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Abstract. Autonomous urban driving navigation with complex multi-agent dy-

namics is under-explored due to the difficulty of learning an optimal driving pol-

icy. The traditional modular pipeline heavily relies on hand-designed rules and the

pre-processing perception system while the supervised learning-based models are

limited by the accessibility of extensive human experience. We present a general

and principled Controllable Imitative Reinforcement Learning (CIRL) approach

which successfully makes the driving agent achieve higher success rates based

on only vision inputs in a high-fidelity car simulator. To alleviate the low explo-

ration efficiency for large continuous action space that often prohibits the use of

classical RL on challenging real tasks, our CIRL explores over a reasonably con-

strained action space guided by encoded experiences that imitate human demon-

strations, building upon Deep Deterministic Policy Gradient (DDPG). Moreover,

we propose to specialize adaptive policies and steering-angle reward designs for

different control signals (i.e. follow, straight, turn right, turn left) based on the

shared representations to improve the model capability in tackling with diverse

cases. Extensive experiments on CARLA driving benchmark demonstrate that

CIRL substantially outperforms all previous methods in terms of the percentage

of successfully completed episodes on a variety of goal-directed driving tasks.

We also show its superior generalization capability in unseen environments. To

our knowledge, this is the first successful case of the learned driving policy by

reinforcement learning in the high-fidelity simulator, which performs better than

supervised imitation learning.
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1 Introduction

Autonomous urban driving is a long-studied and still under-explored task [27, 31] par-

ticularly in the crowded urban environments [25]. A desirable system is required to be

capable of solving all visual perception tasks (e.g. object and lane localization, drivable

paths) and determining long-term driving strategies, referred as “driving policy”. Al-

though visual perception tasks have been well studied by resorting to supervised learn-

ing on large-scale datasets [39, 20], simplistic driving policies by manually designed

rules in the modular pipeline is far from sufficient for handling diverse real-world cases

as discussed in [30, 28]. Learning a optimal driving policy that mimics human drivers

is less explored but key to navigate in complex environments that requires understand-

ing of multi-agent dynamics, prescriptive traffic rule, negotiation skills for taking left
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Fig. 1. An overview of our Controllable Imitative Reinforcement Learning (CIRL), including a

controllable imitation stage and a reinforcement learning stage optimized via Deep Deterministic

Policy Gradient (DDPG). The imitation stage first train the network by supervised learning with

groundtruth actions from recorded human driving videos. Then we share the learned weights

into the actor network and optimize both actor and critic with feedbacks from reward module by

interacting with the simulator.

and right turns, and unstructured roadways. These challenges naturally lead people to

machine learning approaches for discovering rich and robust planning strategies auto-

matically.

A line of researches [2, 35, 15, 4, 24, 13] for learning policies follow the end-to-end

imitation learning that directly maps sensor inputs to vehicle control commands via

supervised training on large amounts of human driving data. However, these systems

cannot be generalized to unseen scenarios and their performances are severely limited

by the coverage of human driving data. For example, the model of Bojarski et al. [2]

trained for road following fails for turning right/left. Moreover, it is difficult to pose

autonomous driving with long-term goal-oriented navigation as a supervised learning

problem as the autonomous vehicle needs to heavily interact with the environment in-

cluding other vehicles, pedestrians and roadways.

It is thus desirable to have a richer control policy which considers a large amount

of feedbacks from the environment including self-states, collisions and off-road condi-

tions for autonomous driving. Deep reinforcement Learning (RL) offers, in principle,

a reasonable system to learn such policies from exploration [33]. However, the amount

of exploration required for large action space (such as a sequence of continuous steer

angles, brakes and speeds) has prohibited its use in real applications, leading to unsatis-

factory results by recent efforts on RL-based driving policy learning [6, 30] in complex

real-world tasks.

In this paper, we resolve this challenging planning task with our novel Controllable

Imitative Reinforcement Learning (CIRL) that facilitates the continuous controllable

deep-RL by exploiting the knowledge learned from demonstrations of human experts.

The whole architecture is illustrated in Fig. 1. Our CIRL is based on the Deep De-

terministic Policy Gradient (DDPG) [21] that is an off-policy replay-memory-based

actor-critic algorithm. The conventional DDPG often falls into local optimal due to too

much failed explorations for large action space. Our CIRL solves this issue by provid-

ing better exploration seeds for the search over the action space of the actor networks.

