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Abstract. Semantic segmentation of 3D unstructured point clouds re-
mains an open research problem. Recent works predict semantic label-
s of 3D points by virtue of neural networks but take limited context
knowledge into consideration. In this paper, a novel end-to-end approach
for unstructured point cloud semantic segmentation, named 3P-RNN,
is proposed to exploit the inherent contextual features. First the effi-
cient pointwise pyramid pooling module is investigated to capture local
structures at various densities by taking multi-scale neighborhood into
account. Then the two-direction hierarchical recurrent neural networks
(RNNs) are utilized to explore long-range spatial dependencies. Each re-
current layer takes as input the local features derived from unrolled cells
and sweeps the 3D space along two directions successively to integrate
structure knowledge. On challenging indoor and outdoor 3D datasets,
the proposed framework demonstrates robust performance superior to
state-of-the-arts.

Keywords: 3D semantic segmentation · Unstructured point cloud · Re-
current neural networks · Pointwise pyramid pooling

1 Introduction

Scene understanding has been extensively studied due to its critical role in au-
tonomous driving, robot navigation, augmented reality and 3D reconstruction.
Despite of the tremendous progress made in the field of semantic segmentation
with the help of deep learning strategies, most approaches cope with 2D images
[1–3], whereas 3D semantic segmentation of unstructured point clouds remain-
s a challenging problem due to its large-scale point data, irregular shape and
non-uniform densities.

Previous learning-based attempts mainly focus on regularizing input point
cloud shapes, so as to draw on the experience of 2D semantic segmentation
networks. For example, points are first voxelized by volumetric occupancy grid
representation and 3D Convolutional Neural Networks (CNN) are employed to
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learn voxel-level semantics. Due to the sparsity of point clouds, the voxelization
is inefficient and fine-details are missed to avoid high computation cost. Besides,
the accuracy is limited because all points within the same voxel are assigned with
the same semantic label. To make use of 2D frameworks, snapshots of 2D images
taken at multi-views of 3D space are also learned, however, the reprojection back
to 3D space is also a nontrivial problem.

The first pioneer work PointNet that directly operates on 3D point cloud
is recently proposed [4]. Without the transformation to voxels, the architec-
ture preserves inherent information within the raw points to predict point-level
semantics. PointNet takes advantage of Multilayer Perceptron (MLP) to learn
high-dimensional local features for each point individually. Then the local fea-
tures are aggregated by symmetric max pooling to yield global feature, which
is invariant against the permutations of points. However, the architecture has
two limitations that restrict its performance to larger and more complicated
point clouds. For one thing, only the pointwise features along with the pooled
global features are integrated, failing to capture local structures represented by
neighboring points. For another, a point cloud is first subdivided into small volu-
metric blocks and each block is predicted independently without any connection.
In consequence, the overall accuracy of PointNet is limited in complicated scenes.

To tackle the first problem, we adopt the one-stride pyramid pooling to ag-
gregate multi-scale neighboring knowledge due to its nonparametric feature and
efficiency in enlarging receptive field. Instead of replicating the global pooled
features for all points as PointNet does, we perform pointwise pooling and each
point is represented by particular pyramid local features. Note that we employ
one-stride multi-window pooling rather than multi-stride fixed-window pooling
units, in view of preserving fine-grained details. With regard to the second prob-
lem, we further integrate long-distance context by means of a two-step hierar-
chical RNN model. Specifically, the point cloud is first subdivided into partially
overlapped blocks along the two horizontal directions, namely, x and y, respec-
tively. The first set of RNNs are applied to the blocks along the x-direction,
which updates the state and output according to the long-dependency neighbor-
ing blocks. Next, the features derived from the first RNN set are further fed into
another set of RNNs along y-direction to integrate relevant context across the
horizonal dimensions. This is because adjacent objects or large objects indicate
some inherent contextual connection, which helps to solve the ambiguity. For
example, chairs are often near the table, and windows are generally inside the
wall. Experimental results on the challenging point cloud datasets reveal that
our strategy largely improves the accuracy for 3D semantic segmentation.

To sum up, the main contributions of our work are as follows:

- We propose a novel end-to-end framework for unstructured point cloud se-
mantic segmentation, incorporating local spatial structures as well as long-
dependency context. The pointwise pyramid pooling (3P) module increases
the overall accuracy at negligible extra overhead.

