helmet

Child-Wear-T-shirt

Child-In-T-shirt

Child-Wear-T-shirt

Cat-Beside-Computer

Cat-Use-Computer

Cat-Beside-Computer

Fig. 7: Qualitative feature maps of four zero-shot relationships on VRD dataset.
For each one, two feature maps of Base+OA with wrong prediction and STA
with correct prediction are visualized by averaging over the 512 channels. We
can see that by using the proposed Shuffle-Then-Assemble (STA), the RoI
features are less likely biased to the objects and more focused on the regions of
interaction of the two objects.

Fig. 8: The accuracy (%) of each relationship in VG dataset. In the horizontal
axis, the relationships are listed in an ascending order (from left to right) of
their biases to specific object combinations. The vertical axis is the accuracy
(%) of each relationship. We can see that for relationships which are less bi-
ased to specific combination (left parts), our STA method usually have better
performance.

specific object compositions. On two visual relationship benchmarks, we found
a consistent improvement from a naive relationship prediction model using the
pre-trained OA feature maps.
Acknowledgments. This research is partially support by NTU-CoE Grant,
Alibaba-NTU JRI, and Data Science & Artificial Intelligence Research Cen-
tre@NTU (DSAIR).
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