Specifically, the actor networks are first warmed up by learned knowledge via imita-



Imitative Reinforcement Learning for Self-driving 3

tion learning using human demonstrations in order to initialize the action exploration

in a reasonable space. Then our CIRL incorporates DDPG to gradually boost the gen-

eralization capability of the learned driving policy guided by continuous reward signals

sent back from the environment. Furthermore, to support the goal-oriented navigation,

we introduce a controllable gating mechanism to selectively activate different branches

for four distinct control signals (i.e. follow, straight, turn right, turn left). Such gating

mechanism not only allows the model to be controllable by a central planner or the

drivers’ intent, but also enhances the model’s capability by providing tailored policy

functions and reward designs for each command case. In addition, distinct abnormal

steer angle rewards are further proposed to better guide policies of each control signal

as auxiliary aggregated rewards.

Our key contributions can be summarized as: 1) we present the first successful

deep-RL pipeline for vision-based autonomous driving that outperforms previous mod-

ular pipeline and other imitation learning on diverse driving tasks on the high-fidelity

CARLA benchmark; 2) we propose a novel controllable imitative reinforcement learn-

ing approach that effectively alleviates the inefficient exploration of large-scale contin-

uous action space; 3) a controllable gating mechanism is introduced to allow models

be controllable and learn specialized policies for each control signal with the guidance

of distinct abnormal steer-angle rewards; 4) comprehensive results on public CARLA

benchmark demonstrates our CIRL achieves state-of-the-art performance on a variety

of driving scenarios and superior generalization capability by applying the same agent

into unseen environments. More successfully driving videos are presented in Supple-

mentary.

2 Related Work

Autonomous driving has recently attracted extensive research interests [25]. In general,

prior approaches can be categorized into two different pipelines based on the modularity

level. The first type is the highly tuned system that assembles a bunch of visual percep-

tion algorithms and then uses model-based planning and control [8]. Recently, more

efforts have been devoted to the second type, that is, end-to-end approaches that learn

to map sensory input to control commands [35, 2, 27, 38, 4, 36]. Our method belongs to

the second spectrum.

End-to-end Supervised Learning. The key to autonomous driving is the ability of

learn driving policy that automatically outputs control signals for steering wheel, throt-

tle, brake, etc., based on observations. As a straight-forward idea, imitation learning

that learns policies via supervised training on human driving data has been applied to

a variety of tasks, including modeling navigational behavior [41], off-road driving [24,

31], and road following [35, 2, 27, 38, 4]. These works differ in several aspects: the input

representation (raw sensory input or pre-processed signals), predicting distinct control

signals, experimenting on simulated or real data. Among them, [27, 24, 4, 2] also in-

vestigated training networks for directly mapping vision inputs into control signals. The

very recent work [4] relates to our CIRL in incorporating control signals into networks.

However, supervised approaches usually require a large amount of data to train a model

that can generalize to different environments. Obtaining massive data for all cities, sce-
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Fig. 2. Actor Network Architecture of CIRL. The gating fuction selectively activates different

branches to predict three actions for “Straight”, “TurnLeft”, “TurnRight” and “Follow” com-

mands.

narios and dynamical requires significant human involvement and is impractical since

we cannot cover all possible situations that may happen. From the technical aspect,

different from these works, our CIRL aims to learn advanced policies by interacting

with the simulator guided by the imitation learning towards more and general complex

urban driving scenarios. In addition, distinct abnormal steer-angle rewards are defined

for each control signal, enabling the model to learn coherent specialized policies with

human commonsense.

Reinforcement Learning for Autonomous Driving. Reinforcement learning learns

by a trial-and-error fashion, and does not require explicit supervision from human.

Deep-RL or RL algorithm has been applied to a wide variety of tasks, such as ob-

ject recognition [19, 14, 9, 3, 18], computer games [23], robot locomotion [7], scene

navigation [40] and autonomous driving in the simulators [1, 30, 37]. The most critical

challenges in real-world applications are the high-dimensional large-scale continuous

action space. Learning an optimal policy using such exhaustive exploration is prone to

be very time-consuming and easy to fall into local optimum after many episodes. It is

thus desirable to find a feasible action space that can help speed up the exploration. Our

CIRL addresses this issue by leveraging learned experiences by imitation learning to

guide the reinforcement driving agent.

There exists some prior works also investigated the power of imitation learning.