- We introduce a two-direction hierarchical RNN model to learn long-range
spatial context and inherent connection for pointy cloud semantic segmenta-
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tion. To the best of out knowledge, this is the first time that a two-direction
tactic RNN model is investigated to perform 3D semantic segmentation task.

- Our framework presents new state-of-the-art performance on indoor and
outdoor 3D semantic datasets.

2 Related Work

Traditional point cloud semantic segmentation algorithms largely rely on hand-
crafted features and well-designed optimization approaches, sometimes prepro-
cessing and post-processing strategies are required to achieve better performance.
In this work we mainly focus on the review of deep learning strategies that are
more related to our work.

Motivated by the large collections of 3D scene datasets such as indoor dataset-
s NYU V2 [5], S3DIS [6], ScanNet [7] and outdoor datasets Semantic.3D [8],
KITTI [9], vKITTI [10], great progress of point cloud processing has been made
in recent years. However, due to the irregularity and inconsistent point densities
of 3D geometric data, classic CNNs are unable to directly deal with point cloud
data inputs. As a result, some alternatives have been tailored to the problem.

Voxel-based 3D CNNs: In order to represent 3D geometric shape, a point
cloud is first converted into regular volumetric occupancy grids and then trained
by 3D CNNs to yield voxel-level predictions [7, 11, 12]. However, uniform 3D
arrangement is inefficient because of the sparsity of 3D data. Besides, due to
the expensive computation of 3D convolutions than 2d ones, the voxel size is
constrained to a relatively small size and accordingly, it is challenging for such
architectures to be extended to large-scale point clouds. Unbalanced octrees were
exploited to tackle the sparsity problem, which allowed to train 3D CNNs at
higher resolutions [13]. SEGCloud subsampled large cloud into voxels and post-
processed by trilinear interpolation and conditional random field [14]. However,
all the voxel-based methods fail to achieve point-level accuracy.

Multi-view CNNs: An alternative is to project the 3D point cloud into 2D
image rendering of multiple views and apply well-engineered 2D CNNs [2, 15–17]
to jointly classify them. Multi-view CNN (MVCNN) [18] was designed on top of
image-based classification networks, which integrated the views taken around a
3D meshed object through view pooling. Multi-resolution filtering in 3D space
was introduced to further improve the performance of multi-view CNNs [19]. S-
napNet [20] generated snapshots around the 3D scene in the form of RGB and
depth image pairs and applied 2D neural networks to process them separate-
ly. SnapNet-R [21] improved the baseline work SnapNet by directly processing
RGB-D snapshots in numerous views for dense 3D point labeling. However, 2D
snapshots break the inherent relationship within 3D data and thus fails to ex-
ploit the full power of 3D spatial context. Besides, it is not direct enough and
requires extra 2D to 3D re-mapping.

Deep learning on unordered point sets: PointNet [4] was the first ar-
chitecture that directly worked on raw point sets to produce per-point classes.
Pointwise features and the aggregated global feature were concatenated to make
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Fig. 1. Overview of the proposed approach. The architecture takes as input the un-
structured point cloud and outputs pointwise semantic labels. Point-features and local
cell features are concatenated and passed through the two-direction RNN module along
x and y. The output of the first RNNs (black arrowed) are reorganized and fed to the
next RNNs (red). For details of pointwise pyramid pooling, see Fig. 2.

pointwise predictions. However, the absence of neighboring context structure
limited the segmentation performance on complicated scenes. To overcome this
drawback, the hierarchical approach PointNet++ [22] was designed to better cap-
ture local structures as well as generalize to variable densities. Also inspired by
the recent PointNet work, multi-scale windows or neighboring cell positions were
exploited to incorporate neighborhood knowledge [23]. Due to the efficiency in
extracting point-features, the PointNet framework was further extended to learn
local shape properties [24] as well as predict 3D Object Detection from RGB-D
Data [25]. Graph neural networks (GNNs) were undertaken to spread contextual
information on top of 3D points [26]. Nevertheless, each node in the k-nearest
neighbor graph requires additional 2D appearance features for initialization. A
very recent GNN work captured the structure of point clouds by superpoint
graph, which partitioned various objects into simple shapes and assigned seg-
mentation labels to each part as a whole [27]. The GNNs iteratively updated the
node state by message propagation over neighboring nodes. In terms of realiza-
tion, the dynamic models can be implemented as Recurrent Neural Network.