Generative Adversarial Imitation Learning (GAIL [12]) builds a generative model, which

is a stochastic policy that produces similar behaviors to the expert demonstrations. In-

foGAIL [17] extends GAIL into a policy where low-level actions can be controlled

through more abstract, high-level latent variables. The most similar work to ours are

DQfD [11], [16] and DDPGfD [34], which combines Deep Q Networks (DQN) with

learning from demonstrations. However, DQfD is restricted to domains with discrete

action spaces, DQfD, [16] and DDPGfD are not applicable for autonomous driving

with significant different actor-critics, action spaces and reward definitions. Moreover,

different with DDPGfD that loads the demonstration transitions into the replay buffer,

we directly use the knowledge from demonstrations to guide the reinforcement explo-

rations by initializing actor networks with pretrained model parameters via imitation

learning. Our experiments show our strategy is particular better and more efficient than

DDPGfD when applied to the autonomous driving simulator.



Imitative Reinforcement Learning for Self-driving 5

3 Controllable Imitative Reinforcement Learning

We illustrate the whole architecture of our CIRL method. To resolve the sample inef-

ficiency issue in applying RL to complex tasks, our CIRL adopts an imitation stage

and a reinforcement learning stage. First, given a set of human driving videos, we first

use the supervised ground truth deterministic actions to pretrain the network. The com-

mand gating mechanism is incorporated to endow the model controllable capability for

a central planner or drivers’ intent. Second, to further enhance the policy with better

generalization and robustness, the reinforcement learning optimization is employed to

boost the ability of actor network. We first initialize the actor network with pretrained

weights from the imitation stage, and then optimize it via the reward module by interact-

ing with the simulator. Due to its superior performance on exploring continuous action

space, we use the Deep Deterministic Policy Gradient (DDPG) as the RL optimization.

Benefiting from the use of human driving demonstrations for initializing the actor net-

work, the sample complexity can be significantly reduced to enable the learning within

the equivalent of hours of exploration and interaction with the environment.

3.1 Controllable Imitation Learning

Given N human driving video sequences vi, i ∈ (1, . . . , N) with the observation frame

Ii,t, control command ci,t, speed si,t, action ai,t at each time step t, we can learn a

deterministic policy network F via the basic imitation learning to mimic the human

experts. Detailed network architecture of F is presented in Fig. 2. The control com-

mand ci,t is introduced to handle the complex scenarios where the subsequent actions

also depend on the driver’s intent in addition to the observation [4]. The action space

ai,t contains three continuous actions, that is steering angle asi,t, acceleration aai,t, and

braking action abi,t. The command ci,t is a categorical variable that control the selec-

tive branch activation via the gating function G(ci,t), where ci,t can be one of four

different commands, i.e. follow the lane (Follow), drive straight at the next intersection

(Straight), turn left at the next intersection (TurnLeft), and turn right at the next inter-

section (TurnRight). Four policy branches are specifically learned to encode the distinct

hidden knowledge for each case and thus selectively used for action prediction. The

gating function G is an internal direction indicator from the system. The controllable

imitation learning objective is to minimize the parameters θI of the policy network F I ,

defined as:

min
θI

N
∑

i

Ti
∑

t

L(F (Ii,t, G(ci,t), si,t),ai,t), (1)

where the loss function L is defined as the weighted summations of L2 losses for three

predicted actions âi,t:

L(âi,t,ai,t) = ||âsi,t − asi,t||
2 + ||âai,t − aai,t||

2 + ||âbi,t − abi,t||
2, (2)

For fair comparison between our CIRL and imitation learning, we use the same ex-

periment setting as [6] to verify the effectiveness of boosting driving policies by our

imitative reinforcement learning. The sensory inputs are images from a forward-facing



6 X. Liang, T. Wang, L. Yang and E. Xing

Fig. 3. Critic Network Architecture of CIRL. The action outputs from actor network are fed into

critic network to obtained the estimated value.

camera, speed measurements from the simulator and control commands generated by

the navigation planner.

3.2 Imitative Reinforcement Learning

Our CIRL uses the policy network F pretrained from conditional imitation learning to

boost the sample efficiency of reinforcement learning to obtain more general and robust

policies. We first present the underlying optimization techniques and then the reward

designs.

Markov Decision Process. By interacting with the car simulator, the driving agent can

be optimized based on a reward signal provided by the environment, with no human

driving intervention, which can be defined as a Markov Decision Processes (MDPs) [32].

In the autonomous driving scenario, the MDP is defined by a tuple of < I,C, S,A,R, P, λ >,

which consists of a set of states O defined with observed frames I , speeds S, con-

trol command C, a set of actions A, a reward function R(o,a), a transition function

P (o′|o,a), and a discount factor γ. In each state o =< I, c, s >∈ O, the agent takes

an action a ∈ A. After taking this action and interacting with the environment, the

agent receives a reward R(o,a) and reaches a new state o′ depending on the probabil-

ity distribution P (o′|o,a). To make the driving policies more realistic, we focus on the

goal-directed navigation, that is, the vehicle has to reach a predetermined goal along the

path generated by the topological planner. The new observation o′ is thus updated by

the simulator observation and a sequence of commands towards the goal. The episode

is terminated when the vehicle reaches the goal, when the vehicle collides with an ob-

stacle, or when a time budget is exhausted.

A deterministic and stationary policy π specifies which action the agent will take

given each state. The goal of the driving agent is to find the policy π that maps states

to actions that maximizes the expected discounted total reward. It can be thus learned

by using a action value function: Qπ(o,a) = E
π[
∑+∞

t=0 γ
tR(ot,at)], where E

π is the

expectation over the distribution of the admissible trajectories (o0,a0, . . . , ot,at) by

executing the policy π sequentially over the time episodes.

Imitative Deep Deterministic Policy Gradient. Since the autonomous driving system

needs to predict continuous actions (steer angles, braking, and acceleration), we resort

to the actor-critic approach for continuous control problem, and both actor and critic

are parametrized by deep networks. Denoting the parameters of the policy network as

θ, and µ as the initial state distribution, the actor-critic approach aims to maximize a
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Fig. 4. Example observations of different environment settings. Training condition is used for

training while the rest settings are used for testing. Besides the settings (first row) evaluated

in [6], this work further validates the generalization capability of the model on four new settings

(second row).

mean value J(θ) = Eo∼µ[Q
(π|̇θ)(o, π(o|θ))] in which θ can be updated via gradient

descent as: θ + α∇θJ(θ) → θ. In this work, we employ the Deep Deterministic Policy

Gradient [21] due to its promising performance on continuous control problem, which

directly uses the gradient of Q-function with respect to the action for policy training. A

policy network Fπ (actor) with parameters θπ and an action-value function network FQ

(critic) with parameters θQ are jointly optimized. The detailed network architectures of

Fπ and FQ are presented in Fig. 2 and Fig. 3.

Different from the conventional DDPG that randomly initializes the θπ , our imi-

tative DDPG proposes to load the pretrained θI in Eq.(1) via the imitation learning

into θπ , obtaining a new θ̄π as the parameter initialization. It thus enables to produce

reliable new transitions e = (o,a, r = R(o,a), o′ ∼ P (|̇o,a)) by acting based on

a = π(o|θ̄π) +N where N ∼ OU(µ, σ2) is a random process allowing action explo-

ration. OU(·) denotes the Ornstein-Uhlenbeck process. Such further noisy exploration

ensure that the agents behavior does not converge prematurely to a local optimum. The

key advantage of our imitative DDPG lies in better initialized exploration starting points

by learning from human expects, which can help significantly reduce the exhaustive ex-

ploration in the early stage of DDPG that may cost a few days, as discussed in previous

works [26]. Starting from a better state, the random action exploration allows RL to

further refine actions according to the feedbacks from the simulator and results in more

general and robust driving policies. The critic network is optimized by the one-step

off-policy evaluation:

L(θQ) = E(o,a,r,o′)∼D[R−Q(o,a|θQ)]2, (3)

where D is a distribution over transitions e in the replay buffer and the one-step return

R = r+ γQ′((o′, π′(o′)|θ̄π
′
)|θQ

′
). θ̄π

′
and θQ

′
are parameters of corresponding target

networks of Fπ and FQ, which are used to stabilize the learning. On the other hand, the

actor network is further updated from the starting state from the controllable imitative

learning:

∇θ̄πJ(θ̄π) ≈ Eo,a∼D[∇aQ(o,a|θQ)|a=π(o,θQ)∇θππ(o|θ̄
π)]. (4)

Reward Module. Another contribution of our CIRL is our reward module tailored for

the autonomous driving scenario. The reward is a sum of five terms according to the
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measurements from simulator: negatively weighted abnormal steer angles rs, positively

weighted speed rv in km/h, and negatively weighted collision damage rd, overlap with

the sidewalk rr, and overlap with the opposite lane ro. The rewards are computed ac-

cording to the simulator measurements after taking actions over the agent. First, the

reward rs for abnormal steer-angles w.r.t each command control is defined as:

rs(c) =

{

−15 if s is in opposite direction with c for TurnLeft and TurnRight

−20 if |s| > 0.2, c for Straight.