3 3D Recurrent Neural Networks with Context Fusion

The proposed framework takes inspiration from PointNet [4], which is briefly
reviewed in the following part. The baseline is extended with two distinctive
improvements to learn local and long-dependency spatial context for better per-
formance. For one thing, a pointwise pyramid pooling module is proposed to
learn multi-scale neighboring context. Though simple, it is more efficient than
multi-scale input context aggregation in [22, 23] because of the non-parametric
pooling units. For another, long-range context is exploited by the two-direction
RNN model, which enables the network to learn spatial context in large-scale
point clouds. An overview of our approach is presented in Fig. 1.
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3.1 Review of PointNet

In the vanilla PointNet work, given a set of unstructured 3D points {p1, p2, ..., pN}
with pi ∈ Rd, they are first divided into small overlapped 3D blocks and each
block is handled independently. Multi-layer perceptron (MLP) is exploited to
learn high-dimensional spatial encoding of each point, i.e., the pointwise fea-
tures. The block feature is obtained by aggregating pointwise features by a single
max pooling within the same block, i.e., the global feature. The global feature is
then duplicated for N tiles and concatenated with the corresponding pointwise
features to yield the final prediction score. The operation of PointNet can be
represented by

F (p1, p2, ..., pN ) = MLP
i=1,...,N

(

C{maxpool { MLP
i=1,...,N

(pi)}, MLP
i=1,...,N

(pi)}

)

(1)

where C denotes the concatenation operation, indices of points’ index from 1
to N below MLP denotes the MLP operation is pointwise. Nevertheless, the
semantic segmentation performance is limited by a lack of neighboring structure
and long-range context.

3.2 Pointwise Pyramid Pooling

In this work, we propose a simple but efficient strategy to capture local neigh-
boring context robust to densities. Owing to the brutal global max pooling in
PointNet, it is prone to missing fine details and causing ambiguity. Multi-scale
grouping and multi-resolution grouping of points within a radius to the cer-
tain point are leveraged to learn the structure information in [22]. Alternatively,
multi-scale and multi-grid input context are employed to compute block-features
in [23]. Both of these strategies capture multi-scale local structures at the expense
of indirected and complex fusion strategy, as well as extra computation.

Different from classic 2D pooling unit that employs various strides, we adopt a
pointwise pyramid pooling (3P) module with multi-size pooling windows inspired
by [28]. This is because pooling module with stride larger than one could bring
about a loss of resolution and hampers the accuracy of dense prediction. In
specific, given a set of unordered points, we first divide the whole 3D space into
blocks of 1.5m × 1.5m along the ground plane. Each block is extended to cover
the whole room height. Pyramid pooling is done at neighborhoods with different
number of points. Rather than searching k-nearest neighbors for each point,
instead we adopt an approximate but more efficient way leveraging multiple
scales of cuboids. In other words, we further subdivide each block into smaller
cuboids at different scales. At each scale, one-stride max pooling module with
corresponding pooling window size is employed. For example, if window size isN ,
we randomly select N points within the corresponding cuboid for max pooling.
The 3P pooling can be denoted as

P (p1, p2, ...pN ) =

[

maxpool
p=p1,...,pN

(f, k1) , ..., maxpool
p=p1,...,pN

(f, km)

]

(2)
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Fig. 2. Pointwise pyramid pooling. Given N ×D input features, each pooling outputs
features with the same number of input points (one-stride) and is then concatenated.

where ki denotes one-stride pooling window size. f represents high-level features
learned by MLP. Notably compared to Eq. 1, we move the representation of point
set range {p = p1, p2, ..., pN} from inside the max-pooling operation to outside,
since Eq. 1 attains a single output for all points within the block, whereas ours in
Eq. 2 yields the same size of output features as input vectors, namely, pointwise.
In our architecture, the adopted window size are N , N/8 and N/64, respectively.

The attained coarse-to-fine pooled features are then integrated by a single
convolution layer for the subsequent RNN stage. The sketch map of our one-
stride 3P module is depicted in Fig. 2. Thanks to its nonparametric feature
and efficiency in enlarging the receptive field, it is able to achieve an optimized
trade-off between accuracy and cost.