(5)

Second, the reward rv for speed measurements after performing actions on the sim-

ulator with respect to each common control is defined as:

rv(c) =



















min(25, v) if c for Follow

min(35, v) if c for Straight

v if v ≤ 20, c for TurnLeft and TurnRight

40− v if v > 20, c for TurnLeft and TurnRight

(6)

Finally, the rr and ro are both set as -100 for having overlapping with the sidewalk

and opposite lane, respectively. The collision damage rd is as -100 for collision with

other vehicles and pedestrians and as -50 for other things (e.g. trees and poles). The

final reward r conditioning on different command controls is computed as:

r = R(o,a) = rs(c) + rv(c) + rr + ro + rd. (7)

Note that exact penalty values are applied for all experiments in our benchmark accord-

ing to their specific limitations, such as speeds and angles [6].

4 Experiments

4.1 Experiment Settings

Evaluation benchmark. We conduct extensive experiments on the recently release

CARLA car simulator benchmark [6] because of its superior high-fidelity simulated en-

vironment and open-source accessibility, compared to other simulators. A large variety

of assets were produced for CARLA, including cars and pedestrians. CARLA provides

two towns: Town 1 and Town 2. For fair comparison with other state-of-the-art policy

learning methods [6, 4], Town 1 is used for training and Town 2 exclusively for testing,

as illustrated in Fig. 4. The weather conditions are organized in three groups, includ-

ing Training Weather set, New Weather set and New Weather2 set. Training Weather

set is used for training, containing clear day, clear sunset, daytime rain, and daytime

after rain. New Weather set and New Weather2 set are never used during training and

for testing the generalization. New Weather set includes cloudy daytime and soft rain

at sunset, and New Weather2 set includes cloudy noon, midrainy noon, cloudy sunset,

hardrain sunset. Besides three test settings evaluated in [6], we further evaluate four

new settings for more paths in Town 2, New weather2 set as shown in the first row in

Fig. 4.
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Straight One-turn Navigation Navigation	dynamic

Fig. 5. Illustrated observations of four different tasks in the bird view.

State-of-the-art pipelines. We compare our CIRL model with three state-of-the-art

pipelines in CARLA benchmark, that is modular pipeline (MP) [6], imitation learning

(IL) [6], and reinforcement learning (RL) [6], and fairly compete with them on four

increasingly difficult driving tasks, i.e. Straight, One turn, Navigation and Navigation

with dynamic obstacles, illustrated in Fig. 5. Particularly, the baseline MP [6] decom-

poses the driving task into the following subsystems including perception, planning and

continuous control, and its local planning resorts to completely rule-based predefined

policies that are completely dependent on the scene layout estimated by the perception

module. The baseline IL [6] takes the images from a forward-facing camera and com-

mand controls as inputs, and directly trains the model via supervised learning using

human driving videos. Note that for fair comparison, we adopt the same network ar-

chitecture and settings with their model during the controllable imitation stage. RL [6]

is also a deep reinforcement learning pipeline that uses the asynchronous advantage

actor-critic (A3C) algorithm [22]. Different from their used five reward terms, we em-

pirically remove the distance rewards traveled towards the goal since the way-points

used for estimating distances are too sparse to give valid feedbacks during exploration.

In addition, we propose to use controllable abnormal steer-angle rewards to penalize

the unexpected angle predictions.

Note that for all methods, one same agent is used on all four tasks and cannot be

fine-tuned separately for each scenario. The tasks are set up as goal-directed navigation:

an agent is randomly initialized somewhere in town and has to reach a destination point.

For each combination of a task, a town, and a weather set, the paths are carried out over

25 episodes. In each episode, the target of driving agent is to reach a given goal location.

An episode is considered successful if the agent reaches the goal within a time budget,

which is set to reach the goal along the optimal path at a speed of 10 km/h.

Implementation settings. During the controllable imitation stage, to fairly demonstrate

the effectiveness of our imitative reinforcement learning, we use the exact same exper-

iment settings in [4] for pre-training actor network. 14 hours of driving data collected

from CARLA are used for training and the network was trained using the Adam opti-

mizer. Further details are referred in [4].

During the imitative reinforcement learning stage, in terms of OU exploration pa-

rameters, we empirically set µ as 0, 0.15, and 0.5 and σ as 0.02, 0.05, 0 for steer-angle,

speed and braking actions, respectively. The discount factor γ is set as 0.9. The initial

learning rate of actor network is set as 0.00001 since it uses the shared weights from

controllable imitation learning and the learning rate of critic network is set as 0.001.

Learning and exploration rate are linearly decreased to zero over the course of training.

The actor-critic networks are trained with 0.3 millions of simulation steps for roughly
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Table 1. Quantitative comparison with other state-of-the-art autonomous driving systems on four

goal-directed navigation tasks. The table reports the percentage (%) of successfully completed

episodes in each condition. Higher is better. The tested methods are: modular pipeline (MP) [6],

imitation learning (IL) [6], and reinforcement learning (RL) [6] and our CIRL model.

Task
Training conditions New town New weather New town/weather

MP IL RL CIRL MP IL RL CIRL MP IL RL CIRL MP IL RL CIRL

Straight 98 95 89 98 92 97 74 100 100 98 86 100 50 80 68 98

One turn 82 89 34 97 61 59 12 71 95 90 16 94 50 48 20 82

Navigation 80 86 14 93 24 40 3 53 94 84 2 86 47 44 6 68

Nav. dynamic 77 83 7 82 24 38 2 41 89 82 2 80 44 42 4 62

12 hours of non-stop driving at 10 frames per second. In contrast, existing reinforcement

learning approach provided in [6] requires 10 millions of simulation steps correspond-

ing to roughly 12 days of non-stop driving with 10 parallel actor threads. Our CIRL

can obtain high percentage of successfully completed episodes after several hours with

good sample efficiency, benefiting from a good exploration start boosted by the control-

lable imitation stage. The proposed method is implemented on TensorFlow framework.

All models are trained on four NVIDIA GeForce GTX1080 GPUs.

4.2 Comparisons with state-of-the-arts

Table 1 reports the comparisons with the state-of-the-art pipelines on CARLA bench-

marks in terms of the percentage of successfully completed episodes under four dif-

ferent conditions. All results of MP, IL and RL were reported from [6]. For “Training

conditions” task, the models are tested on the combination of Town 1, Training Weather

setting which has different starting and target locations under the same general environ-

ment and conditions with the training stage. The rest test settings are conducted for eval-

uating more aggressive generalization, that is, adaption to the previously unseen Town

2 and to previously unencountered weather from the New Weather and New Weather2.

We can observe that our CIRL substantially outperforms all baseline methods under

all conditions, especially better than their RL baseline. Furthermore, our CIRL shows

superior generalization capabilities in the rest three unseen setting (e.g. unseen new

town), which obtains not perfect results but considerably better performance over other

methods, e.g. 71% of our CIRL vs. 59% and 12% of IL and RL, respectively. More

qualitative results are shown in Fig. 7, which provides some infraction examples that

the IL model suffers from and our CIRL successfully avoids.

It is also interesting that both learning-based methods (IL and our CIRL) achieve

comparable and better performances than the modular pipeline, although MP adopted

the sophisticated perception steps (segmentation and classification) to identify key cues

in the environment and used manually rule-based policies. One exception is that the

modular pipeline performs better under the “New weather” condition than that of the

training conditions, and both IL and CIRL are slightly inferior to it. But MP’s results

perform bad on navigation task and considerably decrease on all tasks in unseen “New

town” and “New town/weather” conditions. The reason is that MP heavily depends on
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Table 2. The percentage (%) of successfully completed episodes of our CIRL on four new settings

for further evaluating generalization.

Task New town/path2 New town/weather2 New path New weather2

Navigation 50 58 95 87

Nav. dynamic 38 47 87 86

Table 3. The percentage (%) of successfully completed episodes of our CIRL under different

weather conditions for the navigation tasks in training town and new town.

Navigation task CloudyNoon MidRainyNoon CloudySunset WetCloudySunset HardRainSunset

CIRL (Town 1) 92 96 96 64 56

CIRL (New Town) 95 52 85 90 5

the perception stage that fails systematically under complex weather conditions in the

context of a new environment, and rule-based policies that may fail for long-range goal-

driven navigation. We can conclude that MP is more fragile to unseen environments

than the end-to-end learning based models since the perception part itself is difficult

and hard to adapt across diverse unknown scenes.

On the other hand, the conventional reinforcement learning [6] performs signifi-

cantly worse than all other methods, even with considerably more training time: 12

days of driving in the simulator. The reason is that RL itelf is well known to be brit-

tle [10] and needs very time-consuming exploration to get reasonable results. Rather

than video games in Atari [23] and maze navigation [5], the real-world tasks like self-

driving require complex decision making to exploit visual cues, leading to severe sam-

ple inefficiency and unfeasible parameter search.