3.3 Recurrent Neural Networks for Context Ensemble

Impelled by the successful application of RNN models in 2D semantic segmen-
tation [29–32], we introduce our two-direction hierarchical RNN model for 3D
point cloud labeling to make use of the long-range spatial dependency. The w-
hole 3D space is split into uniformly-spaced blocks along x and y direction on
the ground plane, i.e., Lx × Ly, respectively. The space along up-right axis is
kept undivided due to its high sparsity and coherency in vertical direction. The
detailed pipeline is depicted in Fig. 3.

The original input point-features and the output of the pyramid pooling
module are first concatenated to be taken as input of the RNN model. In essence,
the extra concatenation layer can be omitted if we add a pooling unit with
window size equaling to one in the previous pointwise pyramid pooling module.
In Fig. 1, we still present the concatenation operation for clear depiction.

The pipeline involves two stages. In the first stage (arrowed in black in Fig. 3),
we only consider spatial connection along x direction by coupling Lx small blocks
within the same y index as a whole. Note that the operation of each recurrent
group is independent and can be realized in parallel. The features derived from
point features concatenated with pooled features within each block are unrolled
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Fig. 3. The pipeline of our two-direction hierarchical RNN module. Output of the first
x-direction RNN is reassembled for the input of the second y-direction RNN.

to form a sequence of the corresponding RNN cells. At each time step (corre-
sponding to each small block along the same y index), every RNN takes the
concatenated block features as input and based on the previous state from its
preceding neighboring blocks to update the new state as follows:

Oi,j , Si,j = f (xi,j , Si−1,j) for i = 1, ..., Lx (3)

where xi,j , Si−1,j denote the current input and the previous state of a certain
block, and Oi,j , Si,j represent the output and the updated state, respectively.
Since the recurrent layers are operated in a many-to-many mode, it is indicated
that the complete output will be returned only after the entire input sequence has
been passed through the recurrent layer, which is capable of learning long-range
dependencies along the x direction. In specific, each one-dimensional recurrent
layer can be simply implemented as multi-LSTMs [33] or GRUs [34], in our work
multi-LSTM is adopted.

After all the points are swept over the x dimension, the attained brand-new
features for each small block are served as input of the following stage. In the
second stage, we recompose the features to consider spatial relevance along y

direction. Specifically, for each recurrent layer along y-dimension, block features
of the same x index are unrolled and composed to form a new sequence. In other
words, there are Lx RNN layers with each consisting of Ly timestamps in the
second stage. Analogously, at each time step, we proceed reading one element
and update the state asynchronously as follows:

Oi,j , Si,j = f (x̃i,j , Si,j−1) for j = 1, ..., Ly (4)

where x̃i,j is the updated features derived from the first stage. In other words, the
resulted features from x-direction RNNs are taken as input for the y-direction
operation.

After both directions along the ground plane have been processed, we obtain
the updated features originated from integrating local and long-range spatial
context knowledge. Especially, we do not break the inherent connection within
each block. Instead, our model learns to share long-range knowledge by propa-
gating neighboring features along the two directions hierarchically. Note that one
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can also stack more recurrent layers for processing additional directions, we only
choose the mentioned two directions in view of memory and speed. The output
features of the RNN-based model are then concatenated with the original input
features, including the pointwise features and local pooled features, to predict
the final label for each point.

4 Experimental Results

4.1 Dataset and Evaluation Criteria

In this section, evaluations are mainly carried out on the following challenging
datasets: Stanford Large-Scale 3D Indoor Spaces (S3DIS) [6], ScanNet [7], as well
as outdoor vKITTI [10], KITTI Raw [9] and 3DRMS Challenge [35].

S3DIS dataset is an indoor 3D point cloud dataset that includes six large-
scale indoor areas that originate from three different buildings, totally covering
over 6,000 m2 and involving thirteen semantic classes.

ScanNet dataset contains over 1500 scanned 3D indoor scenes and 21 se-
mantic classes. Experiment settings are borrowed from [7] to split the dataset
into 4 : 1 for training and testing, respectively.

vKITTI dataset is a synthetic large-scale outdoor dataset imitating the real-
world KITTI dataset, with 13 semantic classes in urban scenes. The annotated
point clouds are obtained by projecting 2D semantic labels into 3D space.