In contrast, the proposed CIRL effectively benefits from both merits of imitation

learning (i.e. fast convergence) and traditional reinforcement learning (i.e. robust long-

term decision making). Our CIRL that enhances the policies by only rough 12 hours of

driving explorations in car simulator can achieve significant better performances on all

tasks than the best MP and IL methods. Different from previous RL models that conduct

too much random and meaningless explorations in the beginning, the actor network

in our CIRL can start the exploration in a good and reasonable point by transferring

knowledge from the first controllable imitation stage. The reward feedbacks by driving

and interacting with complex dynamics in the simulator can further facilitate the policy

learning with better robustness and generalization capability.

4.3 Generalization capability

The exact driving trajectories during training cannot be repeated during testing. There-

fore performing perfectly on CARLA benchmark requires robust generalization, which

is challenging for existing deep learning methods. As reported in Table 1, it is obvi-

ous that all methods perform closely to those in “Training conditions” under the “New

weather” setting. However, their performances dramatically drop on the “New town”

settings. For example, on the most challenging navigation task “Nav.dynamic” in the

New town/weather setting, previous best MP and IL methods obtain only 44% and 42%
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Table 4. Ablation studies on one-turn task on four different settings.

Method (one-turn) Training conditions New town New weather New town/weather

CIRL w/o steer reward 91 65 96 76

CIRL w/ add replay 96 71 94 82

CIRL more simulation steps 95 68 98 80

Our CIRL 97 71 94 82

Table 5. Results on comma.ai dataset in terms of mean absolute error (MAE).

Model PilotNet [2] CIRL (CARLA) CIRL from scrach CIRL finetuning

Steer-angle MAE 1.208 2.939 1.186 1.168

CloudyNoon MidRainyNoon CloudySunset WetCloudySunset HardRainSunset

Fig. 6. Example observations under distinct weather conditions. Better viewed in zoom.

complete success episodes compared to 62% of our CIRL. In general, our CIRL shows

much better generalization capabilities over other methods, but still needs further im-

provements.

Besides the previous two types of generalization (i.e. unseen weather conditions

and unseen new town), we further conduct more experiments on two another new con-

ditions (i.e. more path trajectories and the New weather2 set) on two most difficult tasks

to further evaluate more general cases, resulting in four new settings in Table 2. We can

see that our model shows reasonably robust and good performance on different navi-

gation paths and weather set. Adapting our CIRL to navigate in unseen towns can be

improved by training in wider range of different scenes. This further demonstrates well

the advantages of integrating together the controllable imitation learning and DDPG

algorithm into boosting driving policies towards more challenging tasks.

We also extensively dive into the affects of different weather conditions on driving

generalization capability, as reported in Table 3. Driving behaviors under five weather

conditions with distinct levels of difficulties are evaluated on both seen town and unseen

town. We can observe promising results obtained under weathers with good visibility,

such as CloudyNoon, CloudySunset. But regarding to more challenging rainy weathers,

the model obtains very low successfully completed rates. One of main reasons is that

the road and surrounding dynamics are extremely hard to be perceived as a result of

heavy rains, as shown in Fig. 6.

4.4 Comparisons on real scenes

We report results of applying our CIRL trained on CARLA into real scenes in Ta-

ble 5 on Comma.ai [29] dataset. To finetune on Comma.ai, we use pretrained net-
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Table 6. Success rates on One Turn task in New Town (i.e. validation town)

Reward our reward our reward×10 our reward/10 w/o speed w/o offroad&coll

Old weather 71% 70% 52% 20% 31%

New Weather 82% 82% 68% 14% 28%

work parameters before direction branches on CARLA and initialize 3 stacked fc-

layers (256,256,1) to predict one steer angle. The learning rate is set to 1e-3. We train

18 epochs and batch size is 256. “ CIRL (CARLA)” denotes directly applying model

trained on CARLA into prediction in real scenes. We can see that finetuning pretrained

CIRL model on comma.ai (“CIRL finetuning”) outperforms the baseline PilotNet and

“CIRL from scratch” that is trained from scratch on Comma.ai. It verifies well that our

CIRL model learned from the high-quality CARLA simulator can be easily transferred

into real scenes to enhance driving policy learning for real autonomous vehicles.

4.5 Ablation studies

We also conduct comprehensive experiments to verify the effects of each key compo-

nent of our model, as reported in Table 4. Experiments are conducted on the challenging

one-turn task on four different environments.

Different strategies of using demonstrations. To validate the effectiveness of our im-

itative reinforcement learning, we compare our CIRL with DDPGfD [34] that performs

learning from demonstrations for robotic manipulation problems. In contrast to our

strategy of providing a better exploration start, DDPGfD instead loads the demonstra-

tion transitions into the replay buffer and keeps all transitions forever. We thus imple-

ment and incorporate the demonstrate replay buffer into our CIRL, and “CIRL w/ add

reply” denotes the results of this variant for running the same number of simulation

steps with our CIRL. We can see there is no noticeable performance difference between

“CIRL w/ add reply” and our CIRL. It speaks well that the good starting point for ex-

ploration is already enough for learning reasonable policies in an efficient way. We also

try the performance of pure DDPGfD on our task without using imitation learning to

initialize the actor network, which is quite bad after several days of driving simulation

due to the need of exhaustive exploration, we thus did not list their results. Note that

for justifying the optimization step, we keep all experiments settings of all variants as

same, e.g. reward design.

The effect of abnormal steer-angle rewards. Different from the reward terms in [6],

we propose to adopt specialized steer-angle rewards with respect to each command con-

trol. Our comparisons between “CIRL w/o steer reward” and “CIRL” further demon-

strate the effectiveness of incorporating such rewards for stabilizing the action explo-

ration by providing more explicit feedbacks.

The effect of simulation step number. One raised question for our CIRL is whether

the performance can be further improved by performing RL policy learning with more

simulation steps. “CIRL more simulation steps” reports results of running CIRL model

for 0.5 million steps. We find that no significant improvement in terms of percentages of

completely success episodes can be obtained in unseen driving scenarios. This verifies
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Imitation	Learning	(IL) Our	CIRL

Collision	

(static	object)

overlap

with	sidewalk

Opposite	lane

overlap

with	sidewalk

Fig. 7. Visualization comparisons between the imitation learning baseline [6] and our CIRL

model. We illustrate some driving cases for straight and one-turn tasks, and show the IL baseline

fails with some types of infractions (e.g. collision with static object, more than 30% overlap with

Sidewalk, in opposite lane) while our CIRL successfully completes the goal-oriented tasks. For

each case, two consecutive frames are shown.

our model can achieve good policies by efficient sample exploration with the acceptable

computation cost. On the other hand, this may motivate us to further improve model

capability from other aspects, such as exploring more environments and video dynamics

to improve the generalization ability.

Reward function. set scales of reward values following Coach RL framework3 used

in CARLA environment. Ablation studies on different reward scales for all rewards are

reported in Table 6. We can observe that removing speed or offroad&collision reward

significantly decreases the success rate. Moreover, using 10x larger reward values ob-

tains minor performance difference while 10x smaller rewards lead to worse results.

5 Conclusion

In this paper, we propose a novel CIRL model to address the challenging problem of

vision-based autonomous driving in the high-fidelity car simulator. Our CIRL incorpo-

rates controllable imitation learning with DDPG policy learning to resolve the sample

inefficiency issue that is well known in reinforcement learning research. Moreover, spe-

cialized steer-angle rewards are also designed to enhance the optimization of our policy

networks based on controllable imitation learning. Our CIRL achieves the state-of-the-

art driving performance on CARLA benchmark and surpasses the previous modular

pipeline, imitation learning and reinforcement learning pipelines. It further demon-

strates superior generalization capabilities on a variety of different environments and

conditions.

3 https://nervanasystems.github.io/coach/
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25. Paden, B., Čáp, M., Yong, S.Z., Yershov, D., Frazzoli, E.: A survey of motion planning and

control techniques for self-driving urban vehicles. IEEE Transactions on Intelligent Vehicles

1(1), 33–55 (2016)

26. Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R.Y., Chen, X., Asfour, T.,

Abbeel, P., Andrychowicz, M.: Parameter space noise for exploration. arXiv preprint

arXiv:1706.01905 (2017)

27. Pomerleau, D.A.: Alvinn: An autonomous land vehicle in a neural network. In: Advances in

neural information processing systems. pp. 305–313 (1989)

28. Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework

for autonomous driving. Electronic Imaging 2017(19), 70–76 (2017)

29. Santana, E., Hotz, G.: Learning a driving simulator. arXiv preprint arXiv:1608.01230 (2016)

30. Shalev-Shwartz, S., Shammah, S., Shashua, A.: Safe, multi-agent, reinforcement learning for

autonomous driving. arXiv preprint arXiv:1610.03295 (2016)

31. Silver, D., Bagnell, J.A., Stentz, A.: Learning from demonstration for autonomous naviga-

tion in complex unstructured terrain. The International Journal of Robotics Research 29(12),

1565–1592 (2010)

32. Sutton, R.S., Barto, A.G.: Introduction to reinforcement learning, vol. 135. MIT press Cam-

bridge (1998)

33. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction, vol. 1. MIT press Cam-

bridge (1998)
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