KITTI Raw dataset contains sparse Velodyne LiDAR point clouds without
color information. Due to a lack of semantic ground truth labels, it can not be
employed for supervised training. However, the density is comparable to vKITTI
and we leverage it for generalization validation.

For evaluation, we report quantitative and qualitative results on indoor and
outdoor datasets. The evaluation metric used in our experiments are: mean inter-
section over union over all classes (mIoU), per-class IoU, mean per-class accuracy
(mAcc) and overall accuracy (OA). In specific, IoU can be computed as

IoU =
TP

(T + P − TP )
(5)

where TP is the number of true positives, T is the number of ground truth
positive samples, P is the number of predicted positives belonging to that class.

4.2 Implementation Details

For S3DIS dataset, unlike PointNet that adopts 9-dim representation, each point
in our model is only represented by 6-dim vector in order to reduce computation
cost, namely, normalized XYZ and RGB. The follow-up experimental results
also validate that 6-dim input in our model already performs better than the
original 9-dim vector in PointNet. During training, each room is split into over-
lapped blocks of size 1.5 m × 1.5 m along horizontal directions without height
constraint, each containing 6400 points. No overlapping is performed during
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Table 1. Comparison results on the S3DIS dataset with XYZ-RGB inputs. IoU data
of the referenced works are from [23] and [27]. The upper results are averaged over
the 6 folds and the lower are trained on two buildings and tested on the Area 5 fold.
Intersection over union of each class are given.
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A5 PointNet [4] - 49.0 41.1 88.8 97.3 69.8 0.05 3.92 49.3 10.76 58.9 52.6 5.8 40.3 26.3 33.22
A5 SEGCloud[14] - 57.4 48.9 90.1 96.0 69.9 0 18.4 38.3 23.1 70.4 75.9 40.9 58.4 13.0 41.6

A5 SPG [27] 85.1 61.7 54.7 91.5 97.9 75.9 0 14.2 51.3 52.3 77.4 86.4 40.4 65.5 7.23 50.7
A5 Ours 85.7 71.3 53.4 95.2 98.6 77.4 0.80 9.83 52.7 27.9 78.3 76.8 27.4 58.6 39.1 51.0

PointNet [4] 78.5 66.2 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2
MS+CU [23] 79.2 59.7 47.8 88.6 95.8 67.3 36.9 24.9 48.6 52.3 51.9 45.1 10.6 36.8 24.7 37.5
G+RCU [23] 81.1 66.4 49.7 90.3 92.1 67.9 44.7 24.2 52.3 51.2 58.1 47.4 6.9 39.0 30.0 41.9

SPG [27] 82.9 64.4 54.1 92.2 95.0 71.9 33.5 15.0 46.5 60.9 69.4 65.0 38.2 56.8 6.86 51.3
Ours 86.9 73.6 56.3 92.9 93.8 73.1 42.5 25.9 47.6 59.2 60.4 66.7 24.8 57.0 36.7 51.6

test. The parameters of the proposed pointwise pyramid pooling module are
set as follows: 4 pooling layers with the corresponding window kernel size 1,
N/64, N/8, N . With regard to the two-direction hierarchical RNN model, we
set time steps to 6 for each direction. The hidden unit size for each RNN cell
is 128. For ScanNet [7] we carry out experiments utilizing only the geometry
information by removing RGB features. Besides, weighted cross entropy loss is
harnessed to tackle with the challenge of imbalanced samples between different
classes. To keep fair comparison with PointNet++ [22], we also perform random
input dropout for all approaches in the ScanNet experiment. And for vKITTI
dataset [10], experiments with XYZ-RGB and with XYZ-only inputs are both
conducted. For all experiments, the model is optimized by Adam optimizer [36]
with initial learning rate 0.001 and batch size 24.

4.3 Results on Indoor Datasets

S3DIS: Similar to [4, 27, 23] which adopted 6-fold cross validation strategy for
train and test, we trained six models separately and for each one, five areas are
used for training and the remaining one for testing. Note that SEGCloud [14]
trained their model on two of the three buildings and tested on the other building,
since they argued that areas from the same building in training and testing set
can result in an increased performance and fail to evaluate the generalizability.
For fair comparison, we also retrain our model on the first two buildings and
test on the building not present in the other folds, namely, Area 5 (A5). The
comparison results are presented in Table 1.

As is depicted in Table 1, our architecture outperforms other approaches on
average. The proposed method outperforms baseline work PointNet by 8.7%
mIoU, 7.4% mAcc and 8.4% in overall accuracy and even shows higher accu-
racy than [23] and [27], which exploit multi-scale context consolidation and su-
perpoint graph, respectively. Besides, our architecture is able to resolve small
semantic classes such as beam, column and board. With regard to the general-
izability evaluation on Area 5, the model trained on two buildings and tested
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Input Cloud Pointnet[4] G-RCU[23] Ours Ground Truth 

Ceiling     Floor    Wall   Beam    Column    Window Door Table Chair Sofa Bookcase Board Clutter

Fig. 4. Qualitative results on indoor S3DIS dataset. Our results demonstrate superior
performance over the state-of-the-art methods with more accurate predictions.

on another diverse building also behaves well, leading the performance of overall
accuracy and mAcc and yielding comparable IoU with [27].

Next, we present the qualitative results of the semantic segmentation by our
architecture in Fig. 4. As can be seen from Fig. 4, thanks to the pyramid pooling
module as well as the two-direction hierarchical RNN model, our architecture
is capable of correcting erroneously labelled classes in [4, 23] and achieves more
accurate segmentation results. Besides, the proposed framework largely retrieves
fine-grained details that are missed by other methods. For example, the chair legs
are preserved to a great extent (colored in red) and much less noise in semantic
segmentation is observed compared to the remaining approaches.

In the previous experiment (S3DIS), geometry as well as color information is
utilized to predict semantic labels for each room, since color plays a critical role
in feature representation. We wonder whether the proposed architecture works
when color is unavailable. Accordingly, a further experiment is conducted on
large scanned indoor dataset ScanNet [7] with color information discarded. S-
canNet presented a voxel-based coarse prediction framework leveraging 3D fully
convolutional networks. Instead, we yield per-point labels and make comparison
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Table 2. Per-point accuracy on ScanNet [7] with only XYZ information, no RGB.

Method PointNet [4] G+RCU [23] PointNet++ [22] Ours

OverAll Accuracy 0.526 0.634 0.743 0.765

Table 3. Results on outdoor vKITTI dataset: with and without RGB.

Method
XYZRGB XYZ-only

OA mIoU mAcc OA mIoU mAcc

PointNet [4] 0.797 0.344 0.470 0.717 0.239 0.381
G+RCU [23] 0.806 0.362 0.497 0.739 0.298 0.467

PointNet++ [22] - - - 0.770 0.299 0.400
Ours 0.878 0.416 0.541 0.796 0.345 0.492

with PointNet [4] and Pointnet++ [22]. The performance is reported in Table 2,
which demonstrates the efficiency of our framework when only geometry infor-
mation is available. Note that the result is a bit different from that in [22], since
the accuracy in our experiment is evaluated by per-point rather than per-voxel.

4.4 Results on Outdoor Datasets

We also evaluate the performance of the proposed model on outdoor datasets.
For fair comparison, we choose vKITTI dataset [10] as [23] does and split the five
different urban video sequences into six non-overlapping folds. During training
and testing, the six-fold cross validation strategy is adopted as PointNet suggest-
s. Furthermore, we conduct two separate experiments with respect to different
input features, i.e., XYZ-RGB and XYZ-only. As is presented in Table 3, our
framework successfully predicts the semantic labels of outdoor scenes no matter
which input feature strategy is adopted. With color information, our architec-
ture can improve the semantic segmentation performance to a great extent. Even
without color clue, our algorithm is able to achieve improvements compared to
other state-of-the-art approaches. Notably we obtain slightly higher averaged
performance of [4, 23] reported in [23] using the same dataset, which is prob-
ably due to our data normalization. Besides, we also show qualitative results
of vKITTI compared to other recently proposed state-of-the-art algorithms in
Fig. 5. As is demonstrated in Fig. 5, our framework retrieves the scene more
consistently with less erroneous labels.

To further validate the effectiveness and generalization ability of our model,
we apply the model trained on vKITTI to two untrained real-world outdoor
datasets, KITTI Raw [9] and 3DRMS [35] laser data. The KITTI Raw point
clouds obtained by LiDAR scans only contain XYZ information without ground
truth semantic labels, thus we apply geometry-only model of vKITTI to it. With
regard to the latter 3DRMS laser data with color information, the geometry-
color model of vKITTI is employed, despite of different class labels for these two
datasets. The qualitative results are presented in Fig. 6. Without any training,
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Pointnet[4] G-RCU[23] Ours Ground Truth 

Terrain     Tree     Vegetation     Building  Road    GuardRail     TrafficSign     TrafficLight Pole    Misc    Truck            Car    Van

Fig. 5. Semantic segmentation results on outdoor vKITTI dataset. From left to right:
PointNet [4], G+RCU [23], our results, the ground truth. The input features are geom-
etry with color for all algorithms.

our model still produces reasonable semantic results in both datasets. Note that
only some common or similar classes make sense, such as road, tree, terrain, car
and building.

4.5 Ablation Study

For ablation study, further experiments are carried out to explore the contri-
bution of two key components in our approach. For all experiments here, we
compare the performance of different settings with geometry and color features
taken as input on S3DIS dataset. As is revealed in Table 4, though being simple,
the pyramid pooling module makes significant contribution to the improvement
of the overall accuracy, and our two-direction RNN model further reduces errors
in small classes and thus improves the mIoU and mAcc. Although the results of
1D RNN are inferior to that with pointwise pyramid pooling, the hierarchical

Table 4. Comparison of different variants. Best results are shown in bold.

Method OA mAcc mIoU

Baseline PointNet [4] 78.5 66.2 47.6
Add with Pointwise Pyramid Pooling 82.8 68.3 50.8

Add with one-direction RNNs 80.6 67.9 49.9
Add with two-direction RNNs 82.3 70.0 51.4

Our Full Approach 86.9 73.6 56.3
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Terrain      Tree      Vegetation      Building      Road      TrafficSign      Misc     Car    

Tree Vegetation Building  Road  TrafficSign Misc Tree Vegetation Building  TrafficSign MiscTree Grass Rose Topiary Hedge Terrain Tree Grass Topiary  Obstacle  Unknown  Ground Obstacle  Ground

(a) KITTI Raw Prediction without Ground Truth (XYZ-only)

(b) 3DRMS Challenge Prediction with different labeled Ground Truth

Prediction Ground Truth Prediction Ground Truth

Fig. 6. Qualitative prediction results on the untrained KITTI Raw [9] (upper row) and
3DRMS [35] (below row). Our XYZ-only model trained on vKITTI is applied to real
KITTI laser scans. Only some shared classes like car, building and road make sense.
The XYZ-RGB model trained on vKITTI is employed for 3DRMS scans. Although
some classes differ from the annotated labels, reasonable results are still observed.

Table 5. Results of different time steps on S3DIS dataset (6-fold cross validation).

Time step OA mAcc mIoU

1 80.7 69.8 51.3
2 83.8 72.7 53.7
4 85.3 73.2 56.4
6 86.9 73.4 56.2
8 86.9 73.3 55.6
10 86.5 72.1 54.0

two-direction RNN architecture reveals an improved performance. Finally, the
combination of the two components achieves overwhelming results by integrating
neighboring local context with long-distance spatial information.

Besides, since the best time step varies for different datasets and depends on
the trade-off between time and accuracy, thus we didn’t make much effort on
finetuning the best one. However, we conducted experiments concerning different
time steps. Results shown in Table 5 reveal that small time steps degrade the
performance whereas too large time step also hinders the IoU, generally, a time
step between 4 and 8 is feasible.
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5 Conclusions

We present an end-to-end approach for efficient 3D semantic segmentation by
means of integrating convolution neural networks with recurrent neural networks.
The framework consists of two indispensable components, the pointwise pyramid
pooling module with no strides to integrate multi-scale local context and the
two-direction hierarchical RNNs to learn long-range spatial dependency. Our
architecture successfully improves the accuracy of 3D semantic segmentation on
indoor and outdoor datatsets. With regard to some similar semantic classes, our
model also has limited capability to distinguish them, such as door and wall. For
future work, we plan to investigate on the problem and extend our method to
more applications on unstructured point clouds.

References

1. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Se-
mantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. In: CVPR. (2017) 1–1

2. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: CVPR. (2015) 3431–3440

3. Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Rodŕıguez,
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